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Abstract

In this paper, we consider a two-steps hybrid iterative scheme with errors for
generalized equilibrium problems and common fixed point problems, and prove
the weak limits of sequences {xn} and {vn} obtained under the given scheme
for N finite asymptotically ki-strictly pseudo-contractive mappings {Ti}Ni=1 and
a firmly nonexpansive mapping Sr are the same and hence the point is a common
fixed point of {Ti}Ni=1 and Sr.

1 Introduction

The applications of equilibrium problems and fixed point theory to many branches have
been well-known for a long time in nonlinear analysis including optimization theory,
economics, etc. (see [2, 3, 5, 7, 9, 12]).
Recently there have been many researches on approximating convergence of fixed

points under iteration schemes with errors concerning equilibrium problems and vari-
ational inequalities, etc. (see [2, 3, 4, 5, 9]).
On the other hand, Qin et al. [11] and Kumam et al. [6] considered equilibrium

problems with fixed point problems under one-step hybrid iterative schemes and two-
step hybrid iterative schemes, respectively, in Hilbert spaces.
Inspired by those results, we consider the following two-step hybrid iterative scheme

with errors for generalized equilibrium problems and common fixed point problems,
and obtain a result that the weak limits of sequences {xn} and {vn} obtained under
the given scheme for N finite asymptotically ki-strictly pseudo-contractive mappings
{Ti}Ni=1 and a firmly nonexpansive mapping Sr are the same and that the same point
is a common fixed point of {Ti}Ni=1 and Sr.

ALGORITHM 1.1. Let C be a closed convex subset of a Hilbert space H,Ti, ψ :
C → C (i = 1, 2, · · · , N) be mappings and φ : C × C → R be a bifunction. For any
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x0 ∈ C, let {xn} and {vn} be sequences generated by{
φ(vn−1, y) + 〈ψvn−1, y − vn−1〉+ 1

rn−1
〈y − vn−1, vn−1 − xn−1〉 ≥ 0,

xn = an−1vn−1 + bn−1T
h(n)
i(n) vn−1 + cn−1un−1,

(1)

for all y ∈ C and n ∈ N, where {an}, {bn} and {cn} are sequences in [0, 1) such that
an + bn + cn = 1, an ≥ k + ε, bn ≥ ε for some ε ∈ (0, 1),

∞∑
n=1

cn < ∞, {un} is a

bounded sequence in C, {rn} is a sequence in (0,∞) such that lim
n→∞

inf rn > 0 and

i(n) ≡ n(modN), h(n) = d nN e with a ceiling function d·e.

REMARK 1.1. (a) Putting ψ ≡ 0 in (1), we obtain an algorithm{
φ(vn−1, y) +

1
rn−1
〈y − vn−1, vn−1 − xn−1〉 ≥ 0 for all y ∈ C,

xn = an−1vn−1 + bn−1T
h(n)
i(n) vn−1 + cn−1un−1 for each n ∈ N.

(2)

(b) Putting cn = 0 for all n ∈ N in (2), we obtain the algorithm considered in [6]{
φ(vn−1, y) +

1
rn−1
〈y − vn−1, vn−1 − xn−1〉 ≥ 0 for all y ∈ C,

xn = an−1vn−1 + (1− an−1)Th(n)i(n) vn−1 or each n ∈ N.
(3)

(c) Putting φ ≡ 0 and vn = xn (n ∈ N) in (3), we obtain the algorithm considered in
[11]

xn = an−1xn−1 + (1− an−1)Th(n)i(n) xn−1 for each n ∈ N. (4)

2 Preliminaries

First of all, we recall some definitions and results needed in the main results.

DEFINITION 2.1. Let φ : C ×C → R be a function and ψ : C → C be a nonlinear
mapping. (a) φ is said to be monotone if φ(x, y) + φ(y, x) ≤ 0 for all x, y ∈ C. (b) ψ
is said to be monotone if 〈ψx− ψy, x− y〉 ≥ 0 for all x, y ∈ C.

DEFINITION 2.2. A mapping T : C → C is asymptotically k-strictly pseudo-
contractive if there exist k ∈ [0, 1) and a sequence {kn} ⊂ [1,∞) with lim

n→∞
kn = 1 such

that

‖Tnx− Tny‖2 ≤ k2n‖x− y‖2 + k‖(I − Tn)x− (I − Tn)y‖2 for all x, y ∈ C and n ∈ N.

LEMMA 2.1 ([7, 10]). Let H be a real Hilbert space. Then we have the following
identities:

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 for all x, y ∈ H.
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(ii) For all x, y ∈ H and a, b, c ∈ [0, 1] with a+ b+ c = 1,

‖ax+ by+ cz‖2 = a‖x‖2+ b‖y‖2+ c‖z‖2− ab‖x− y‖2− bc‖y− z‖2− ca‖z− x‖2.

(iii) If {xn} is a sequence in H weakly converging to z, then

lim
n→∞

sup ‖xn − y‖2 = lim
n→∞

sup ‖xn − z‖2 + ‖z − y‖2 for all y ∈ H.

LEMMA 2.2 ([10]). Let {an}, {cn} and {δn} be nonnegative real sequences satis-
fying the condition an+1 ≤ (1 + δn)an + cn for each n ∈ N. If

∞∑
n=1

δn <∞ and
∞∑
n=1

cn <∞,

then lim
n→∞

an exists.

3 Main Results

We assume that the mapping φ : C × C → R satisfies the following conditions:

(i) φ(x, x) = 0 for all x ∈ C;

(ii) φ is monotone;

(iii) φ is upper hemi-continuous in the first variable;

(iv) φ is convex and lower semi-continuous in the second variable.

We have the following theorems.

THEOREM 3.1. Let C be a closed convex subset of a Hilbert space H. Let
ψ : C → C be a monotone nonlinear mapping. For r > 0 and x ∈ H, define a mapping
Sr : H → 2C by

Srx =

{
z ∈ C : φ(z, y) + 〈ψz, y − z〉+ 1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ C

}
.

Then the following statements (i)—(iii) hold.

(i) Srx is a singleton for each x ∈ H.

(ii) Sr is firmly nonexpansive, i.e.,

‖Srx− Sry‖2 ≤ 〈Srx− Sry, x− y〉 for x, y ∈ H.

(iii) The set F (Sr) of all fixed points of Sr is a closed and convex subset of C as a
solution set of the following equilibrium problem considered in [9]: finding x ∈ C
such that φ(x, y) + 〈ψx, y − x〉 ≥ 0 for all y ∈ C.
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PROOF. (i) We put ζ(x, y) = φ(x, y)+〈ψx, y−x〉 for all x, y ∈ C. By the conditions
of φ and [1, Theorem 1], we see that Srx 6= ∅ for any x ∈ C. Next, we show that Srx
is a singleton for x ∈ C. Suppose that z1, z2 ∈ Srx. Then φ(z1, y) + 〈ψz1, y − z1〉+ 1

r 〈y − z1, z1 − x〉 ≥ 0 for y ∈ C,

φ(z2, y) + 〈ψz2, y − z2〉+ 1
r 〈y − z2, z2 − x〉 ≥ 0 for y ∈ C.

(5)

Putting y = z2 in the first inequality and y = z1 in the second inequality (5), respec-
tively and adding them, we have

φ(z1, z2) + φ(z2, z1) + 〈ψz1 − ψz2, z2 − z1〉 ≥
1

r
‖z1 − z2‖2.

Since φ(z1, z2) + φ(z2, z1) ≤ 0 and 〈ψz1 − ψz2, z2 − z1〉 ≤ 0, we have z1 = z2. So we
prove statement (i).
(ii) Let z = Srx and z′ = Srx

′. Then{
φ(z, z′) + 〈ψz, z′ − z〉+ 1

r 〈z
′ − z, z − x〉 ≥ 0,

φ(z′, z) + 〈ψz′, z − z′〉+ 1
r 〈z − z

′, z′ − x′〉 ≥ 0.

Adding two inequalities and applying the monotonicity of φ and ψ, we have

〈Srx− Srx′, x− x′〉 = 〈z − z′, x− x′〉 ≥ ‖z − z′‖2 = ‖Srx− Srx′‖2 .

Hence, Sr is a firmly nonexpansive mapping. So we prove statement (ii).
(iii) If x ∈ F (Sr), then

φ(x, y) + 〈ψx, y − x〉 = φ(x, y) + 〈ψx, y − x〉+ 1
r
〈y − x, x− x〉 ≥ 0

for all y ∈ C. So x is a solution of the equilibrium problem in [9]. Next, let {xn} be a
convergent sequence in F (Sr) with a limit x ∈ H. Since F (Sr) ⊂ C and C is closed,
we have x ∈ C. Also, Sr is continuous. Then we have

x = lim
n→∞

xn = lim
n→∞

Srxn = Srx.

It means that x ∈ F (Sr), that is, F (Sr) is closed.
To show that F (Sr) is convex, we let z = λx + (1 − λ)y for x, y ∈ F (Sr) and

λ ∈ [0, 1]. By Lemma 2.1(ii) and the nonexpansiveness of Sr, we have

‖z − Srz‖2 = ‖λ(x− Srz) + (1− λ)(y − Srz)‖2

= λ‖x− Srz‖2 + (1− λ)‖y − Srz‖2 − λ(1− λ)‖x− y‖2

≤ λ‖x− z‖2 + (1− λ)‖y − z‖2 − λ(1− λ)‖x− y‖2

= λ‖x− (λx+ (1− λ)y)‖2 + (1− λ)‖y − (λx+ (1− λ)y)‖2

−λ(1− λ)‖x− y‖2

= λ(1− λ)2‖x− y‖2 + (1− λ)λ2‖x− y‖2 − λ(1− λ)‖x− y‖2 = 0.
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Hence, Srz = z and z ∈ F (Sr). Therefore F (Sr) is convex. So we prove statement
(iii).
The proof of Theorem 3.1 is complete.

REMARK 3.1. By putting ψ ≡ 0 in Theorem 3.1, we obtain [4, Lemma 2.12].

Next, we consider our main result.

THEOREM 3.2. Assume that the mappings Ti : C → C for i = 1, · · · , N satisfy
the following conditions:

(i) C is a closed convex subset of a Hilbert space H;

(ii) Ti is asymptotically ki-strictly pseudo-contractive for ki ∈ [0, 1), i = 1, 2, · · · , N
and for each i ∈ {1, 2, · · · , N}, {kn,i} is a sequence in [1,∞) such that

∞∑
n=1

(k2n,i−

1) <∞;

(iii) k = max{ki : 1 ≤ i ≤ N} and k
′

n = max{kn,i : 1 ≤ i ≤ N} for each n ∈ N.

Let ψ : C → C be a monotone nonlinear mapping with

F :=

(
N⋂
i=1

F (Ti)

)⋂
F (Sr) 6= ∅.

For any x0 ∈ C, let {xn} and {vn} be sequences generated by Algorithm 1.1. Then
{xn} and {vn} converge weakly to the unique same element of F .

PROOF. Let p ∈ F . By Algorithm 1.1 and Theorem 3.1(i), we see that vn−1 =
Srn−1xn−1 and

‖vn−1 − p‖ = ‖Srn−1xn−1 − Srn−1p‖ ≤ ‖xn−1 − p‖

for each n ∈ N. By Algorithm 1.1 and Lemma 2.1(ii), we have

‖xn − p‖2 =
∥∥∥an−1(vn−1 − p) + bn−1(Th(n)i(n) vn−1 − p) + cn−1(un−1 − p)

∥∥∥2
≤ an−1‖vn−1 − p‖2 + bn−1

∥∥∥Th(n)i(n) vn−1 − T
h(n)
i(n) p

∥∥∥2 + cn−1‖un−1 − p‖2
−an−1bn−1

∥∥∥Th(n)i(n) vn−1 − vn−1
∥∥∥2

≤ an−1‖vn−1 − p‖2 + bn−1
{
(k
′

h(n))
2‖vn−1 − p‖2 + k

∥∥∥(I − Th(n)i(n) )vn−1

−(I − Th(n)i(n) )p
∥∥∥2}+ cn−1‖un−1 − p‖2 − an−1bn−1 ∥∥∥Th(n)i(n) vn−1 − vn−1

∥∥∥2
≤ (k

′

h(n))
2‖vn−1 − p‖2 − bn−1(an−1 − k)

∥∥∥Th(n)i(n) vn−1 − vn−1
∥∥∥2
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+cn−1‖un−1 − p‖2 (6)

≤
[
1 + ((k

′

h(n))
2 − 1)

]
‖xn−1 − p‖2 + cn−1‖un−1 − p‖2. (7)

Since
∞∑
n=1

(k2n,i − 1) <∞, and by Lemma 2.2, we see that limn→∞
‖xn − p‖ exists. On the

other hand, since an ≥ k + ε and bn ≥ ε for n ∈ N and some ε ∈ (0, 1), we have

(k
′

h(n))
2‖xn−1 − p‖2 − ‖xn − p‖2 + cn−1‖un−1 − p‖2

≥ bn−1(an−1 − k)‖Th(n)i(n) vn−1 − vn−1‖
2

≥ ε2‖Th(n)i(n) vn−1 − vn−1‖
2.

Since lim
n→∞

k
′

h(n) = 1 and lim
n→∞

cn = 0, taking the limits as n → ∞ in the above

inequality, we have

lim
n→∞

∥∥∥Th(n)i(n) vn−1 − vn−1
∥∥∥2 = 0. (8)

Observe that

‖xn − vn−1‖ =
∥∥∥an−1vn−1 + bn−1Th(n)i(n) vn−1 + cn−1un−1 − vn−1

∥∥∥
=

∥∥∥−(1− an−1)(vn−1 − Th(n)i(n) vn−1

)
+ cn−1

(
un−1 − Th(n)i(n) vn−1

)∥∥∥
≤ (1− an−1)

∥∥∥vn−1 − Th(n)i(n) vn−1

∥∥∥+ cn−1 ∥∥∥un−1 − Th(n)i(n) vn−1

∥∥∥ .
By (8), we see that

lim
n→∞

‖xn − vn−1‖ = 0. (9)

By the firm nonexpansiveness of Srn−1 and Lemma 2.1(i), we have

‖vn−1 − p‖2 = ‖Srn−1xn−1 − Srn−1p‖2 ≤ 〈Srn−1xn−1 − Srn−1p, xn−1 − p〉
= 〈vn−1 − p, xn−1 − p〉 = −〈−(xn−1 − vn−1)− (xn−1 − p), xn−1 − p〉

= −1
2

(
‖xn−1 − vn−1‖2 − ‖xn−1 − p‖2 − ‖vn−1 − p‖2

)
,

and hence
‖vn−1 − p‖2 ≤ ‖xn−1 − p‖2 − ‖xn−1 − vn−1‖2.

Applying this inequality to (6), we have

‖xn − p‖2 ≤
(
k
′

h(n)

)2
(‖xn−1 − p‖2 − ‖xn−1 − vn−1‖2) + cn−1‖un−1 − p‖2.

Since lim
n→∞

‖xn − p‖ exists and lim
n→∞

k
′

h(n) = 1, we see that

lim
n→∞

‖xn−1 − vn−1‖ = 0. (10)
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Applying (9) and (10) to the triangle inequality, we have

‖vn − vn−1‖ ≤ ‖vn − xn‖+ ‖xn − vn−1‖ → 0 as n→∞,

which implies that

lim
n→∞

‖vn − vn+j‖ = 0 for j ∈ {1, · · · , N}. (11)

Similarly, applying (10) and (11) to the triangle inequality, we obtain

‖xn − xn−1‖ ≤ ‖xn − vn‖+ ‖vn − vn−1‖+ ‖vn−1 − xn−1‖ → 0 as n→∞,

which implies that lim
n→∞

‖xn − xn+j‖ = 0 for j ∈ {1, · · · , N}. On the other hand,

‖vn−1 − Tnvn−1‖ ≤
∥∥∥vn−1 − Th(n)i(n) vn−1

∥∥∥+ ∥∥∥Ti(n)Th(n)−1i(n) vn−1 − Ti(n)vn−1
∥∥∥

≤
∥∥∥vn−1 − Th(n)i(n) vn−1

∥∥∥+ L(∥∥∥Th(n)−1i(n) vn−1 − Th(n)−1i(n−N)vn−N

∥∥∥
+
∥∥∥Th(n)−1i(n−N)vn−N − vn−N−1

∥∥∥+ ‖vn−N−1 − vn−1‖) , (12)

where

L = sup

{
k +

√
1 + (k2n − 1)(1− k)

1− k : n ∈ N
}
.

Since, for each n > N , n = (h(n)−1)N+i(n), i(n−N) = i(n) and h(n−N) = h(n)−1,∥∥∥Th(n)−1i(n) vn−1 − Th(n)−1i(n−N)vn−N

∥∥∥ =
∥∥∥Th(n)−1i(n) vn−1 − Th(n)−1i(n) vn−N

∥∥∥
≤ L‖vn−1 − vn−N‖ (13)

and ∥∥∥Th(n)−1i(n−N)vn−N − vn−N−1
∥∥∥

≤
∥∥∥Th(n−N)i(n−N) vn−N − T

h(n−N)
i(n−N) vn−N−1

∥∥∥+ ∥∥∥Th(n−N)i(n−N) vn−N−1 − vn−N−1
∥∥∥

≤ L · ‖vn−N − vn−N−1‖+
∥∥∥Th(n−N)i(n−N) vn−N−1 − vn−N−1

∥∥∥ . (14)

So by (12)—(14), we see that

‖vn−1 − Tnvn−1‖

≤
∥∥∥vn−1 − Th(n)i(n) vn−1

∥∥∥+ L · {∥∥∥Th(n)−1i(n) vn−1 − Th(n)−1i(n−N)vn−N

∥∥∥
+
∥∥∥Th(n)−1i(n−N)vn−N − vn−N−1

∥∥∥+ ‖vn−N−1 − vn−1‖}
≤

∥∥∥vn−1 − Th(n)i(n) vn−1

∥∥∥+ L · {L ‖vn−1 − vn−N‖+ L · ‖vn−N − vn−N−1‖
+
∥∥∥Th(n−N)i(n−N) vn−N−1 − vn−N−1

∥∥∥+ ‖vn−N−1 − vn−1‖} .
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By (8) and (11), we have that lim
n→∞

‖vn−1 − Tnvn−1‖ = 0. Since

‖vn − Tnvn‖ ≤ ‖vn − vn−1‖+ ‖vn−1 − Tnvn−1‖+ ‖Tnvn−1 − Tnvn‖
≤ (1 + L) · ‖vn − vn−1‖+ ‖vn−1 − Tnvn−1‖ → 0 as n→∞,

for any j = 1, · · · , N , we have

‖vn − Tn+jvn‖ ≤ ‖vn − vn+j‖+ ‖vn+j − Tn+jvn+j‖+ ‖Tn+jvn+j − Tn+jvn‖
≤ (1 + L) · ‖vn − vn+j‖+ ‖vn+j − Tn+jvn+j‖ → 0 as n→∞,

which gives that lim
n→∞

‖vn − Tlvn‖ = 0 for l ∈ {1, · · · , N}. Moreover, for each l ∈
{1, · · · , N}, we have

‖xn − Tlxn‖ ≤ ‖xn − vn‖+ ‖vn − Tlvn‖+ ‖Tlvn − Tlxn‖
≤ (1 + L) · ‖xn − vn‖+ ‖vn − Tlvn‖ → 0 as n→∞.

Put
W (xn) = {x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}} .

ThenW (xn) 6= ∅ by the fact that {xn} is bounded in H. Next, we claim thatW (xn) ⊂
F . Let w ∈W (xn) be an arbitrary element. Then there exists a subsequence {xni} of
{xn} converging weakly to w. Since lim

n→∞
‖xn − vn‖ = 0, we can obtain that vni ⇀ w

as i→∞. By the fact that lim
n→∞

‖vn− Tlvn‖ = 0, Tlvni → w for l ∈ {1, · · · , N}. Now,
we show that w is a fixed point of Sr. Since vn = Trnvn for each n ∈ N, we have

φ(vn, y) + 〈ψvn, y − vn〉+
1

rn
〈y − vn, vn − xn〉 ≥ 0 for all y ∈ C and n ∈ N.

By the monotonicity of φ, we have

〈y − vni ,
vni − xni

rni
〉 ≥ φ(y, vni) + 〈ψvni , vni − y〉 for i ∈ N.

Since vni−xni
rni

→ 0 and vni ⇀ w as i→∞, and by the condition (iv) of φ, we have

φ(y, w) + 〈ψw,w − y〉 ≤ 0 for y ∈ C.

By the conditions (i) and (iv) of φ, we see that

0 = φ(yt, yt) ≤ tφ(yt, y) + (1− t)φ(yt, w)
≤ tφ(yt, y) + (1− t)〈ψw, yt − w〉 = tφ(yt, y) + (1− t)t〈ψw, y − w〉
≤ φ(yt, y) + (1− t)〈ψw, y − w〉,

where t ∈ (0, 1], y ∈ C, and yt = ty + (1− t)w. By the condition (iii) of φ,

0 ≤ φ(w, y) + 〈ψw, y − w〉 for all y ∈ C,
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which shows that w ∈ F (Sr). Moreover, w ∈
N⋂
l=1

F (Tl). In fact, if w 6∈ F (Tl) for some

l ∈ {1, · · · , N}, then from the Opial’s condition and the fact that lim
n→∞

‖xn−Tlxn‖ = 0,

lim
i→∞

inf ‖xni − w‖ < lim
i→∞

inf ‖xni − Tlw‖ ≤ lim
i→∞

inf{‖xni − Tlxni‖+ ‖Tlxni − Tlw‖}

≤ lim
i→∞

inf L · ‖xni − w‖,

which derives a contradiction. Consequently, we have

w ∈ F =
(

N⋂
l=1

F (Tl)

)⋂
F (Sr).

Finally, we show that {xn} and {vn} converge weakly to the unique same element
of F . Indeed, it is suffi cient to show that W (xn) is a singleton. We take any w1, w2 ∈
W (xn) and let {xni} and {xnj} be subsequences of {xn} such that xni ⇀ w1 and
xnj ⇀ w2. Since lim

n→∞
‖xn − p‖ exists for each p ∈ F and w1, w2 ∈ F , by Lemma

2.1(iii), we obtain

lim sup
n→∞

‖xn − w1‖2 = lim sup
j→∞

‖xnj − w1‖2 = lim sup
j→∞

‖xnj − w2‖2 + ‖w2 − w1‖2

= lim sup
i→∞

‖xni − w2‖2 + ‖w2 − w1‖2

= lim sup
i→∞

‖xni − w1‖2 + 2‖w2 − w1‖2

= lim sup
n→∞

‖xn − w1‖2 + 2‖w2 − w1‖2.

Hence w1 = w2, which shows that W (xn) is a singleton. The proof of Theorem 3.2 is
complete.

We have the following theorems in [6, 11] as corollaries of Theorem 3.2.

THEOREM 3.3 ([6]). Assume that the conditions (i)—(iii) in Theorem 3.2 hold and
that φ satisfies

F :=

(
N⋂
i=1

F (Ti)

)⋂
S(φ) 6= ∅.

For any x0 ∈ C, let {xn} and {vn} be sequences generated by (3), where n = (h −
1)N + i(n ≥ 1), i = i(n) ∈ {1, 2, · · · , N}, h = h(n) ≥ 1 is a positive integer and
h(n) → ∞ as n → ∞. Let {an} and {rn} be sequences satisfying {an} ⊂ [α, β] for
some α, β ∈ (k, 1), {rn} ⊂ (0,∞) and lim

n→∞
inf rn > 0. Then {xn} and {vn} converge

weakly to an element of F .

THEOREM 3.4 ([11]). Assume that the conditions (i)—(iii) in Theorem 3.2 hold
and

F :=

(
N⋂
i=1

F (Ti)

)
6= ∅.
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For any x0 ∈ C, let {xn} be a sequence generated by (4), where {an} is a sequence in
(0, 1) such that k+ ε ≤ an ≤ 1− ε for some ε ∈ (0, 1), n = (h− 1)N + i(n ≥ 1), where
i = i(n) ∈ {1, 2, · · · , N}, h = h(n) ≥ 1 is a positive integer and h(n)→∞ as n→∞.
Then {xn} converges weakly to an element of F .

REMARK 3.2. Our result is a weak convergence under Algorithm 1.1 for a finite
family of asymptotically ki-strictly pseudo-contractive mappings in Hilbert spaces. The
convergences, mappings and spaces need to be more weakened, for examples, strongly
convergences, asymptotically nonexpansive mappings and CAT (0)-spaces, respectively.
Till now, many kinds of strong convergence results are well-known, but the weak con-
vergence results are few. So, we suggest the following open problem.

Open problem. Do {xn} and {vn} weakly converge for a finite family of asymptot-
ically nonexpansive mappings with Algorithm 1.1 under suitable conditions?

Acknowledgment. This work was supported by Dong-eui University Foundation
Grant (2013).

References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilib-
rium problems, Math. Student, 63(1994), 123—145.

[2] S. S. Chang, H. W. J. Lee and C. K. Chan, A new hybrid method for solving a
generalized equilibrium problem, fixed point problem and variational inequality
problem with application to optimization, Nonlinear Anal., 70(2009), 3307—3310.

[3] S. S. Chang, H. W. J. Lee and C. K. Chan, A new method for solving equilibrium
problem solving a variational iequality problem and obtaining common fixed points
in Banach spaces, with applications, Nonlinear Anal., 73(2010), 2260—2270.

[4] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces,
J. Nonlinear Convex Anal., 6(2005), 117—136.

[5] S. H. Kim and B. S. Lee, Weak convergence of a hybrid iterative scheme with
errors for equilibrium problems and common fixed point problems, J. Korean Soc.
Math. Educ. Ser. B: Pure Appl. Math., 21(2014), 195—206.

[6] P. Kumam, N. Petrot and R. Wangkeeree, A hybrid iterative scheme for equi-
librium problems and fixed point problems of asymptotically k-strict pseudo-
contractions, J. Comp. Appl. Math., 233(2010), 2013—2026.

[7] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-
contractions in Hilbert space, J. Math. Anal. Appl., 329(2007), 336—346.

[8] A. Moudafi, Mixed equilibrium problems: Sensitivity analysis and algorithm as-
pect, Comp. Math. Appl., 44(2002), 1099—1108.



286 Two-steps Hybrid Iterative Schemes with Errors

[9] A. Moudafi and M. Théra, Proximal and Dynamical Approaches to Equilib-
rium Problems, Lecture Notes in Economics and Mathematical Systems, vol. 477,
Springer-Verlag, New York, 1999.

[10] M. O. Osilike and D. I. Igbokwe, Weak and strong convergence theorems for fixed
points of pseudocontractions and solutions of monotone type operator equations,
Comput. Math. Appl., 40(2000), 559—567.

[11] X. Qin, Y. J. Cho, S. M. Kang and M. Shang, A hybrid iterative scheme for
asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal.,
70(2009), 1902—1911.

[12] Y. Tanaka, On Constructive versions of the tychonoff and Schauder fixed point
theorems, Appl. Math. E-Notes, 11(2011), 125—132.


