Some Remarks On Global Total Domination In Graphs*

Mohammad Hadi Akhbari ${ }^{\dagger}$, Changiz Eslahchi ${ }^{\ddagger}$, Nader Jafari Rad ${ }^{\S}$, Roslan Hasni ${ }^{\boldsymbol{\pi}}$

Received 7 August 2014

Abstract

A subset S of vertices in a graph G is a global total dominating set, or just GTDS, if S is a total dominating set of both G and \bar{G}. The global total domination number $\gamma_{g t}(G)$ of G is the minimum cardinality of a GTDS of G. In this paper, we show that the decision problem for $\gamma_{g t}(G)$ is NP-complete, and then characterize graphs G of order n with $\gamma_{g t}(G)=n-1$.

1 Introduction

Let $G=(V(G), E(G))$ be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_{G}(v)$, or just $N(v)$, and its closed neighborhood by $N_{G}[v]$ or $N[v]$. For a vertex set $S \subseteq V(G)$, we denote $N(S)=\cup_{v \in S} N(v)$ and $N[S]=\cup_{v \in S} N[v]$. The degree of a vertex $x, \operatorname{deg}(x)$ (or $\operatorname{deg}_{G}(x)$ to refer $\left.G\right)$ in a graph G denotes the number of neighbors of x in G. We refer $\Delta(G)$ and $\delta(G)$ as the maximum degree and the minimum degree of the vertices of G, respectively. If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. A leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. The distance between two vertices x and y, denoted by $d(x, y)$ (or $d_{G}(x, y)$ to refer to G) is the length of a shortest path from x to y. The diameter, $\operatorname{diam}(G)$, of a graph G is the maximum distance over all pairs of vertices of G. A set of vertices S in G is a dominating set, if $N[S]=V(G)$. The domination number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G. A set of vertices S in an isolate-free graph G is a total dominating set, or just TDS, if $N(S)=V(G)$. The total domination number, $\gamma_{t}(G)$, of G is the minimum cardinality of a total dominating set of G. For references and also terminology on domination in graphs see for example $[6,7]$.

The concept of global domination in graphs is introduced by Sampathkumar in [9], and further studied by Brigham et al. [2, 3], Dutton et al. [4, 5] and Arumugam et al.

[^0][1]. A subset S of vertices of a graph G is a global dominating set if S is a dominating set of both G and \bar{G}. The global domination number of a graph $G, \gamma_{g}(G)$, is the minimum cardinality of a global dominating set of G. Kulli et al. in [8] initiated the study of global total domination in graphs. A subset S of vertices in a graph G is a global total dominating set, or just DTDS, if S is a TDS of both G and \bar{G}. The global total domination number of $G, \gamma_{g t}(G)$, is the minimum cardinality of a GTDS of G. If a graph G of order n has a GTDS, then $\delta(G) \geq 1$ and $\Delta(G) \leq n-2$. That is neither G nor \bar{G} have an isolated vertex. We define $\gamma_{g t}(G)=0$ if G or \bar{G} has an isolated vertex. For all graphs G which we study in this paper we assume that $\gamma_{g t}(G)>0$.

In this paper, we study global total domination and obtain some new results and characterizations on the global total domination number of a graph G. In section 2 we present some preliminary results. In section 3, we show that the decision problem for $\gamma_{g t}(G)$ is NP-complete. In section 4, we characterize graphs G of order n with $\gamma_{g t}(G)=n-1$.

2 Preliminary Results

We start this section with the following observation that can be easily obtained from the definition.

OBSERVATION 1.

(1) For any graph $G, \gamma_{g t}(G) \geq \max \left\{\gamma_{t}(G), \gamma_{t}(\bar{G})\right\}$.
(2) If G is a disconnected graph, then $\gamma_{g t}(G)=\gamma_{t}(G)$.
(3) If S is a GTDS in a graph G, then for any vertex $x \in S, 1 \leq \operatorname{deg}_{G[S]}(x) \leq|S|-2$.

LEMMA 2. The following statements hold.
(1) If $\gamma_{t}(G)>\Delta(G)+1$, then $\gamma_{g t}(G)=\gamma_{t}(G)$.
(2) If $\gamma_{t}(G)<\gamma_{g t}(G)$, then $|V(G)| \leq \Delta(G)(\Delta(G)+1)$.

PROOF. (1) Let S be a $\gamma_{t}(G)$-set with $|S|>\Delta(G)+1$ and $x \in V(G)$. Since $\operatorname{deg}(x) \leq \Delta(G)$, we have $S \nsubseteq N(x)$. So S is a GTDS for G. (2) Let $\gamma_{t}(G)<\gamma_{g t}(G)$. By part (1) $\gamma_{t}(G) \leq \Delta(G)+1$. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a TDS of cardinality $k \leq \Delta(G)+1$. Since $G[S]$ has no isolated vertex, we obtain

$$
\left|N\left(x_{i}\right) \cap \bar{S}\right| \leq \Delta(G)-1
$$

for any $i=1,2, \ldots, k$. On the other hand $\cup_{i}\left(N\left(x_{i}\right) \cap \bar{S}\right)=\bar{S}$. This implies that $|\bar{S}| \leq k(\Delta(G)-1)$ and

$$
|V(G)| \leq k+k(\Delta(G)-1) \leq \Delta(G)(\Delta(G)+1)
$$

Kulli et al. in [8] obtained the following results.

PROPOSITION 3 ([8]). Let G be a graph. Then the following statements hold.
(1) If $\operatorname{diam}(G)=3$, then $\gamma_{g t}(G) \leq \gamma_{t}(G)+2$,
(2) If $\operatorname{diam}(G)=4$, then $\gamma_{g t}(G) \leq \gamma_{t}(G)+1$,
(3) If $\operatorname{diam}(G) \geq 5$, then $\gamma_{g t}(G)=\gamma_{t}(G)$.

It is also noted in [8] that if $\operatorname{diam}(G)=2$, then the difference between $\gamma_{g t}(G)$ and $\gamma_{t}(G)$ may be very large. However the graph G in the example posed in [8] satisfies Proposition 3 since $\operatorname{diam}(\bar{G})>2$. Furthermore, in that graph $G, \gamma_{g t}(\bar{G}) \leq \gamma_{t}(\bar{G})+2$. So the case $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$ remained open. We show that for any $k \geq 4$ there is a graph G such that $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$ and $\gamma_{g t}(G)=k$.

PROPOSITION 4. For any $k \geq 4$ there is a graph G such that $\operatorname{diam}(G)=$ $\operatorname{diam}(\bar{G})=2$ and $\gamma_{g t}(G)=k$.

PROOF. Let

$$
X=V\left(\overline{K_{l}}\right)=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}
$$

for some integer $l \geq 6$. For any pair $i, j \in\{1,2, \ldots, l\}$ we add a new vertex $x_{i, j}$ and join $x_{i, j}$ to x_{i}, x_{j} to obtain a graph H_{1}. Let $Y=\left\{x_{i, j}: 1 \leq i, j \leq l\right\}$. Let H_{2} be a graph obtain from H_{1} by joining any pair $x_{i, j}, x_{k, s}$ where $|\{i, j\} \cap\{k, s\}|=1$. Let G be a graph obtained from H_{2} by adding two new vertices x, y and joining them to every vertex in Y. It is a routine matter to see that $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=2$. Let S be a GTDS for G. Any vertex of X is dominated by some vertex in Y. Since any vertex of Y dominates two vertices of X, we obtain $|S \cap Y| \geq\left\lceil\frac{l}{2}\right\rceil$. Since x (as a vertex of \bar{G}) is not dominated by $S \cap Y$, we have $S \cap X \neq \emptyset$. This implies that $\gamma_{g t}(G) \geq\left\lceil\frac{l}{2}\right\rceil+1$. On the other hand $\left\{x_{2 i+1}, x_{2 i+2}: 0 \leq i<\left\lceil\frac{l}{2}\right\rceil\right\} \cup\{1\}$ is a GTDS for G. We conclude that $\gamma_{g t}(G)=\left\lceil\frac{l}{2}\right\rceil+1$. Now the proof will be completed if we put $l=2 k-2$ for a given $k \geq 4$.

We next determine the global total domination number of a tree.
THEOREM 5. For a tree T,

$$
\gamma_{g t}(T)= \begin{cases}0 & \text { if } \operatorname{diam}(T) \leq 2 \tag{1}\\ 4 & \text { if } \operatorname{diam}(T)=3 \\ \gamma_{t}(T)+1 & \text { if } \operatorname{diam}(T)=4 \\ \gamma_{t}(T) & \text { if } \operatorname{diam}(T) \geq 5\end{cases}
$$

PROOF. Let T be a tree. If $\operatorname{diam}(T) \leq 2$, then \bar{T} has an isolated vertex and so $\gamma_{g t}(T)=0$. If $\operatorname{diam}(T)=3$, then T is a double star and it is not hard to see that $\gamma_{g t}(T)=4$. Assume that $\operatorname{diam}(T)=4$. Let x be the central vertex of a diametrical
path of T. If a minimum TDS S does not contain x, then it contains two support vertices a, b. Let $a_{1} \in N(a) \cap S$ and $b_{1} \in N(b) \cap S$. It is obvious that a_{1} and b_{1} are two leaves, since $\operatorname{diam}(G)=4$. Then $\left(S \backslash\left\{a_{1}, b_{1}\right\}\right) \cup\{x\}$ is a TDS of G, a contradiction. So x belongs to every minimum TDS of T. Further, for any minimum TDS such S of T, $T[S]$ is a star with center x. This implies that $\gamma_{g t}(T)>\gamma_{t}(T)$. By Proposition 3 part (2) we obtain $\gamma_{g t}(T)=\gamma_{t}(T)+1$. Assume now that $\operatorname{diam}(T) \geq 5$. By Proposition 3 part (3) $\gamma_{g t}(T)=\gamma_{t}(T)$.

3 Complexity

In this section we investigate the complexity of the following Problem:

GLOBAL TOTAL DOMINATING SET

INSTANCE: A graph $G=(V, E)$ and a positive integer k.
QUESTION: Does G has a GTDS of cardinality at most k ?

To show that GTDS problem is NP-Complete for arbitrary graphs, we use the wellknown NP-Completeness result for total domination which is defined by:

TOTAL DOMINATING SET

INSTANCE: A graph $G=(V, E)$ and a positive integer k.
QUESTION: Does G has a TDS of cardinality at most k ?

THEOREM 6. GTDS is NP-complete for general graphs.
PROOF. To show that GTDS is an NP-Complete problem, we will establish a polynomial transformation from TDS to GTDS. Let G be an arbitrary instance of TDS. Let H be the graph $G \cup \bar{G}$. We show that obtaining the minimum TDS of G is equal to finding the minimum GTDS of H. Let S and S^{\prime} be minimum TDS of G and \bar{G}, respectively. We prove that $S \cup S^{\prime}$ is a minimum GTDS of H. It is obvious that $S \cup S^{\prime}$ is a GTDS for H. We next show that $S \cup S^{\prime}$ is a minimum GTDS for H. Suppose that L is a GTDS for H with $|L|<\left|S \cup S^{\prime}\right|$. Let $L_{1}=L \cap V(G)$ and $L_{2}=L \cap V(\bar{G})$. Then $\left|L_{1}\right|<|S|$ or $\left|L_{2}\right|<\left|S^{\prime}\right|$. Without loss of generality assume that $\left|L_{1}\right|<|S|$. Since any vertex of G is adjacent to some vertex in L, we deduce that L_{1} is a TDS for G. This is a contradiction, since $\left|L_{1}\right|<\gamma_{t}(G)$. So $S \cup S^{\prime}$ is a minimum GTDS for H. On the other hand let T be a minimum GTDS for H. Let $T_{1}=T \cap V(G)$ and $T_{2}=T \cap V(\bar{G})$. Then T_{1} and T_{2} are TDS for G and \bar{G}, respectively. We show that T_{1} and T_{2} are minimum TDS for G and \bar{G}, respectively. Without loss of generality assume that T_{1} is not a minimum TDS of G. So there is a minimum TDS such D in G with $|D|<\left|T_{1}\right|$. Similar to the above discussions $D \cup T_{2}$ is a GTDS for H with $\left|D \cup T_{2}\right|<|T|=\gamma_{g t}(H)$. This is a contradiction. Since the construction of the graph H from G can be perform in time that is polynomial in n (the number of vertices of $G)$, so the above reduction is polynomial and so GTDS is NP-Complete.

4 Graphs with Small and Large Global Total Domination Number

In [8] graphs G of order n with $\gamma_{g t}(G)=n$ have been characterized. In this section we characterize graphs G of order n with $\gamma_{g t}(G)=n-1$. For this purpose we first characterize graphs G with $\gamma_{g t}(G)=4$.

THEOREM 7. [8] For a graph $G, \gamma_{g t}(G)=n$ if and only if $G=P_{4}, m K_{2}$ or $\overline{m K_{2}}$ for some $m \geq 2$.

By Observation 1, part (3), we obtain the following.
LEMMA 8. For any graph $G, \gamma_{g t}(G) \geq 4$.
Let \mathcal{H} be the class of all graphs G such that one of the following hold:
(1) G contains a path P_{4} as an induced subgraph, and any vertex in G outside P_{4} is adjacent to at least one and at most three vertices of P_{4},
(2) G contains a cycle $C_{4}\left(\right.$ or $\left.\overline{C_{4}}\right)$ as an induced subgraph, and any vertex in G outside C_{4} (or $\overline{C_{4}}$) is adjacent to at least one and at most three vertices of C_{4} (or $\overline{C_{4}}$).

LEMMA 9. For a graph $G, \gamma_{g t}(G)=4$ if and only if $G \in \mathcal{H}$.
PROOF. It is obvious that if $G \in \mathcal{H}$ then the vertices of P_{4}, C_{4} or $\overline{C_{4}}$ form a GTDS for G. Let $\gamma_{g t}(G)=4$ and let S be a $\gamma_{g t}(G)$-set. If $G[S]$ is connected, then $G[S]=P_{4}$ or C_{4}. If $G[S]$ is disconnected, then $G[S]=\overline{C_{4}}$. Now since S is a TDS in both G and \bar{G}, every vertex in $G-S$ has at least one and at most three neighbors in S.

So henceforth in this section we consider graphs G with $\gamma_{g t}(G) \geq 5$. Let \mathcal{E} be the class of all graphs G such that G satisfies one of the following:
(1) G is obtained from a graph $K \in\left\{P_{4}, C_{4}, \overline{C_{4}}\right\}$ by adding a vertex x and joining x to at least one and at most three vertices of K.
(2) $G=m K_{2}+P_{3}$ or $m K_{2}+C_{3}$ for some integer $m \geq 1$.

LEMMA 10. Let $G \in \mathcal{E}$ be a graph of order n. If H is obtained from G be adding a vertex y and joining y to at most $n-1$ vertices of G, then $\gamma_{g t}(H)<n$.

PROOF. Let $G \in \mathcal{E}$. Assume that G is obtained from a graph $K \in\left\{P_{4}, C_{4}, \overline{C_{4}}\right\}$ by adding a vertex x and joining x to at least one and at most three vertices of K. If y is not adjacent to all vertices of K, then $V(K)$ is a GTDS for H. So assume that y is adjacent to all vertices in K. Since \bar{G} has no isolated vertex, y is not adjacent to x. It is straightforward to check all possibilities for G to see that there is a GTDS for H of
cardinality 4. In all cases $\gamma_{g t}(H)<n$. Next assume that $G=m K_{2}+P_{3}$ or $m K_{2}+C_{3}$ for some integer $m \geq 1$. Let $V\left(P_{3}\right)$ or $V\left(C_{3}\right)$ be $\left\{v_{1} v_{2} v_{3}\right\}$, where v_{2} is adjacent to both v_{1} and v_{3}. If y is not adjacent to all of the vertices of $G-v_{1}$, then $V\left(G-v_{1}\right)$ is a GTDS for H. So assume that y is adjacent to all of the vertices of $G-v_{1}$. Then $V(G) \backslash\left\{v_{3}\right\}$ is a GTDS for H. Thus $\gamma_{g t}(H)<n$.

THEOREM 11. For a graph $G, \gamma_{g t}(G)=n-1$ if and only if G or \bar{G} belongs to \mathcal{E}.

PROOF. It is straightforward to see that for any graph G or \bar{G} in $\mathcal{E}, \gamma_{g t}(G)=$ $|V(G)|-1$. Let G be a graph of order n and $\gamma_{g t}(G)=n-1$. We employee induction on n to prove that $G \in \mathcal{E}$. For the basis step of induction $\gamma_{g t}(G)=4$. By Lemma $9, G$ or \bar{G} is in \mathcal{E}. Assume that for any graph G^{\prime} of order $n^{\prime}<n$ and global total domination number $n^{\prime}-1, G^{\prime}$ or $\overline{G^{\prime}}$ belongs to \mathcal{E}. Let S be a $\gamma_{g t}(G)$-set, and $x \notin S$. Let T be a $\gamma_{g t}(G-x)$-set. We show that $|T|=n-1$. If $|T|<n-2$, then there are at least two vertices $a, b \in V(G) \backslash(T \cup\{x\})$. If a is not adjacent to x, then $T \cup\{a\}$ is a GTDS for G of cardinality less than $n-1$, a contradiction. So a is adjacent to x. Similarly b is adjacent to x. But \bar{G} has no isolated vertex. So x is not adjacent to all of the vertices of T. Now $T \cup\{x\}$ is a GTDS for G of cardinality less than $n-1$. This contradiction implies that $|T| \geq n-2$. If $|T|=n-2$, then by the inductive hypothesis $G-x \in \mathcal{E}$, and by Lemma $10, \gamma_{g t}(G)<n-1$, a contradiction. We deduce that $|T|=n-1$. By Theorem $7, G-x=P_{4}, m K_{2}$ or $\overline{m K_{2}}$ for some $m \geq 2$. We consider the following Cases 1-3.

Case 1. $G-x=P_{4}$. Then G is obtained from a path P_{4} by adding a vertex x and joining x to at least one and at most three vertices of P_{4}, and so $G \in \mathcal{E}$.

Case 2. $G-x=m K_{2}$ for some $m \geq 2$. If $m=2$, then G is obtained from the graph $2 K_{2}=\overline{C_{4}}$ by adding a vertex x and joining x to at least one and at most three vertices of $\overline{C_{4}}$, and so $G \in \mathcal{E}$. So we assume that $m \geq 3$. Then $|T|=2 m$. Since \bar{G} has no isolated vertex, $V(G) \backslash N[x] \neq \emptyset$. Let $w \in V(G) \backslash N[x]$. If x has a neighbor in all components of $G-x$, then $\left\{x, v_{1}, v_{2}, \ldots, v_{m}, w\right\}$ is a GTDS of G, where v_{i} is a vertex in the i^{\prime} th component of $G-x$. This is a contradiction. So x does not have a neighbor in at least one component of $G-x$. As a result G is disconnected. If x has a neighbor in at least two components of $G-x$, then $V(G) \backslash\left\{v_{i}, v_{j}\right\}$ is a GTDS for G, where v_{i}, v_{j} are two vertices from two different components of $G-x$ which are adjacent to x, a contradiction. Thus x is adjacent to some vertex in exactly one component K_{2} of $G-x$. Consequently, $G=(m-1) K_{2}+P_{3}$ or $(m-1) K_{2}+C_{3}$.

Case 3. $G-x=\overline{m K_{2}}$. Then \bar{G} satisfies Case 2.

CONJECTURE 12. Every graph G with $\gamma_{g t}(G)=k$ can be obtained from a graph H with $\gamma_{g t}(H)=k-1$ by adding a new vertex and joining it to at least one and at most $|V(H)|-1$ vertices of H.

Acknowledgements. This paper was completed while Ch. Eslahchi and N. Jafari Rad were visiting the Department of Mathematics, University of Sains Malaysia.

References

[1] S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin., 93(2009), 175-180.
[2] R. C. Brigham and J. R. Carrington, Global domination, Domination in graphs, 301-320, Monogr. Textbooks Pure Appl. Math., 209, Dekker, NewYork, 1998.
[3] J. R. Carrington and R, C, Brigham, Global domination of simple factors. Proceedings of the Twenty-third Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1992), Congr. Numer., 88 (1992), 161-167.
[4] R. D. Dutton and R. C. Brigham, On global domination critical graphs, Discrete Math., 309(2009), 5894-5897.
[5] R. I. Enciso and R. D. Dutton, Global domination in planar graphs, J. Combin. Math. Combin. Comput., 66(2008), 273-278.
[6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[7] M. A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math., 309(2009), 32-63.
[8] V. R. Kulli and B. Janakiram, The total global domination number of a graph, Indian J. Pure and Appllied Mathematics, 27(1996), 537-542.
[9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci., 23(1989), 377-385.
[10] D. B. West, Introduction to Graph Theory, (2nd edition), Prentice all, USA (2001).

[^0]: *Mathematics Subject Classifications: 05C69.
 ${ }^{\dagger}$ School of Mathematical Sciences, Universiti Sains, 11800 USM, Penang, Malaysia
 \ddagger Department of Computer Sciences, Shahid Beheshti University, G. C. Evin, Tehran, Iran
 ${ }^{\S}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
 『School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 UMT Kuala Terengganu, Terengganu, Malaysia

