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Abstract

In this paper, we consider a two-steps hybrid iterative scheme with errors for
generalized equilibrium problems and common fixed point problems, and prove
the weak limits of sequences {z,} and {v,} obtained under the given scheme
for N finite asymptotically k;-strictly pseudo-contractive mappings {Ti}fil and
a firmly nonexpansive mapping S, are the same and hence the point is a common
fixed point of {T;}; and S,.

1 Introduction

The applications of equilibrium problems and fixed point theory to many branches have
been well-known for a long time in nonlinear analysis including optimization theory,
economics, etc. (see [2, 3,5, 7,9, 12]).

Recently there have been many researches on approximating convergence of fixed
points under iteration schemes with errors concerning equilibrium problems and vari-
ational inequalities, etc. (see [2, 3, 4, 5, 9]).

On the other hand, Qin et al. [11] and Kumam et al. [6] considered equilibrium
problems with fixed point problems under one-step hybrid iterative schemes and two-
step hybrid iterative schemes, respectively, in Hilbert spaces.

Inspired by those results, we consider the following two-step hybrid iterative scheme
with errors for generalized equilibrium problems and common fixed point problems,
and obtain a result that the weak limits of sequences {z,} and {v,} obtained under
the given scheme for IV finite asymptotically k;-strictly pseudo-contractive mappings
{T;}X, and a firmly nonexpansive mapping S, are the same and that the same point
is a common fixed point of {T};}¥, and S,.

ALGORITHM 1.1. Let C be a closed convex subset of a Hilbert space H,T;, 1) :
C—C(t=1,2,---,N) be mappings and ¢ : C x C' — R be a bifunction. For any
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xo € C, let {z,,} and {v,} be sequences generated by

" 1
Ty = Ap—1VUnp—1 + bnflTl}E,E:)L ( )

{¢(U7l—1a y) + <1/)Un—1a y— 'Un—1> + p L L <Z/ —Un—1,Un—-1 — xn—1> >0,

)
Un—1+ Cp—1Un—1,

for all y € C' and n € N, where {a,}, {b,} and {c,} are sequences in [0,1) such that

an +by+cn =1, a, > k+e, b, > ¢ for some e € (0,1), > ¢, < o0, {u,} is a
n=1

bounded sequence in C, {r,} is a sequence in (0,00) such that lim infr, > 0 and

i(n) = n(mod N), h(n) = [ ] with a ceiling function [-].

REMARK 1.1. (a) Putting ¢» = 0 in (1), we obtain an algorithm

d(Vn—1,y) + Til (y — Vp—1,Vp—1— Zp—1) >0 forall y € C,
Ty = Ap—1Up—1 + bn,lTi}E;) Un—1 + Cp_1un—1 for each n € N.

(b) Putting ¢, = 0 for all n € N in (2), we obtain the algorithm considered in [6]

{gb(vn_l’y) + rnl,l (y — Up—1,Vp—-1 — Tp—1) >0 forally € C, 3)

Ty = Ap—1Vp—1 + (1 — an_l)Ti}zfg)vn_l or each n € N.

(c) Putting ¢ = 0 and v, = z,, (n € N) in (3), we obtain the algorithm considered in

[11]

Tp = Gp-1Tp—1+ (1 — an_l)Ti'zfg)xn_l for each n € N. (4)

2 Preliminaries

First of all, we recall some definitions and results needed in the main results.

DEFINITION 2.1. Let ¢ : C x C — R be a function and ¢ : C' — C be a nonlinear
mapping. (a) ¢ is said to be monotone if ¢(x,y) + ¢(y,x) < 0 for all z,y € C. (b) ¥
is said to be monotone if (Yx — Yy, z —y) > 0 for all z,y € C.

DEFINITION 2.2. A mapping T : C — C is asymptotically k-strictly pseudo-
contractive if there exist k € [0,1) and a sequence {k,} C [1,00) with lim %, = 1 such
that

Tz — Tmy||* < E2||z —y||> + k|(I —T™)z — (I = T™)y||* for all 2,y € C and n € N.
LEMMA 2.1 ([7, 10]). Let H be a real Hilbert space. Then we have the following
identities:

@) llz =yl =z = llyl|* = 2(z — y,y) for all z,y € H.
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(ii) For all z,y € H and a,b,c € [0,1] with a +b+c=1,
laz +by + c2||* = allz|* + blly||* + el 2[|* — ablle — yl|* — belly — 2[|* — callz — =||*.
(iii) If {z,} is a sequence in H weakly converging to z, then

lim sup ||z, —y||* = lim sup |z, — 2||* + ||z —y||* forally € H.
n—oo n—oo

LEMMA 2.2 ([10]). Let {ay}, {cn} and {6,,} be nonnegative real sequences satis-
fying the condition an4+1 < (1 + 0y )a, + ¢, for each n € N. If

o0 o0
25n<oo and ch<oo,
n=1 n=1

then lim a,, exists.
n—oo

3 Main Results

We assume that the mapping ¢ : C' x C' — R satisfies the following conditions:

(i) ¢(z,z) =0 for all x € C;
(ii) ¢ is monotone;

(iii) ¢ is upper hemi-continuous in the first variable;
(iv) ¢ is convex and lower semi-continuous in the second variable.
We have the following theorems.

THEOREM 3.1. Let C be a closed convex subset of a Hilbert space H. Let
1 : C'— C be a monotone nonlinear mapping. For r > 0 and z € H, define a mapping
S, : H— 2% by

1
er:{zEC:¢(z,y)+<¢z,y—z>+r(y—z,z—x)ZOforallyeC}.

Then the following statements (i)—(iii) hold.
(i) S,z is a singleton for each © € H.
(ii) S, is firmly nonexpansive, i.e.,
1S,2 — Syyl|* < (Spx — Sy, x —y) for x,y € H.
(iii) The set F(S,) of all fixed points of S, is a closed and convex subset of C' as a

solution set of the following equilibrium problem considered in [9]: finding z € C
such that ¢(x,y) + (Yx,y —x) >0 for all y € C.
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PROOF. (i) We put ((z,y) = ¢(z,y)+ (Yx,y—z) for all z,y € C. By the conditions
of ¢ and [1, Theorem 1], we see that S,z # @) for any x € C. Next, we show that S,z
is a singleton for € C. Suppose that z1, 29 € S,z. Then

¢(2’1,y)+<¢Zl,y*21>+%<y*21,21 —x) >0 foryeC,
(5)
P(22,y) + (V22,9 — 22) + £ (y — 22,20 —x) > 0 fory € C.

Putting y = 23 in the first inequality and y = 27 in the second inequality (5), respec-
tively and adding them, we have

Blzr, ) + 9z 20) + (W21 — Yo, 22 = 21) 2~ = 2.

Since ¢(21,22) + @(22,21) < 0 and (Yz; — za, 20 — 21) < 0, we have 21 = 22. So we
prove statement (i).
(ii) Let z = S,z and 2/ = S,2’. Then

o(z,2') 4+ (Yz,2 — 2) + %(z/ —z,2—2)>0
D2, 2) + (Y22 = &)+ 1z = 2,2 —a') > 0.

T

Adding two inequalities and applying the monotonicity of ¢ and v, we have
Sz —S,a z—ay=(z—2 a—2)> ||z — | =Sz — S2'|* .

Hence, S, is a firmly nonexpansive mapping. So we prove statement (ii).
(iii) If z € F(S,), then

$(a.) + (y —7) = 9lw9) + o,y —2) 4y~ 20— 7) 20

for all y € C. So x is a solution of the equilibrium problem in [9]. Next, let {z,} be a
convergent sequence in F(S,) with a limit € H. Since F(S,) C C and C is closed,
we have x € C. Also, S, is continuous. Then we have

r= lim z, = lim S,z, = S,z.

n—oo n— 00

It means that x € F(S,), that is, F'(S,) is closed.
To show that F(S,) is convex, we let z = Az + (1 — Ay for z,y € F(S,) and
A € [0,1]. By Lemma 2.1(ii) and the nonexpansiveness of S,, we have

Iz = Sp2l? = [IA(@ = Srz) + (1= X)(y = Sp2)|
= Az = Sp2l + (1 = Ny = Spz]* = A1 = N[z — ylf?
Mlz = 2] + (1 = Nlly = 21 = A1 = Nl — y?
Alz = Oz + (1= )7 + (1 = Nlly = Az + (1= V)|
—A1 =N -y
AL =Nz = yl? + (1 = )Nz = y]* = AL = Nz —y|I* = 0.

IN
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Hence, S,z = z and z € F(S,). Therefore F(S,) is convex. So we prove statement
(i)

The proof of Theorem 3.1 is complete.
REMARK 3.1. By putting ¢ = 0 in Theorem 3.1, we obtain [4, Lemma 2.12].
Next, we consider our main result.

THEOREM 3.2. Assume that the mappings T; : C — C for ¢ = 1,--- , N satisfy
the following conditions:

(i) C is a closed convex subset of a Hilbert space H;

(ii) T; is asymptotically k;-strictly pseudo-contractive for k; € [0,1), i =1,2,--- ,N
and for each i € {1,2,--- , N}, {kyn;} is a sequence in [1, 00) such that > (k2 ; —

n=1
1) < o0
(iti) k= max{k; : 1 <4 < N} and k,, = max{k,; : 1 <i < N} for each n € N.

Let ¢ : C'— C be a monotone nonlinear mapping with

N
F:= (ﬂ F(Ti)> (E(S,) #0.
i=1

For any xo € C, let {z,} and {v,} be sequences generated by Algorithm 1.1. Then
{z,} and {v,} converge weakly to the unique same element of F'.

PROOF. Let p € F. By Algorithm 1.1 and Theorem 3.1(i), we see that v,_1 =
Sy, _1Zn—1 and

[on—1 =Pl = 1S, 1201 = Spo 12l < 201 = p

for each n € N. By Algorithm 1.1 and Lemma 2.1(ii), we have

)

2
Un—1 _p) + Cnfl(unfl _p)H

2 — p|? an—1(Un—1—p) + bnfl(Ti}(lg)L

2
S an71||vn71 - p”2 + bnfl ‘ T:('S;)Un71 - szg)PH + Cnfl‘lunfl _p”2
2

_an—lbn—l ) T;‘IE.EZ;)Un—l - Un—lH

< auoalloac — ol + bn_l{w;(n))ﬂwn_l — I+ k|| (7 = T o
h(n)y, |2 2 h(n) 2
_(I - Ti(n) )pH + Cn—1||un—1 _p” - a/n—lbn—l ‘ T(n) Un—1 — Un—lH
2 oz B h(n) _ 2

< (kh(n)) [vn—1 — Dl bn-1(an-1 — k) Ti(n) Un—1 = Un—1
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+C7L—1||un—1 _p”2 (6)
< 14 () = D] s = 9l + uslluns — pl® ™)
Since Z (k2 . —1) < 0o, and by Lemma 2.2, we see that hm lzn — p|| exists. On the

other hand since a, > k+ ¢ and b, > € for n € N and some € € (0, 1), we have

(ki) |z = pl* = llzn = pl* + a1 llun—1 = p|I”

> b'n—l(an—l - )”T(n) Un—1 =~ Un— 1”
> €2||T£$)vn,1 — 1|
Since lim k‘h( y = = 1 and lim ¢, = 0, taking the limits as n — oo in the above
inequality, we have
2
Y T T .

Observe that

h(n)
||xnfvn—1H = ‘an 1Vn—1 + by 1T(n) Un—1 + Cp—1Un—1 — Up—1

= H—(l — 1) (vn,l - Ti(g)vn,l) +Cpoq (un,l - Tiizg)vn,l) H

(1 —an,l)‘ ‘

nlggo |#n = vn—1] = 0. (9)

IN

Up—1 — TZ(;))vnfl

Un—1 — Ti}égﬁ)vnle + -1 ‘

By (8), we see that

By the firm nonexpansiveness of S, , and Lemma 2.1(i), we have

n—1

l[vn—1 _p”2 =||Sr, 1 Tn-1 — Srn71p||2 <{Sr,_1Tn—1—Sr,_,P;Tn-1—D)
= <vn71 — Dy Tp—1 —P> = _<_(mn71 - 'Unfl) - (xnfl _p)axnfl _p>
1

=5 (lzn1 = vnal® = llzn-1 = plI* = lloa1 = pII*),

and hence

[vn-1 = plI* < llon-1 = plI* = llzn-1 = va-1l.

Applying this inequality to (6), we have
2 ! 2 2 2 2
lon = P12 < (Kumy) Uznoa = 2l = zn1 = vn 1) + enallun—s = pl%
Since lim ||z, — p|| exists and lim k;L(n) =1, we see that
n—0oo n—oo

lim ||€n—1 — vp—1| = 0. (10)

n— o0
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Applying (9) and (10) to the triangle inequality, we have
[vn = vn—1l| < flvn = @all + [l2n — vp-1]| = 0 as n — oo,
which implies that
nlin;o lvn, — Vnyjl| =0 for j e {1,---, N} (11)
Similarly, applying (10) and (11) to the triangle inequality, we obtain
|z = zn-1ll < llzn — vall + [|vn = Va1l + [lvn—1 — Tn-1]| — 0 as n — oo,
which implies that nlingo |zn, — zpt4|| =0 for j € {1,--- , N}. On the other hand,

h(n)—1

an—l - Tn”n—l” < ’ Un—1 — Tléfln)vn 1H + ’ z(”)Tz(n) Up—1 — Ti(n)”n—l”
h(n)—1 h(n)—1
< ‘ Un—1 — Ti(n) Un—1 H +L (‘ Tz’(n) Un—1 — rfi(n_N)Un—NH
+‘ l(nn)N;Un N — 'Uanle + [|vn-N—1 — vnle) ; (12)

where

1-k

L—sup{k+\/1+ )(l_k):nEN}.

Since, for each n > N, n = (h(n)—1)N+i(n), i(n—N) = i(n) and h(n—N) = h(n)—

’Ti}ég)_lvnﬂ_Tiizv(g;f;vnff\’H = ‘Ti}fg)_lvnfl—Tﬁg)_lvanH
< Llvp—1 — vp-n]|| (13)
and
T
< ‘Ti}zf;i_z\]r\g)”” N — TZE;" I\J[\g)vn N— 1H+’ ngln]\],\g Up—N-1— Un—N-— 1H
< L-||Jup-n — Up_n-— 1||+‘ z(nn ]\]f\g)vn N—1—Un_N— 1H (14)

So by (12)—(14), we see that

lvn—1 — Thvn_1|

< ‘ - TZ’zn Uy IH +L- {‘ Tl(ir)t)*lvnfl - 71}25171);[;%71\1“
+‘ T Ny N = Vnon- 1” o1 7”"‘1H}
< [oncs = T v+ L (L oo = el L ooy — vy

+ ‘ Tiizg:\],\;)vnfqu - UanqH + ||vn—n-1 — Un71||} .
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By (8) and (11), we have that lim ||v,—1 — Tvn—1|| = 0. Since

lvn — Trvn| lvn — V1|l + [vn—1 — Tpvn_1l| + [ Thvn—1 — Trvn||

<
< (1 + L) : ”Un - Un—l” + ||Un—1 - Tn'Un—lH — 0 asn — oo,

forany j=1,--- , N, we have

v = Totjonll < v = Vgl + 1onts — Tt jntill + 1 Totjvnts — Tnionll
S+ L) lvn = vpgjll + 1o — Tnyjvnsjll — 0 as n — oo,

which gives that lim ||v, — Tjv,|| = 0 for [ € {1,---,N}. Moreover, for each | €
{1,---, N}, we have

|zn — Tiwn|l < |20 — vull + lvn = Tivall + (| Tive — Tiza||
<(14+L) ||xn — vnll + ||vn — Tivn|| — 0 as n — oc.

Put
W(z,) ={xz € H : x,, = x for some subsequence {x,,} of {x,}}.

Then W (z,,) # 0 by the fact that {x,} is bounded in H. Next, we claim that W (x,,) C
F. Let w € W(zy,) be an arbitrary element. Then there exists a subsequence {z,} of
{n} converging weakly to w. Since lim |z, — v,| = 0, we can obtain that v,, — w
as i — o0o. By the fact that lim ||v, — Tjv,|| =0, Tjv,, — w for I € {1,--- , N}. Now,

we show that w is a fixed point of S,. Since v,, = T}, v, for each n € N, we have

1
O (Un,y) + (W, y — vp) + —(y — Vp, v — ) > 0forally € C and n € N.
T

n
By the monotonicity of ¢, we have

Un,

i

— Tn.: .
<y — Un;, r n1> 2 ¢(y7 ’Uni) + <1/Wni;vni - y> for i e N.
ng

T,

. Vn.—
Since —
Th

vq

— 0 and v,, — w as i — 0o, and by the condition (iv) of ¢, we have

oy, w) + (Yw,w —y) <0 foryeC.

By the conditions (i) and (iv) of ¢, we see that

0 = oy, y) <td(ye,y) + (1 —)p(ys, w)
< oy, y) + (1 =) (w, yr — w) = to(ys,y) + (1 — 1)t (Yw,y — w)
< By, y) + (1 =) (Yw,y —w),

where t € (0,1], y € C, and y; = ty + (1 — t)w. By the condition (iii) of ¢,

0 < o(w,y) + (Yw,y —w) forally e C,
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which shows that w € F(S,.). Moreover, w € ﬂ F(Ty). In fact, if w ¢ F(T;) for some
le{l,---,N}, then from the Opial’s condltlon and the fact that hm |xn —Tizn| =0,

lim inf ||z, — w|| < lim inf||z,, — Tyw| < lim inf{||z,, — Tizn, || + [|T1xn, — Tiw||}
1— 00 71— 00 71— 00
< lim inf L - ||, —w]],
71— 00

which derives a contradiction. Consequently, we have

weF = (ﬁF(ﬂ)) (F(S,)
=1

Finally, we show that {z,} and {v,} converge weakly to the unique same element
of F. Indeed, it is sufficient to show that W (x,,) is a singleton. We take any wq,ws €
W(zy,) and let {z,,} and {z,,} be subsequences of {z,} such that z,, — w; and
Tp; — wy. Since lim ||z, — p|| exists for each p € F' and wi,wy € F, by Lemma

n—oo
2.1(iii), we obtain
limsup ||z, —w||* = hmsup l2n, — wy||? = lim sup lzn, — wal|? + |lwy — wy]|?
n— 00 J— Jj—

= limsup ||z, — wal|? + [Jwe — w1 ||?
71— 00

— Tim sup [, — w2 + 2w; — wy |2
11— 00

= limsup ||z, — w1 ||* + 2[|ws — w1 .

n—oo

Hence wy = we, which shows that W (x,,) is a singleton. The proof of Theorem 3.2 is
complete.

We have the following theorems in [6, 11] as corollaries of Theorem 3.2.

THEOREM 3.3 ([6]). Assume that the conditions (i)—(iii) in Theorem 3.2 hold and

that ¢ satisfies
N
=<ﬂﬂﬂ0ﬂﬁ@#®

For any zg € C, let {x,} and {v,} be sequences generated by (3), where n = (h —
)N +i(n > 1),4 =1in) € {1,2,---,N}, h = h(n) > 1 is a positive integer and
h(n) — oo as n — oo. Let {a,} and {r,} be sequences satisfying {a,} C [a, ] for
some a, 3 € (k,1), {r,} C (0,00) and hm infr, > 0. Then {z,} and {v,} converge

weakly to an element of F'.

THEOREM 3.4 ([11]). Assume that the conditions (i)—(iii) in Theorem 3.2 hold

and N
=<0Fm0¢w
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For any zg € C, let {z,} be a sequence generated by (4), where {a,} is a sequence in
(0,1) such that k+e < a, <1—¢ for some e € (0,1), n=(h—1)N +i(n > 1), where
i=1i(n) € {1,2,--- ,N}, h = h(n) > 11is a positive integer and h(n) — oo as n — oo.
Then {z,} converges weakly to an element of F.

REMARK 3.2. Our result is a weak convergence under Algorithm 1.1 for a finite
family of asymptotically k;-strictly pseudo-contractive mappings in Hilbert spaces. The
convergences, mappings and spaces need to be more weakened, for examples, strongly
convergences, asymptotically nonexpansive mappings and C AT (0)-spaces, respectively.
Till now, many kinds of strong convergence results are well-known, but the weak con-
vergence results are few. So, we suggest the following open problem.

Open problem. Do {z,} and {v,} weakly converge for a finite family of asymptot-
ically nonexpansive mappings with Algorithm 1.1 under suitable conditions?
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