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Abstract

In this paper, by using the Lupaş integral inequality, the authors find some
new inequalities for the complete elliptic integrals of the first and second kinds.
These results improve some known inequalities.

1 Introduction

Legendre’s complete elliptic integrals of the first and second kind are defined for real
numbers 0 < r < 1 by

κ(r) =

∫ π/2

0

1√
1− r2 sin2 t

d t =

∫ 1

0

1√
(1− t2)(1− r2t2)

d t (1)

and

ε(r) =

∫ π/2

0

√
1− r2 sin2 td t =

∫ 1

0

√
1− r2t2
1− t2 d t (2)

respectively. They can also defined by

κ(r, s) =

∫ π/2

0

1√
r2 cos2 t+ s2 sin2 t

d t (3)

and

ε(r, s) =

∫ π/2

0

√
r2 cos2 t+ s2 sin2 td t. (4)

Let r′ =
√
1− r2 . We often denote

κ′(r) = κ(r′) and ε′(r) = ε(r′).
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These integrals are special cases of the Gauss hypergeometric function

F (a, b; c;x) =

∞∑
n=0

(a, n)(b, n)

(c, n)

xn

n!
,

where (a, n) =
∏n−1
k=0 (a+ k). Indeed, we have

κ(r) =
π

2
F

(
1

2
,
1

2
; 1; r2

)
and ε(r) =

π

2
F

(
−1
2
,
1

2
; 1; r2

)
.

Recently, some bounds for ε(r) and κ(r) were discovered in the paper [6]. For
example, Theorem 1 in [6] states that, for 0 < r < 1,

π

2
− 1
2
ln
(1 + r)1−r

(1− r)1+r < ε(r) <
π − 1
2

+
1− r2
4r

ln
1 + r

1− r . (5)

For more information on inequalities of complete elliptic integrals, please refer to [1, 2,
3, 7, 8] and a short survey in [9, pp. 40—46].
Motivated by the double inequality (5), some estimates for ε(r) in terms of rational

functions of the arithmetic, geometric, and roots square means were obtained in [5, 10,
11].
The aim of this paper is to establish some new inequalities for the complete elliptic

integrals.

2 A Lemma

In order to prove our main results, the following lemma is necessary.

LEMMA 2.1. If f ′, g′ ∈ L2[a, b], then∣∣∣∣∣ 1

b− a

∫ b

a

f(t)g(t) d t− 1

b− a

∫ b

a

f(t) d t
1

b− a

∫ b

a

g(t) d t

∣∣∣∣∣ ≤ b− a
π2
‖f ′‖2 ‖g

′‖2, (6)

where

‖f ′‖2 =
(∫ b

a

∣∣f ′2∣∣d t)1/2 and ‖g′‖2 =
(∫ b

a

∣∣g′2∣∣d t)1/2 .
The inequality (6) is called the Lupaş integral inequality, see [4, p. 57].

3 Main Results

Now we are in a position to find some inequalities for complete elliptic integrals.

THEOREM 3.1. For r ∈ (0, 1), we have

π
√
6 + 2

√
1− r2 − 3r2
4
√
2

≤ ε(r) ≤ π
√
10− 2

√
1− r2 − 5r2

4
√
2

. (7)
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PROOF. Taking
f(t) = g(t) =

√
1− r2 sin2 t

and letting a = 0 and b = π
2 in the inequality (6) yield∣∣∣∣∣ 2π

∫ π/2

0

(
1− r2 sin2 t

)
d t− 4

π2
ε2(r)

∣∣∣∣∣
=

∣∣∣∣ 4π2 ε2(r)− 2− r22

∣∣∣∣ ≤ 1

2π

∫ π/2

0

r4 sin2 t cos2 t

1− r2 sin2 t
d t

=
1

2π

∫ π/2

0

r4 sin2 t cos2 t

∞∑
n=0

r2n sin2n td t

=
1

2π

∞∑
n=0

∫ π/2

0

r2n+4
(
sin2n+2 t− sin2n+4 t

)
d t =

1

4
h(r), (8)

where we use ∫ π/2

0

sin2i td t =
π

2

(2i− 1)!!
(2i)!!

(9)

for i ∈ N, and

h(r) =

∞∑
n=0

(2n+ 1)!!

(2n+ 2)!!

r2n+4

2n+ 4
.

A direct calculation yields

h′(r) =

∞∑
n=0

(2n+ 1)!!

(2n+ 2)!!
r2n+3 = r

∞∑
n=0

(2n+ 1)!!

(2n+ 2)!!
r2n+2 = r

(
1√
1− r2

− 1
)
,

where we use
1√
1− t2

=

∞∑
n=0

(2i− 1)!!
(2i)!!

t2n, |t| < 1. (10)

Hence, we have

h(r) = h(0) +

∫ r

0

h′(r) d r = 1−
√
1− r2 − r2

2
. (11)

Substituting this equality into (8) gives∣∣∣∣ 4π2 ε2(r)− 2− r22

∣∣∣∣ ≤ 14 −
√
1− r2
4

− r2

8
.

This means the double inequality (7).

REMARK 3.1. By the well-known software Mathematica, we can show that

(i) the left-hand side inequality in (7) refines the corresponding one in (5);
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(ii) the right-hand side inequalities in (7) and (5) are not contained in each other;

(iii) when r ∈ [ 14 ,
3
4 ], the right-hand side inequality in (7) is better than the corre-

sponding one in (5).

THEOREM 3.2. We have that

κ(r) ≤ π
√
32(1− r2) + r4

8
√
2 4
√
(1− r2)3

for r ∈ (0, 1) (12)

and

κ(r) ≥ π
√
32(1− r2)− r4

8
√
2 4
√
(1− r2)3

for x ∈
(
0, 2

√
3
√
2− 4

)
.

PROOF. Taking

f(t) = g(t) =
1√

1− r2 sin2 t
and letting a = 0 and b = π

2 in the inequality (6) lead to∣∣∣∣∣ 2π
∫ π/2

0

1

1− r2 sin2 t
d t− 4

π2
κ2(r)

∣∣∣∣∣
=

∣∣∣∣∣ 4π2κ2(r)− 2π
∫ π/2

0

∞∑
n=0

r2n sin2n td t

∣∣∣∣∣
=

∣∣∣∣∣ 4π2κ2(r)−
∞∑
n=0

(2n− 1)!!
(2n)!!

r2n

∣∣∣∣∣ =
∣∣∣∣ 4π2κ2(r)− 1√

1− r2

∣∣∣∣
≤ 1

2π

∫ π/2

0

r4 sin2 t cos2 t(
1− r2 sin2 t

)
3
d t

=
1

4π

∫ π/2

0

r4 sin2 t cos2 t

∞∑
n=0

(n+ 2)(n+ 1)r2n sin2n td t

=
1

8

∞∑
n=0

(n+ 2)(n+ 1)r2n+4
(2n+ 1)!!

(2n+ 2)!!

1

2n+ 4
=
r3

32
p(r),

where

p(r) =

∞∑
n=0

(2n+ 2)(2n+ 1)!!

(2n+ 2)!!
r2n+1

satisfies p(0) = 0, ∫ r

0

p(r) d r =

∞∑
n=0

(2n+ 1)!!

(2n+ 2)!!
r2n+2 =

1√
1− r2

− 1,

and so
p(r) =

r√
(1− r2)3

. (13)
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Consequently, we find

∣∣∣∣ 4π2κ2(r)− 1√
1− r2

∣∣∣∣ ≤ r4

32
√
(1− r2)3

. (14)

The double inequality (12) follows.

THEOREM 3.3. For r > 0 and s > 0, we have

π

8

√
8rs(r2 + s2)− (s2 − r2)2

rs
≤ ε(r, s) ≤ π

8

√
8rs(r2 + s2) + (s2 − r2)2

rs
. (15)

PROOF. Taking

f(t) = g(t) =
√
r2 cos2 t+ s2 sin2 t

and letting a = 0 and b = π
2 in the inequality (6) reveal∣∣∣∣∣ 2π

∫ π/2

0

(
r2 cos2 t+ s2 sin2 t

)
d t− 4

π2
ε2(r, s)

∣∣∣∣∣
=

∣∣∣∣ 4π2 ε2(r, s)− r2 + s2

2

∣∣∣∣ ≤ 1

2π

∫ π/2

0

(s2 − r2)2 sin2 t cos2 t
r2 cos2 t+ s2 sin2 t

d t

≤
[
(s2 − r2)2

2π

]
1

4

∫ π/2

0

1

r2 cos2 t+ s2 sin2 t
d t

=

[
(s2 − r2)2

8π

]
1

rs
arctan

(s
r
tan t|π/20

)
=
(s2 − r2)2
16rs

.

This means the double inequality (15).

THEOREM 3.4. For s > r > 0, we have

∣∣∣∣ 4π2κ2(r, s)− 1

πrs

∣∣∣∣ ≤ s2 − r2
32rs

(
1

s2
+
1

r2

)
. (16)

PROOF. Taking

f(t) = g(t) =
1√

r2 cos2 t+ s2 sin2 t
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and letting a = 0 and b = π
2 in the inequality (6), we acquire∣∣∣∣∣ 2π

∫ π/2

0

1

r2 cos2 t+ s2 sin2 t
d t− 4

π2
κ2(r, s)

∣∣∣∣∣
=

∣∣∣∣ 4π2κ2(r, s)− 1

πrs

∣∣∣∣ ≤ 1

2π

∫ π/2

0

(
s2 − r2

)
2 sin2 t cos2 t(

r2 cos2 t+ s2 sin2 t
)
3
d t

=
r2 − s2
8π

∫ π/2

0

sin t cos td
1(

r2 cos2 t+ s2 sin2 t
)2

=
r2 − s2
8π

[∫ π/2

0

sin2 t(
r2 cos2 t+ s2 sin2 t

)
2
d t−

∫ π/2

0

cos2 t(
r2 cos2 t+ s2 sin2 t

)2 d t
]

=
r2 − s2
8π

[∫ π/2

0

csc2 t(
r2 cot2 t+ s2

)
2
d t−

∫ π/2

0

sec2 t(
r2 + s2 tan2 t

)
2
d t

]

=
r2 − s2
8π

[∫ ∞
0

1

(r2u2 + s2)2
du−

∫ π/2

0

1

(r2 + s2λ2)2
dλ

]

=
s2 − r2
32rs

(
1

s2
+
1

r2

)
.

The proof is complete.

REMARK 3.2. From (16), we easily obtain

π

2

√
32r2s2 − π(s4 − r4)

32πr3s3
≤ κ(r, s) ≤ π

2

√
32r2s2 + π(s4 − r4)

32πr3s3
. (17)

By the software Mathematica, we can show that the double inequality in (17) and
the inequality in [6, Theorem 2] are not contained in each other.
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