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Abstract

Using an upper bound for the Laplacian spectral radius of graphs obtained
by Shu et al., we in this note present suffi cient conditions which are based on the
Laplacian spectral radius for some Hamiltonian properties of graphs.

1 Introduction

We consider only finite undirected graphs without loops and multiple edges. Notation
and terminology not defined here follow those in [2]. For a graph G = (V, E), we use
n and e to denote its order |V | and size |E|, respectively. We use δ = d1 ≤ d2 ≤
... ≤ dn = ∆ to denote the degree sequence of a graph. A cycle C in a graph G
is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is
called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a
Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable
if G has a Hamiltonian path. A graph G is called Hamilton-connected if for each pair
of vertices in G there is a Hamiltonian path between them. The eigenvalues of a graph
G are defined as the eigenvalues of its adjacency matrix A(G). The largest eigenvalue
of a graph G is called the spectral radius of G. The Laplacian eigenvalues of a graph G
are defined as the eigenvalues of the matrix L(G) := D(G)−A(G), where D(G) is the
diagonal matrix diag(d1, d2, ..., dn) and A(G) is the adjacency matrix of G. The largest
Laplacian eigenvalue of a graph G, denoted µ(G), is called the Laplacian spectral radius
of G.
In this note, we, using an upper bound for the Laplacian spectral radius of graphs

obtained by Shu et al. in [3], will present suffi cient conditions which are based on the
Laplacian spectral radius for some Hamiltonian properties of graphs. The results are
as follows.

THEOREM 1. Let G be a connected graph with order n ≥ 3, size e and minimum
degree δ. If (2δ + 1)2 + 4(f1(n)− 2δ(e+ 1)) ≥ 0 and

µ >
(2δ + 1) +

√
(2δ + 1)2 + 4(f1(n)− 2δ(e+ 1))

2
,
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then G is Hamiltonian, where f1(n) =
(
5(n− 1)3 + 8(n− 2)3

)
/8.

THEOREM 2. Let G be a connected graph with order n ≥ 2, size e and minimum
degree δ. If (2δ + 1)2 + 4(f2(n)− 2δ(e+ 1)) ≥ 0 and

µ >
(2δ + 1) +

√
(2δ + 1)2 + 4(f2(n)− 2δ(e+ 1))

2
,

then G is traceable, where f2(n) = (n(n− 2)2 + 8(n− 3)3 + 4(n− 2)(n− 1)2)/8.

THEOREM 3. Let G be a connected graph with order n ≥ 3, size e and minimum
degree δ. If (2δ + 1)2 + 4(f3(n)− 2δ(e+ 1)) ≥ 0 and

µ >
(2δ + 1) +

√
(2δ + 1)2 + 4(f3(n)− 2δ(e+ 1))

2
,

then G is Hamilton-connected, where f3(n) = ((n− 2)n2 + 8(n− 3)3 + 4n(n− 1)2)/8.

2 Lemmas

In order to prove the theorems above, we need the following results as our lemmas.

LEMMA 1. Let G be a graph of order n ≥ 3 with degree sequence d1 ≤ d2 ≤ · · · ≤
dn. If

dk ≤ k <
n

2
=⇒ dn−k ≥ n− k,

then G is Hamiltonian.

LEMMA 2. Let G be a graph of order n ≥ 2 with degree sequence d1 ≤ d2 ≤ · · · ≤
dn. If

dk ≤ k − 1 ≤ n

2
− 1 =⇒ dn+1−k ≥ n− k,

then G is traceable.

LEMMA 3. Let G be a graph of order n ≥ 3 with degree sequence d1 ≤ d2 ≤ · · · ≤
dn. If

2 ≤ k ≤ n

2
, dk−1 ≤ k =⇒ dn−k ≥ n− k + 1,

then G is Hamilton-connected.

LEMMA 4 ([3]). Let G be a connected graph of order n with degree sequence
d1 ≤ d2 ≤ · · · ≤ dn. Then

µ(G) ≤ d1 +
1

2
+

√√√√(d1 − 1

2

)2
+

n∑
i=1

di(di − d1),

the equality holds if and only if G is a regular bipartite graph.

Notice that Lemmas 1, 2, and 3 above are respectively Corollary 3 on Page 209,
Corollary 6 on Page 210, and Theorem 12 on Page 218 in [1]. Next, we will present
the proofs of Theorems 1—3.
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3 Proofs

In this section, we prove Theorems 1—3.

PROOF of THEOREM 1. Let G be a graph satisfying the conditions in Theorem
1. Suppose that G is not Hamiltonian. Then, from Lemma 1, there exists an integer
k < n

2 such that dk ≤ k and dn−k ≤ n − k − 1. Obviously, k ≥ 1 and dk ≥ 1. Then,
from Lemma 4, we have that

µ ≤ d1 +
1

2
+

√√√√(d1 − 1

2

)2
+

n∑
i=1

di(di − d1),

Thus

µ2 − µ(2δ + 1) + 2δ(1 + e) ≤
n∑
i=1

d2i .

Notice that
n∑
i=1

d2i ≤ k3 + (n− 2k)(n− k − 1)2 + k(n− 1)2

≤
(
n− 1

2

)3
+ (n− 2)3 +

(n− 1)3

2
=

5(n− 1)3 + 8(n− 2)3

8
.

Set

f1(n) :=
5(n− 1)3 + 8(n− 2)3

8
.

Hence
µ2 − µ(2δ + 1) + 2δ(1 + e)− f1(n) ≤ 0.

Since (2δ + 1)2 + 4(f1(n)− 2δ(e+ 1)) ≥ 0, we can solve the inequality and get

µ ≤ (2δ + 1) +
√

(2δ + 1)2 + 4(f1(n)− 2δ(e+ 1))

2
,

which is a contradiction. This completes the proof of Theorem 1.

PROOF of THEOREM 2. Let G be a graph satisfying the conditions in Theorem
2. Suppose that G is not traceable. Then, from Lemma 2, there exists an integer k ≤ n

2
such that dk ≤ k − 1 and dn+1−k ≤ n − k − 1. Obviously, k ≥ 2 and dk ≥ 1. Then,
from Lemma 4, we have that

µ ≤ d1 +
1

2
+

√√√√(d1 − 1

2

)2
+

n∑
i=1

di(di − d1),

Thus

µ2 − µ(2δ + 1) + 2δ(1 + e) ≤
n∑
i=1

d2i .
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Notice that

n∑
i=1

d2i ≤ k(k − 1)2 + (n− 2k + 1)(n− k − 1)2 + (k − 1)(n− 1)2

≤ n

2

(
n− 2

2

)2
+ (n− 3)3 +

(n− 2)(n− 1)2

2

=
n(n− 2)2 + 8(n− 3)3 + 4(n− 2)(n− 1)2

8
.

Set

f2(n) :=
n(n− 2)2 + 8(n− 3)3 + 4(n− 2)(n− 1)2

8
.

Hence
µ2 − µ(2δ + 1) + 2δ(1 + e)− f2(n) ≤ 0.

Since (2δ + 1)2 + 4(f2(n)− 2δ(e+ 1)) ≥ 0, we can solve the inequality and get

µ ≤ (2δ + 1) +
√

(2δ + 1)2 + 4(f2(n)− 2δ(e+ 1))

2
,

which is a contradiction. This completes the proof of Theorem 2.

PROOF of THEOREM 3. Let G be a graph satisfying the conditions in Theorem
3. Suppose that G is not Hamilton-connected. Then, from Lemma 3, there exists an
integer k such that 2 ≤ k ≤ n

2 , dk−1 ≤ k, and dn−k ≤ n− k − 1. Obviously, dk−1 ≥ 1.
Then, from Lemma 4, we have that

µ ≤ d1 +
1

2
+

√√√√(d1 − 1

2

)2
+

n∑
i=1

di(di − d1),

Thus

µ2 − µ(2δ + 1) + 2δ(1 + e) ≤
n∑
i=1

d2i .

Notice that

n∑
i=1

d2i ≤ (k − 1)k2 + (n− 2k + 1)(n− k − 1)2 + k(n− 1)2

≤
(
n− 2

2

)(n
2

)2
+ (n− 3)3 +

n(n− 1)2

2

=
(n− 2)n2 + 8(n− 3)3 + 4n(n− 1)2

8
.

Set

f3(n) :=
(n− 2)n2 + 8(n− 3)3 + 4n(n− 1)2

8
.
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Hence
µ2 − µ(2δ + 1) + 2δ(1 + e)− f3(n) ≤ 0.

Since (2δ + 1)2 + 4(f3(n)− 2δ(e+ 1)) ≥ 0, we can solve the inequality and get

µ ≤ (2δ + 1) +
√

(2δ + 1)2 + 4(f3(n)− 2δ(e+ 1))

2
,

which is a contradiction. This completes the proof of Theorem 3.
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