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Abstract

In this paper we present some results on the annular bound for the zeros of a
polynomial based on the identities related to the generalized Fibonacci sequence
with arbitrary initial condition. Several recently reported results in the same
direction are special cases of our results.

1 Introduction

Several attempts have been made to obtain an explicit annular bound containing all
the zeros of a polynomial based on the identities related to the Fibonacci sequence
{Fp}22y (Fo =0, Fy =1, and F, 41 = F,, + F,_1, n > 1) or generalized Fibonacci
sequence {Fﬁ“””c’d)}ggo defined by

(ab,c,d) _ aF,(L(i’Ii’C’d) + cFéTg’c’d), if n is even,
Fn T (a,b,c,d) (a,b,c,d) . s (7’L > 2)
bE, 207V +dF,T7Y i nis odd,
where F(ade) =0, F(ab(d) 1, and a,b,c,d > 0.
Based on the 1dent1ty
> 2"k RC(n, k) = Fup, (1)

k=1
where C'(n, k) = m7 Diaz-Barrero [1] proved the following theorem:

THEOREM A. A complex polynomial P(z) = >_;'_, dxz" (di, # 0) has all its zeros
in the annulus C' = {z : r; < |z| < rq}, where

3 [2'EC(n k) |dol \ *
b Fyp |di|

1
min and 79 = = max Fan sl 1 *
2 1<k<n > 7 3u<ken | 20FyC(n, k) |dy|

Later Bidkham and Shashahani [3] derived the identity

> (a® + 1)"F(a® + 20) RGO n, k) = FOsb, (2)
k=1

*Mathematics Subject Classifications: 30C10, 30C15.
TDepartment of Electronic and Electrical Engineering, Hongik University, Sejong 339-701, Korea

209



210 On Annular Bound for the Zeros of a Polynomial

and extended Theorem A as follows:

THEOREM B. All the zeros of a complex polynomial P(z) = Y _, di2" (di # 0)
are contained in the annulus C = {z : 1 < |z| < 2}, where

r1 = min

(a® + )" F(a® + 20)" FL "V CO(n k) |do| | ©
1<k<n ’

Fis,a,l,l) ‘dk|

and

T max Fiﬁ’a’l’l) |dn k| '
5 =
1<k<n (a2 + 1)n7k(a3 + QQ)kFIEa’a’l’l)C(n, k) ‘dn|

Recently Rather and Mattoo [5] proved the identity

> (abe + )" F(ab + 20)Fat®) (ab) HL F PV C(n, k) = BT (3)
k=1

where ¢(k) = k — 2[£], and then extended Theorem A and Theorem B as follows:

THEOREM C. All the zeros of a complex polynomial P(z) = Y _, di2* (di # 0)
lie in the annulus C' = {z : r1 < |z| < ry}, where

1
(abe + )% (ab + 2)*as ™) (ab) 81 BV C(n, k) |do| | *
F(a,b,c,c) m )
4n

r1 = min
1<k<n

and

1
r9 = Inax F4(z’b7070) |dn—k| '
1<k<n | (abc + )=k (ab + 2¢)kas®) (ab)5] F, (a’b’° C)C’(n, k) ldnl

In this paper we present further results in the same direction. Two theorems on the
annular bound for the zeros of a polynomial are given respectively based on the iden-

tities related to the generalized Fibonacci sequences { F\""“ 120 and {F{“")}oe |
with arbitrary initial conditions. The second one includes Theorem C as a special case.

2 Main Results

Before presenting our main results, we state some preliminary results.

LEMMA 1. Let 7 and s (r # s) be nonzero roots of #2 — axz — b = 0. Then the
following three statements are equivalent:

(i) Bj = bo (%) (b1 — abo) (

)fOI‘j>O
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(11) Bj = CLBj_l + ij_Q, j > 2 with By = by, By = b;.

(iii) boz? ™! 4 (by — aby)z? = xBj + bB;_ for j > 1 and @ = r, s where By = by.

PROOF. (i)=(ii) follows from the fact that By = by, By = by and, for j >0

pIt2 _git2 a(errl _ sj“) _ b(rj — sj)
= (T2 =02 () (I — ) frs(r? — )

0.

To prove (ii)=-(iii), we proceed by induction as in [4]. If (ii) holds, (iii) is true for j =1
since

box? + (b1 — abg)x = bo(ax +b) + (by — aby)x
xby + bbg
= Z’Bl —+ bBO

If (iii) holds for j = m, then, for j = m + 1

box™ T2 + (by — abg)z™ ™ = z[bex™ T + (by — abg)z™]
= :1:2Bj +xbBj_1
= (ax+b)B; + xbB;_4
= z(aB; +bBj_1 + bB;
= xBj;1 + 0By,

hence (iii) follows. Now suppose (iii) holds. Then
bo’l"j+1 + (b1 — abo)Tj = TBj + ij_l,

bonJrl + (bl — abo)sj = SBj + ij—h

J+1 _ oj+1 J _ o
B; = b <H)+(b1abo)(r i ) for j > 1.
r r—S

and so

Since By = by, (i) also holds, and the proof is completed.

REMARK 1. Although the closed-form expression for B; in (i) satisfying the re-
currence relation (ii) can also be computed by using the generating function, Lemma
1 provides another simple way to obtain the formula for B;.

Lemma 2 and Lemma 3 below are slight generalizations of Theorem 1 and Theorem
2 in [2]. The proof of Lemma 3 is similar to that of [2, Theorem 2] and is omitted.
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LEMMA 2. Let r and s (r # s) be nonzero roots of 2 — ax — b = 0. Define
two sequences {A,}°2 , and {B,,}22, by A, = v, (cr™ + ds™), where 7v,,,¢,d € R, and
B, = =" Then forj>2and (>0

r—s °

n

n— YVin
> Cn, k) (0B 1) (B L A = Aj. (4)
k=1 Tt

PROOF. Using the equivalence (i) and (iii) in Lemma 1 for by = 0 and b; = 1, we
have

Ajn+l _ ernJrl +d$jn+l
Yin+l
= crl(r)" +dst(s7)"

= c’r‘l(ij,1 + TBj)n =+ dsl(ij,1 =+ SBj)n

= Z C(n,k)(bB;—1)" *(B;)*(crk 4 ds* )
k=1

i A
= > C(n, k) (0B;_1)" " (B =
el Vk+1

LEMMA 3. With the same notation as in Lemma 2, all the zeros of a complex
polynomial P(z) = >°)_, drz" (di # 0) are contained in the annulus C' = {z : r; <
|z| < ra} where

1

{ C(n, k) (0Bj—1)" " (B})* 1 Ak |do| }

VietrAjnti |d|

r1 = min
1<k<n

and

Ty =

1
max { Vi1 Ajn+i |1 } *
1<k<n C’(n, k)(ijfl)nfk(Bj)k’an+lAk+l |dn‘

Now consider the generalized Fibonacci sequence {F,S”’b’“’d)}gozo defined in Section

1 with initial condition Féa’b’c’d) = fo, Fl(a’b’c’d) = f1. It is easily seen that

Flebed) = (ab+ ¢+ d) F5 Y — ed P forn > 4.
Let Gi0o®) = FéZ’b’C’d)7 n > 0. Then Géa’b’c’d) = fo, Gga’b’c’d) =af; +cfo and
Glebod = (ab+ ¢ + )G 5D — cdG %D for n > 2.

Hence, from Lemma 1, we have

n+1 n+1
Gg;;’b,c’d) _ Géa,b,c,d) <O{ +1 _ ﬂ )
a—f

(a,b,c,d) (a,b,c,d) a — ﬁn
+{G1 — (ab +c—+ d)GO } W
= cCc1a, + dlﬁna
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where o and 3 are roots of the equation 22 — (ab+ c +d)x + cd = 0, and
(a—ab—d)fo+afr (B —ab—d)fo+afr

= d = —
C1 o — 6 ) 1 o — 5

On the other hand, let G{*"*% = Fégff D for n > 0. Then

A 1 a,b,c

Glebe® = 2GR = Gt D) = cpan + daB,,

a
where J
c2 = ale=c) and dp = hlf=c) C).
a a

Hence, from Lemma 2 and Lemma 3, we obtain the following theorem.

THEOREM 1. Consider a complex polynomial P(z) = > p_,diz" (dy # 0), and
let B,, = a;:gn, n > 0, where « and 3 are roots of 22 — (ab+ c+d)z + cd = 0. Then,
for j > 2 and [ > 0, all the zeros of P(2) lie in the annulus C' = {z : 71 < |z < 72} or
C ={z:7 <|z| <7y} where

n— a,b,c,d
C(n, k)(—cdB;_1)"~*(B,)FF\® )|d0|

r1 = min 2(k+D)
1 — 1<k<n (a,b,c,d) ‘dk| )
2(jn+l) ’
(a,b,c,d) %
ro = max Folinyn) k|
1<k<n | C(n, k)(—cdBj_1)n=k(By)REy0 G ldal [
C(n.k)(—cdB._1)" *(B. kF(a,b,cd) ®
£, = min (n, ) (edBy— )" " (By)" Faigajn |dol
1 =
n (a,b,c,d) )
ks F2(jn+l)+1 |dk‘
and
(a,b,c,d) ®
fa2 — max FQ(]“+1)+1 |dn—k|
1<k<n | C(n, k)(—cdB;_1)"*(B; )kF(Elkz-(l:)(—i‘r)l |d., |

Next we consider the case where ¢ = d. To this end we first find the formulae for
Gihed) = FQ(Z’b’C’C) and G000 = FQ(Zerf ) in terms of r = Va, s = —/B. Tt is
easily seen that r and s are roots of the equation 22 — vab — ¢ = 0. Now we have

n n+1
G(a,b,c,c) _ G(a,b7c,c) (Ozﬂi)
n 0 o ﬁ

_i_{Gga,b,c,c (ab—l—?c)Gabcc)}( aig )
_ L I:Géa,b,c,c) (M)

Vab —

+{G§a’b7c’c) (ab + 20)G a;b,¢, C)} (;Szn)} .

r—S
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On the other hand

A 1
G(a,b,c,c) - = G(a,b,c,c) _ G(a,b,c,c)
n a( n+1 & n )
B l {G(aﬁb,c,c){ (7“2 _ C)T2"+3 B (82 _ 0)82n+3}
Tl r(r2 — s?) s(r? — s?)
2 _o)p2ntl (52— ¢)s2ntl
G(a,b,c,c) _(ab+2 G(a,b,c,c) {(T C)’I" . }]
+HGy (ab+2¢)Gy } (2 — 52) s(r2 — 52)
_ l |:G(()a,b,c7c) (T2n+3 _ 52n+3>
a r—s

2n+1 _ ,.2n+1
HEM ) — (ab 206" ()|

rT—S
Consequently F,(a,b,c,c) can be expressed as
Flabee) = L oo (M )
n ag(n)(\/%)pg(n) 0 s

_i_{Ggavbvc’C) — (ab+ 2C)G(()a7byc,6) (%)}
1

= (c3r™ 4 dszs™),

a€(m) (v/ab)1—€(n)

where

(r?—ab—c)fotaf , _ (—ab-c)fo+ah
r—s P r—s '

C3 —

From Lemma 2, we obtain the identity

n E(k1) ((/gh)EGn+)
E C K (cB. n—~k . k@ F(a,b,c,c) — F(a,b,c,c) 5
(n7 )(C J 1) ( J ag(jn+l)(\/(E>§(k+l) k+1 jn+l ) ( )

k=1

where B,, = Tn_zn. Finally, from Lemma 3, we obtain the following theorem.

r—

THEOREM 2. Consider a complex polynomial P(z) = > ;_ di2* (d # 0), and
let B, = =" n >0, where r and s are roots of 22 — Vabz — ¢ = 0. Then, for j > 2

rT—S

and [ > 0, all the zeros of P(z) lie in the annulus C' = {z : r3 < |z| < r4}, where

1

{C(m k)(Cijl)nfk(Bj)kaE(kH)(\/C%)g(jnH)Fggilb’c’c) |d0| }k

a€Gn 1) (v/ab)s (kD) Lot K

r3 = min
1<k<n

1

£(jn+l £(k+1) plasb,cic) 3
r4 = max otV )(\/%) ( )anH || .
1<k<n | C(n, k)(ch_l)n—k(Bj)kag(k—H)(\/(%)g(jn+l)Fk(:i,lb70,C) |dn|

REMARK 2. Since {B,,}5%, satisfies the recurrence relation

Bpy1 = VabB,, + ¢B,_1 forj>1
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with By =0, B; = 1, we have
Bs = ab+ ¢ and By = Vab(ab + 2¢).

Then, setting 7 = 4, [ = 0, (5) reduces to (3), and so Theorem C is also a special case
of Theorem 2.
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