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Abstract

A subset S of vertices in a graph G is a global total dominating set, or just
GTDS, if S is a total dominating set of both G and G. The global total domination
number γgt(G) of G is the minimum cardinality of a GTDS of G. In this paper, we
show that the decision problem for γgt(G) is NP-complete, and then characterize
graphs G of order n with γgt(G) = n− 1.

1 Introduction

Let G = (V (G), E(G)) be a simple graph of order n. We denote the open neighborhood
of a vertex v of G by NG(v), or just N(v), and its closed neighborhood by NG[v] or
N [v]. For a vertex set S ⊆ V (G), we denote N(S) = ∪v∈SN(v) and N [S] = ∪v∈SN [v].
The degree of a vertex x, deg(x) (or degG(x) to refer G) in a graph G denotes the
number of neighbors of x in G. We refer ∆(G) and δ(G) as the maximum degree and
the minimum degree of the vertices of G, respectively. If S is a subset of V (G), then we
denote by G[S] the subgraph of G induced by S. A leaf in a graph is a vertex of degree
one, and a support vertex is one that is adjacent to a leaf. The distance between two
vertices x and y, denoted by d(x, y) (or dG(x, y) to refer to G) is the length of a shortest
path from x to y. The diameter, diam(G), of a graph G is the maximum distance over
all pairs of vertices of G. A set of vertices S in G is a dominating set, if N [S] = V (G).
The domination number, γ(G), of G is the minimum cardinality of a dominating set
of G. A set of vertices S in an isolate-free graph G is a total dominating set, or just
TDS, if N(S) = V (G). The total domination number, γt(G), of G is the minimum
cardinality of a total dominating set of G. For references and also terminology on
domination in graphs see for example [6, 7].
The concept of global domination in graphs is introduced by Sampathkumar in [9],

and further studied by Brigham et al. [2, 3], Dutton et al. [4, 5] and Arumugam et al.
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[1]. A subset S of vertices of a graph G is a global dominating set if S is a dominating
set of both G and G. The global domination number of a graph G, γg(G), is the
minimum cardinality of a global dominating set of G. Kulli et al. in [8] initiated the
study of global total domination in graphs. A subset S of vertices in a graph G is a
global total dominating set, or just DTDS, if S is a TDS of both G and G. The global
total domination number of G, γgt(G), is the minimum cardinality of a GTDS of G. If
a graph G of order n has a GTDS, then δ(G) ≥ 1 and ∆(G) ≤ n−2. That is neither G
nor G have an isolated vertex. We define γgt(G) = 0 if G or G has an isolated vertex.
For all graphs G which we study in this paper we assume that γgt(G) > 0.
In this paper, we study global total domination and obtain some new results and

characterizations on the global total domination number of a graph G. In section 2
we present some preliminary results. In section 3, we show that the decision problem
for γgt(G) is NP-complete. In section 4, we characterize graphs G of order n with
γgt(G) = n− 1.

2 Preliminary Results

We start this section with the following observation that can be easily obtained from
the definition.

OBSERVATION 1.

(1) For any graph G, γgt(G) ≥ max{γt(G), γt(G)}.

(2) If G is a disconnected graph, then γgt(G) = γt(G).

(3) If S is a GTDS in a graph G, then for any vertex x ∈ S, 1 ≤ degG[S](x) ≤ |S|−2.

LEMMA 2. The following statements hold.

(1) If γt(G) > ∆(G) + 1, then γgt(G) = γt(G).

(2) If γt(G) < γgt(G), then |V (G)| ≤ ∆(G)(∆(G) + 1).

PROOF. (1) Let S be a γt(G)-set with |S| > ∆(G) + 1 and x ∈ V (G). Since
deg(x) ≤ ∆(G), we have S 6⊆ N(x). So S is a GTDS for G. (2) Let γt(G) < γgt(G).
By part (1) γt(G) ≤ ∆(G) + 1. Let S = {x1, x2, ..., xk} be a TDS of cardinality
k ≤ ∆(G) + 1. Since G[S] has no isolated vertex, we obtain∣∣N(xi) ∩ S

∣∣ ≤ ∆(G)− 1

for any i = 1, 2, ..., k. On the other hand ∪i(N(xi) ∩ S) = S. This implies that
|S| ≤ k(∆(G)− 1) and

|V (G)| ≤ k + k(∆(G)− 1) ≤ ∆(G)(∆(G) + 1).
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Kulli et al. in [8] obtained the following results.

PROPOSITION 3 ([8]). Let G be a graph. Then the following statements hold.

(1) If diam(G) = 3, then γgt(G) ≤ γt(G) + 2,

(2) If diam(G) = 4, then γgt(G) ≤ γt(G) + 1,

(3) If diam(G) ≥ 5, then γgt(G) = γt(G).

It is also noted in [8] that if diam(G) = 2, then the difference between γgt(G) and
γt(G) may be very large. However the graph G in the example posed in [8] satisfies
Proposition 3 since diam(G) > 2. Furthermore, in that graph G, γgt(G) ≤ γt(G) + 2.
So the case diam(G) = diam(G) = 2 remained open. We show that for any k ≥ 4 there
is a graph G such that diam(G) = diam(G) = 2 and γgt(G) = k.

PROPOSITION 4. For any k ≥ 4 there is a graph G such that diam(G) =
diam(G) = 2 and γgt(G) = k.

PROOF. Let
X = V (Kl) = {x1, x2, ..., xl}

for some integer l ≥ 6. For any pair i, j ∈ {1, 2, ..., l} we add a new vertex xi,j and join
xi,j to xi, xj to obtain a graph H1. Let Y = {xi,j : 1 ≤ i, j ≤ l}. Let H2 be a graph
obtain from H1 by joining any pair xi,j , xk,s where |{i, j} ∩ {k, s}| = 1. Let G be a
graph obtained from H2 by adding two new vertices x, y and joining them to every
vertex in Y . It is a routine matter to see that diam(G) = diam(G) = 2. Let S be a
GTDS for G. Any vertex of X is dominated by some vertex in Y . Since any vertex of
Y dominates two vertices of X, we obtain |S ∩ Y | ≥ d l2e. Since x (as a vertex of G) is
not dominated by S ∩ Y , we have S ∩X 6= ∅. This implies that γgt(G) ≥ d l2e+ 1. On
the other hand {x2i+1, x2i+2 : 0 ≤ i < d l2e} ∪ {1} is a GTDS for G. We conclude that
γgt(G) = d l2e + 1. Now the proof will be completed if we put l = 2k − 2 for a given
k ≥ 4.

We next determine the global total domination number of a tree.

THEOREM 5. For a tree T ,

γgt(T ) =


0 if diam(T ) ≤ 2,
4 if diam(T ) = 3,
γt(T ) + 1 if diam(T ) = 4,
γt(T ) if diam(T ) ≥ 5.

(1)

PROOF. Let T be a tree. If diam(T ) ≤ 2, then T has an isolated vertex and so
γgt(T ) = 0. If diam(T ) = 3, then T is a double star and it is not hard to see that
γgt(T ) = 4. Assume that diam(T ) = 4. Let x be the central vertex of a diametrical
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path of T . If a minimum TDS S does not contain x, then it contains two support
vertices a, b. Let a1 ∈ N(a)∩S and b1 ∈ N(b)∩S. It is obvious that a1 and b1 are two
leaves, since diam(G) = 4. Then (S \{a1, b1})∪{x} is a TDS of G, a contradiction. So
x belongs to every minimum TDS of T . Further, for any minimum TDS such S of T ,
T [S] is a star with center x. This implies that γgt(T ) > γt(T ). By Proposition 3 part
(2) we obtain γgt(T ) = γt(T ) + 1. Assume now that diam(T ) ≥ 5. By Proposition 3
part (3) γgt(T ) = γt(T ).

3 Complexity

In this section we investigate the complexity of the following Problem:

GLOBAL TOTAL DOMINATING SET

INSTANCE: A graph G = (V,E) and a positive integer k.

QUESTION: Does G has a GTDS of cardinality at most k?

To show that GTDS problem is NP-Complete for arbitrary graphs, we use the well-
known NP-Completeness result for total domination which is defined by:

TOTAL DOMINATING SET

INSTANCE: A graph G = (V,E) and a positive integer k.

QUESTION: Does G has a TDS of cardinality at most k?

THEOREM 6. GTDS is NP-complete for general graphs.

PROOF. To show that GTDS is an NP-Complete problem, we will establish a
polynomial transformation from TDS to GTDS. Let G be an arbitrary instance of
TDS. Let H be the graph G ∪ G. We show that obtaining the minimum TDS of G
is equal to finding the minimum GTDS of H. Let S and S′ be minimum TDS of G
and G, respectively. We prove that S ∪ S′ is a minimum GTDS of H. It is obvious
that S ∪ S′ is a GTDS for H. We next show that S ∪ S′ is a minimum GTDS for
H. Suppose that L is a GTDS for H with |L| < |S ∪ S′|. Let L1 = L ∩ V (G) and
L2 = L∩V (G). Then |L1| < |S| or |L2| < |S′|. Without loss of generality assume that
|L1| < |S|. Since any vertex of G is adjacent to some vertex in L, we deduce that L1
is a TDS for G. This is a contradiction, since |L1| < γt(G). So S ∪ S′ is a minimum
GTDS for H. On the other hand let T be a minimum GTDS for H. Let T1 = T ∩V (G)
and T2 = T ∩V (G). Then T1 and T2 are TDS for G and G, respectively. We show that
T1 and T2 are minimum TDS for G and G, respectively. Without loss of generality
assume that T1 is not a minimum TDS of G. So there is a minimum TDS such D in
G with |D| < |T1|. Similar to the above discussions D ∪ T2 is a GTDS for H with
|D ∪ T2| < |T | = γgt(H). This is a contradiction. Since the construction of the graph
H from G can be perform in time that is polynomial in n (the number of vertices of
G), so the above reduction is polynomial and so GTDS is NP-Complete.
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4 Graphs with Small and Large Global Total Domi-
nation Number

In [8] graphs G of order n with γgt(G) = n have been characterized. In this section
we characterize graphs G of order n with γgt(G) = n − 1. For this purpose we first
characterize graphs G with γgt(G) = 4.

THEOREM 7. [8] For a graph G, γgt(G) = n if and only if G = P4, mK2 or mK2

for some m ≥ 2.

By Observation 1, part (3), we obtain the following.

LEMMA 8. For any graph G, γgt(G) ≥ 4.

Let H be the class of all graphs G such that one of the following hold:

(1) G contains a path P4 as an induced subgraph, and any vertex in G outside P4 is
adjacent to at least one and at most three vertices of P4,

(2) G contains a cycle C4 (or C4) as an induced subgraph, and any vertex in G
outside C4 (or C4) is adjacent to at least one and at most three vertices of C4
(or C4).

LEMMA 9. For a graph G, γgt(G) = 4 if and only if G ∈ H.

PROOF. It is obvious that if G ∈ H then the vertices of P4, C4 or C4 form a GTDS
for G. Let γgt(G) = 4 and let S be a γgt(G)-set. If G[S] is connected, then G[S] = P4
or C4. If G[S] is disconnected, then G[S] = C4. Now since S is a TDS in both G and
G, every vertex in G− S has at least one and at most three neighbors in S.

So henceforth in this section we consider graphs G with γgt(G) ≥ 5. Let E be the
class of all graphs G such that G satisfies one of the following:

(1) G is obtained from a graph K ∈ {P4, C4, C4} by adding a vertex x and joining x
to at least one and at most three vertices of K.

(2) G = mK2 + P3 or mK2 + C3 for some integer m ≥ 1.

LEMMA 10. Let G ∈ E be a graph of order n. If H is obtained from G be adding
a vertex y and joining y to at most n− 1 vertices of G, then γgt(H) < n.

PROOF. Let G ∈ E . Assume that G is obtained from a graph K ∈ {P4, C4, C4} by
adding a vertex x and joining x to at least one and at most three vertices of K. If y
is not adjacent to all vertices of K, then V (K) is a GTDS for H. So assume that y is
adjacent to all vertices in K. Since G has no isolated vertex, y is not adjacent to x. It
is straightforward to check all possibilities for G to see that there is a GTDS for H of
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cardinality 4. In all cases γgt(H) < n. Next assume that G = mK2 +P3 or mK2 +C3
for some integer m ≥ 1. Let V (P3) or V (C3) be {v1v2v3}, where v2 is adjacent to both
v1 and v3. If y is not adjacent to all of the vertices of G−v1, then V (G−v1) is a GTDS
for H. So assume that y is adjacent to all of the vertices of G− v1. Then V (G) \ {v3}
is a GTDS for H. Thus γgt(H) < n.

THEOREM 11. For a graph G, γgt(G) = n− 1 if and only if G or G belongs to E .

PROOF. It is straightforward to see that for any graph G or G in E , γgt(G) =
|V (G)| − 1. Let G be a graph of order n and γgt(G) = n− 1. We employee induction
on n to prove that G ∈ E . For the basis step of induction γgt(G) = 4. By Lemma 9 , G
or G is in E . Assume that for any graph G′ of order n′ < n and global total domination
number n′ − 1, G′ or G′ belongs to E . Let S be a γgt(G)-set, and x 6∈ S. Let T be a
γgt(G− x)-set. We show that |T | = n− 1. If |T | < n− 2, then there are at least two
vertices a, b ∈ V (G) \ (T ∪ {x}). If a is not adjacent to x, then T ∪ {a} is a GTDS for
G of cardinality less than n − 1, a contradiction. So a is adjacent to x. Similarly b is
adjacent to x. But G has no isolated vertex. So x is not adjacent to all of the vertices
of T . Now T ∪ {x} is a GTDS for G of cardinality less than n− 1. This contradiction
implies that |T | ≥ n − 2. If |T | = n − 2, then by the inductive hypothesis G − x ∈ E ,
and by Lemma 10 , γgt(G) < n− 1, a contradiction. We deduce that |T | = n− 1. By
Theorem 7 , G − x = P4, mK2 or mK2 for some m ≥ 2. We consider the following
Cases 1—3.
Case 1. G− x = P4. Then G is obtained from a path P4 by adding a vertex x and

joining x to at least one and at most three vertices of P4, and so G ∈ E .
Case 2. G − x = mK2 for some m ≥ 2. If m = 2, then G is obtained from the

graph 2K2 = C4 by adding a vertex x and joining x to at least one and at most three
vertices of C4, and so G ∈ E . So we assume that m ≥ 3. Then |T | = 2m. Since G has
no isolated vertex, V (G) \N [x] 6= ∅. Let w ∈ V (G) \N [x]. If x has a neighbor in all
components of G−x, then {x, v1, v2, ..., vm, w} is a GTDS of G, where vi is a vertex in
the i

′
th component of G − x. This is a contradiction. So x does not have a neighbor

in at least one component of G− x. As a result G is disconnected. If x has a neighbor
in at least two components of G − x, then V (G) \ {vi, vj} is a GTDS for G, where
vi, vj are two vertices from two different components of G − x which are adjacent to
x, a contradiction. Thus x is adjacent to some vertex in exactly one component K2 of
G− x. Consequently, G = (m− 1)K2 + P3 or (m− 1)K2 + C3.

Case 3. G− x = mK2. Then G satisfies Case 2.

CONJECTURE 12. Every graph G with γgt(G) = k can be obtained from a graph
H with γgt(H) = k − 1 by adding a new vertex and joining it to at least one and at
most |V (H)| − 1 vertices of H.
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