On Annular Bound For The Zeros Of A Polynomial*

Younseok Choo ${ }^{\dagger}$

Received 23 August 2014

Abstract

In this paper we present some results on the annular bound for the zeros of a polynomial based on the identities related to the generalized Fibonacci sequence with arbitrary initial condition. Several recently reported results in the same direction are special cases of our results.

1 Introduction

Several attempts have been made to obtain an explicit annular bound containing all the zeros of a polynomial based on the identities related to the Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}\left(F_{0}=0, F_{1}=1\right.$, and $\left.F_{n+1}=F_{n}+F_{n-1}, n \geq 1\right)$ or generalized Fibonacci sequence $\left\{F_{n}^{(a, b, c, d)}\right\}_{n=0}^{\infty}$ defined by

$$
F_{n}^{(a, b, c, d)}=\left\{\begin{array}{ll}
a F_{n-1}^{(a, b, c, d)}+c F_{n-2}^{(a, b, c, d)}, & \text { if } n \text { is even, } \quad(n \geq 2) \\
b F_{n-1}^{(a, b, c, d)}+d F_{n-2}^{(a, b, c, d)}, & \text { if } n \text { is odd, }
\end{array} \quad . \quad\right.
$$

where $F_{0}^{(a, b, c, d)}=0, F_{1}^{(a, b, c, d)}=1$, and $a, b, c, d>0$.
Based on the identity

$$
\begin{equation*}
\sum_{k=1}^{n} 2^{n-k} 3^{k} F_{k} C(n, k)=F_{4 n} \tag{1}
\end{equation*}
$$

where $C(n, k)=\frac{n!}{(n-k)!k!}$, Díaz-Barrero [1] proved the following theorem:
THEOREM A. A complex polynomial $P(z)=\sum_{k=0}^{n} d_{k} z^{k}\left(d_{k} \neq 0\right)$ has all its zeros in the annulus $C=\left\{z: r_{1} \leq|z| \leq r_{2}\right\}$, where

$$
r_{1}=\frac{3}{2} \min _{1 \leq k \leq n}\left\{\frac{2^{n} F_{k} C(n, k)}{F_{4 n}} \frac{\left|d_{0}\right|}{\left|d_{k}\right|}\right\}^{\frac{1}{k}} \quad \text { and } \quad r_{2}=\frac{2}{3} \max _{1 \leq k \leq n}\left\{\frac{F_{4 n}}{2^{n} F_{k} C(n, k)} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}}
$$

Later Bidkham and Shashahani [3] derived the identity

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a^{2}+1\right)^{n-k}\left(a^{3}+2 a\right)^{k} F_{k}^{(a, a, 1,1)} C(n, k)=F_{4 n}^{(a, a, 1,1)} \tag{2}
\end{equation*}
$$

[^0]and extended Theorem A as follows:
THEOREM B. All the zeros of a complex polynomial $P(z)=\sum_{k=0}^{n} d_{k} z^{k}\left(d_{k} \neq 0\right)$ are contained in the annulus $C=\left\{z: r_{1} \leq|z| \leq r_{2}\right\}$, where
$$
r_{1}=\min _{1 \leq k \leq n}\left\{\frac{\left(a^{2}+1\right)^{n-k}\left(a^{3}+2 a\right)^{k} F_{k}^{(a, a, 1,1)} C(n, k)}{F_{4 n}^{(a, a, 1,1)}} \frac{\left|d_{0}\right|}{\left|d_{k}\right|}\right\}^{\frac{1}{k}}
$$
and
$$
r_{2}=\max _{1 \leq k \leq n}\left\{\frac{F_{4 n}^{(a, a, 1,1)}}{\left(a^{2}+1\right)^{n-k}\left(a^{3}+2 a\right)^{k} F_{k}^{(a, a, 1,1)} C(n, k)} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}}
$$

Recently Rather and Mattoo [5] proved the identity

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a b c+c^{2}\right)^{n-k}(a b+2 c)^{k} a^{\xi(k)}(a b)^{\left[\frac{k}{2}\right]} F_{k}^{(a, b, c, c)} C(n, k)=F_{4 n}^{(a, b, c, c)} \tag{3}
\end{equation*}
$$

where $\xi(k)=k-2\left[\frac{k}{2}\right]$, and then extended Theorem A and Theorem B as follows:
THEOREM C. All the zeros of a complex polynomial $P(z)=\sum_{k=0}^{n} d_{k} z^{k}\left(d_{k} \neq 0\right)$ lie in the annulus $C=\left\{z: r_{1} \leq|z| \leq r_{2}\right\}$, where

$$
r_{1}=\min _{1 \leq k \leq n}\left\{\frac{\left(a b c+c^{2}\right)^{n-k}(a b+2 c)^{k} a^{\xi(k)}(a b)^{\left[\frac{k}{2}\right]} F_{k}^{(a, b, c, c)} C(n, k)}{F_{4 n}^{(a, b, c, c)}} \frac{\left|d_{0}\right|}{\left|d_{k}\right|}\right\}^{\frac{1}{k}}
$$

and

$$
r_{2}=\max _{1 \leq k \leq n}\left\{\frac{F_{4 n}^{(a, b, c, c)}}{\left(a b c+c^{2}\right)^{n-k}(a b+2 c)^{k} a^{\xi(k)}(a b)^{\left[\frac{k}{2}\right]} F_{k}^{(a, b, c, c)} C(n, k)} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}}
$$

In this paper we present further results in the same direction. Two theorems on the annular bound for the zeros of a polynomial are given respectively based on the identities related to the generalized Fibonacci sequences $\left\{F_{n}^{(a, b, c, d)}\right\}_{n=0}^{\infty}$ and $\left\{F_{n}^{(a, b, c, c)}\right\}_{n=0}^{\infty}$ with arbitrary initial conditions. The second one includes Theorem C as a special case.

2 Main Results

Before presenting our main results, we state some preliminary results.
LEMMA 1. Let r and $s(r \neq s)$ be nonzero roots of $x^{2}-a x-b=0$. Then the following three statements are equivalent:
(i) $B_{j}=b_{0}\left(\frac{r^{j+1}-s^{j+1}}{r-s}\right)+\left(b_{1}-a b_{0}\right)\left(\frac{r^{j}-s^{j}}{r-s}\right)$ for $j \geq 0$.
(ii) $B_{j}=a B_{j-1}+b B_{j-2}, \quad j \geq 2$ with $B_{0}=b_{0}, B_{1}=b_{1}$.
(iii) $b_{0} x^{j+1}+\left(b_{1}-a b_{0}\right) x^{j}=x B_{j}+b B_{j-1}$ for $j \geq 1$ and $x=r, s$ where $B_{0}=b_{0}$.

PROOF. (i) \Rightarrow (ii) follows from the fact that $B_{0}=b_{0}, B_{1}=b_{1}$ and, for $j \geq 0$

$$
\begin{aligned}
& r^{j+2}-s^{j+2}-a\left(r^{j+1}-s^{j+1}\right)-b\left(r^{j}-s^{j}\right) \\
= & \left(r^{j+2}-s^{j+2}-(r+s)\left(r^{j+1}-s^{j+1}\right)+r s\left(r^{j}-s^{j}\right)\right. \\
= & 0
\end{aligned}
$$

To prove (ii) \Rightarrow (iii), we proceed by induction as in [4]. If (ii) holds, (iii) is true for $j=1$ since

$$
\begin{aligned}
b_{0} x^{2}+\left(b_{1}-a b_{0}\right) x & =b_{0}(a x+b)+\left(b_{1}-a b_{0}\right) x \\
& =x b_{1}+b b_{0} \\
& =x B_{1}+b B_{0}
\end{aligned}
$$

If (iii) holds for $j=m$, then, for $j=m+1$

$$
\begin{aligned}
b_{0} x^{m+2}+\left(b_{1}-a b_{0}\right) x^{m+1} & =x\left[b_{0} x^{m+1}+\left(b_{1}-a b_{0}\right) x^{m}\right] \\
& =x^{2} B_{j}+x b B_{j-1} \\
& =(a x+b) B_{j}+x b B_{j-1} \\
& =x\left(a B_{j}+b B_{j-1}+b B_{j}\right. \\
& =x B_{j+1}+b B_{j}
\end{aligned}
$$

hence (iii) follows. Now suppose (iii) holds. Then

$$
\begin{aligned}
& b_{0} r^{j+1}+\left(b_{1}-a b_{0}\right) r^{j}=r B_{j}+b B_{j-1} \\
& b_{0} s^{j+1}+\left(b_{1}-a b_{0}\right) s^{j}=s B_{j}+b B_{j-1}
\end{aligned}
$$

and so

$$
B_{j}=b_{0}\left(\frac{r^{j+1}-s^{j+1}}{r-s}\right)+\left(b_{1}-a b_{0}\right)\left(\frac{r^{j}-s^{j}}{r-s}\right) \text { for } j \geq 1
$$

Since $B_{0}=b_{0}$, (i) also holds, and the proof is completed.

REMARK 1. Although the closed-form expression for B_{j} in (i) satisfying the recurrence relation (ii) can also be computed by using the generating function, Lemma 1 provides another simple way to obtain the formula for B_{j}.

Lemma 2 and Lemma 3 below are slight generalizations of Theorem 1 and Theorem 2 in [2]. The proof of Lemma 3 is similar to that of [2, Theorem 2] and is omitted.

LEMMA 2. Let r and $s(r \neq s)$ be nonzero roots of $x^{2}-a x-b=0$. Define two sequences $\left\{A_{n}\right\}_{n=0}^{\infty}$ and $\left\{B_{n}\right\}_{n=0}^{\infty}$ by $A_{n}=\gamma_{n}\left(c r^{n}+d s^{n}\right)$, where $\gamma_{n}, c, d \in \mathbb{R}$, and $B_{n}=\frac{r^{n}-s^{n}}{r-s}$. Then for $j \geq 2$ and $l \geq 0$

$$
\begin{equation*}
\sum_{k=1}^{n} C(n, k)\left(b B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} \frac{\gamma_{j n+l}}{\gamma_{k+l}} A_{k+l}=A_{j n+l} \tag{4}
\end{equation*}
$$

PROOF. Using the equivalence (i) and (iii) in Lemma 1 for $b_{0}=0$ and $b_{1}=1$, we have

$$
\begin{aligned}
\frac{A_{j n+l}}{\gamma_{j n+l}} & =c r^{j n+l}+d s^{j n+l} \\
& =c r^{l}\left(r^{j}\right)^{n}+d s^{l}\left(s^{j}\right)^{n} \\
& =c r^{l}\left(b B_{j-1}+r B_{j}\right)^{n}+d s^{l}\left(b B_{j-1}+s B_{j}\right)^{n} \\
& =\sum_{k=1}^{n} C(n, k)\left(b B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k}\left(c r^{k+l}+d s^{k+l}\right) \\
& =\sum_{k=1}^{n} C(n, k)\left(b B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} \frac{A_{k+l}}{\gamma_{k+l}}
\end{aligned}
$$

LEMMA 3. With the same notation as in Lemma 2, all the zeros of a complex polynomial $P(z)=\sum_{k=0}^{n} d_{k} z^{k}\left(d_{k} \neq 0\right)$ are contained in the annulus $C=\left\{z: r_{1} \leq\right.$ $\left.|z| \leq r_{2}\right\}$ where

$$
r_{1}=\min _{1 \leq k \leq n}\left\{\frac{C(n, k)\left(b B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} \gamma_{j n+l} A_{k+l}}{\gamma_{k+l} A_{j n+l}} \frac{\left|d_{0}\right|}{\left|d_{k}\right|}\right\}^{\frac{1}{k}}
$$

and

$$
r_{2}=\max _{1 \leq k \leq n}\left\{\frac{\gamma_{k+l} A_{j n+l}}{C(n, k)\left(b B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} \gamma_{j n+l} A_{k+l}} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}}
$$

Now consider the generalized Fibonacci sequence $\left\{F_{n}^{(a, b, c, d)}\right\}_{n=0}^{\infty}$ defined in Section 1 with initial condition $F_{0}^{(a, b, c, d)}=f_{0}, F_{1}^{(a, b, c, d)}=f_{1}$. It is easily seen that

$$
F_{n}^{(a, b, c, d)}=(a b+c+d) F_{n-2}^{(a, b, c, d)}-c d F_{n-4}^{(a, b, c, d)} \text { for } n \geq 4
$$

Let $G_{n}^{(a, b, c, d)}=F_{2 n}^{(a, b, c, d)}, \quad n \geq 0$. Then $G_{0}^{(a, b, c, d)}=f_{0}, G_{1}^{(a, b, c, d)}=a f_{1}+c f_{0}$ and

$$
G_{n}^{(a, b, c, d)}=(a b+c+d) G_{n-1}^{(a, b, c, d)}-c d G_{n-2}^{(a, b, c, d)} \text { for } n \geq 2
$$

Hence, from Lemma 1, we have

$$
\begin{aligned}
G_{n}^{(a, b, c, d)}= & G_{0}^{(a, b, c, d)}\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right) \\
& +\left\{G_{1}^{(a, b, c, d)}-(a b+c+d) G_{0}^{(a, b, c, d)}\right\}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \\
= & c_{1} \alpha_{n}+d_{1} \beta_{n}
\end{aligned}
$$

where α and β are roots of the equation $x^{2}-(a b+c+d) x+c d=0$, and

$$
c_{1}=\frac{(\alpha-a b-d) f_{0}+a f_{1}}{\alpha-\beta}, \quad d_{1}=-\frac{(\beta-a b-d) f_{0}+a f_{1}}{\alpha-\beta} .
$$

On the other hand, let $\hat{G}_{n}^{(a, b, c, d)}=F_{2 n+1}^{(a, b, c, d)}$ for $n \geq 0$. Then

$$
\hat{G}_{n}^{(a, b, c, d)}=\frac{1}{a}\left(G_{n+1}^{(a, b, c, d)}-c G_{n}^{(a, b, c, d)}\right)=c_{2} \alpha_{n}+d_{2} \beta_{n}
$$

where

$$
c_{2}=\frac{c_{1}(\alpha-c)}{a} \text { and } d_{2}=\frac{d_{1}(\beta-c)}{a}
$$

Hence, from Lemma 2 and Lemma 3, we obtain the following theorem.
THEOREM 1. Consider a complex polynomial $P(z)=\sum_{k=0}^{n} d_{k} z^{k}\left(d_{k} \neq 0\right)$, and let $B_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n \geq 0$, where α and β are roots of $x^{2}-(a b+c+d) x+c d=0$. Then, for $j \geq 2$ and $l \geq 0$, all the zeros of $P(z)$ lie in the annulus $C=\left\{z: r_{1} \leq|z| \leq r_{2}\right\}$ or $\hat{C}=\left\{z: \hat{r}_{1} \leq|z| \leq \hat{r}_{2}\right\}$ where

$$
\begin{aligned}
& r_{1}=\min _{1 \leq k \leq n}\left\{\frac{C(n, k)\left(-c d B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} F_{2(k+l)}^{(a, b, c, d)}}{F_{2(j n+l)}^{(a, b, c, d)}} \frac{\left|d_{0}\right|}{\left|d_{k}\right|}\right\}^{\frac{1}{k}} \\
& r_{2}=\max _{1 \leq k \leq n}\left\{\frac{F_{2(j n+l)}^{(a, b, c, d)}}{C(n, k)\left(-c d B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} F_{2(k+l)}^{(a, b, c, d)}} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}} \\
& \hat{r}_{1}=\min _{1 \leq k \leq n}\left\{\frac{C(n, k)\left(-c d B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} F_{2(k+l)+1}^{(a, b, c, d)}}{F_{2(j n+l)+1}^{(a, b, c, d)}} \frac{\left|d_{0}\right|}{\left|d_{k}\right|}\right\}^{\frac{1}{k}}
\end{aligned}
$$

and

$$
\hat{r}_{2}=\max _{1 \leq k \leq n}\left\{\frac{F_{2(j n+l)+1}^{(a, b, c, d)}}{C(n, k)\left(-c d B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} F_{2(k+l)+1}^{(a, b, c, d)}} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}}
$$

Next we consider the case where $c=d$. To this end we first find the formulae for $G_{n}^{(a, b, c, c)}=F_{2 n}^{(a, b, c, c)}$ and $\hat{G}_{n}^{(a, b, c, c)}=F_{2 n+1}^{(a, b, c, c)}$ in terms of $r=\sqrt{\alpha}, s=-\sqrt{\beta}$. It is easily seen that r and s are roots of the equation $x^{2}-\sqrt{a b}-c=0$. Now we have

$$
\begin{aligned}
G_{n}^{(a, b, c, c)}= & G_{0}^{(a, b, c, c)}\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right) \\
& +\left\{G_{1}^{(a, b, c, c)}-(a b+2 c) G_{0}^{(a, b, c, c)}\right\}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) \\
= & \frac{1}{\sqrt{a b}}\left[G_{0}^{(a, b, c, c)}\left(\frac{r^{2 n+2}-s^{2 n+2}}{r-s}\right)\right. \\
& \left.+\left\{G_{1}^{(a, b, c, c)}-(a b+2 c) G_{0}^{(a, b, c, c)}\right\}\left(\frac{r^{2 n}-s^{2 n}}{r-s}\right)\right]
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\hat{G}_{n}^{(a, b, c, c)}= & \frac{1}{a}\left(G_{n+1}^{(a, b, c, c)}-c G_{n}^{(a, b, c, c)}\right) \\
= & \frac{1}{a}\left[G_{0}^{(a, b, c, c)}\left\{\frac{\left(r^{2}-c\right) r^{2 n+3}}{r\left(r^{2}-s^{2}\right)}-\frac{\left(s^{2}-c\right) s^{2 n+3}}{s\left(r^{2}-s^{2}\right)}\right\}\right. \\
& \left.+\left\{G_{1}^{(a, b, c, c)}-(a b+2 c) G_{0}^{(a, b, c, c)}\right\}\left\{\frac{\left(r^{2}-c\right) r^{2 n+1}}{r\left(r^{2}-s^{2}\right)}-\frac{\left(s^{2}-c\right) s^{2 n+1}}{s\left(r^{2}-s^{2}\right)}\right\}\right] \\
= & \frac{1}{a}\left[G_{0}^{(a, b, c, c)}\left(\frac{r^{2 n+3}-s^{2 n+3}}{r-s}\right)\right. \\
& \left.+\left\{G_{1}^{(a, b, c, c)}-(a b+2 c) G_{0}^{(a, b, c, c)}\right\}\left(\frac{r^{2 n+1}-r^{2 n+1}}{r-s}\right)\right]
\end{aligned}
$$

Consequently $F_{n}(a, b, c, c)$ can be expressed as

$$
\begin{aligned}
F_{n}^{(a, b, c, c)}= & \frac{1}{a^{\xi(n)}(\sqrt{a b})^{1-\xi(n)}}\left[G_{0}^{(a, b, c, c)}\left(\frac{r^{n+2}-s^{n+2}}{r-s}\right)\right. \\
& \left.+\left\{G_{1}^{(a, b, c, c)}-(a b+2 c) G_{0}^{(a, b, c, c)}\right\}\left(\frac{r^{n}-s^{n}}{r-s}\right)\right] \\
= & \frac{1}{a^{\xi(n)}(\sqrt{a b})^{1-\xi(n)}}\left(c_{3} r^{n}+d_{3} s^{n}\right)
\end{aligned}
$$

where

$$
c_{3}=\frac{\left(r^{2}-a b-c\right) f_{0}+a f_{1}}{r-s}, \quad d_{3}=-\frac{\left(s^{2}-a b-c\right) f_{0}+a f_{1}}{r-s} .
$$

From Lemma 2, we obtain the identity

$$
\begin{equation*}
\sum_{k=1}^{n} C(n, k)\left(c B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} \frac{a^{\xi(k+l)}(\sqrt{a b})^{\xi(j n+l)}}{a^{\xi(j n+l)}(\sqrt{a b})^{\xi(k+l)}} F_{k+l}^{(a, b, c, c)}=F_{j n+l}^{(a, b, c, c)} \tag{5}
\end{equation*}
$$

where $B_{n}=\frac{r^{n}-s^{n}}{r-s}$. Finally, from Lemma 3, we obtain the following theorem.
THEOREM 2. Consider a complex polynomial $P(z)=\sum_{k=0}^{n} d_{k} z^{k}\left(d_{k} \neq 0\right)$, and let $B_{n}=\frac{r^{n}-s^{n}}{r-s}, n \geq 0$, where r and s are roots of $x^{2}-\sqrt{a b} x-c=0$. Then, for $j \geq 2$ and $l \geq 0$, all the zeros of $P(z)$ lie in the annulus $C=\left\{z: r_{3} \leq|z| \leq r_{4}\right\}$, where

$$
\begin{aligned}
& r_{3}=\min _{1 \leq k \leq n}\left\{\frac{C(n, k)\left(c B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} a^{\xi(k+l)}(\sqrt{a b})^{\xi(j n+l)} F_{k+l}^{(a, b, c, c)}}{a^{\xi(j n+l)}(\sqrt{a b})^{\xi(k+l)} F_{j n+l}^{(a, b, c, c)}} \frac{\left|d_{0}\right|}{\mid d_{k}}\right\}^{\frac{1}{k}}, \\
& r_{4}=\max _{1 \leq k \leq n}\left\{\frac{a^{\xi(j n+l)}(\sqrt{a b})^{\xi(k+l)} F_{j n+l}^{(a, b, c, c)}}{C(n, k)\left(c B_{j-1}\right)^{n-k}\left(B_{j}\right)^{k} a^{\xi(k+l)}(\sqrt{a b})^{\xi(j n+l)} F_{k+l}^{(a, b, c, c)}} \frac{\left|d_{n-k}\right|}{\left|d_{n}\right|}\right\}^{\frac{1}{k}} .
\end{aligned}
$$

REMARK 2. Since $\left\{B_{n}\right\}_{n=0}^{\infty}$ satisfies the recurrence relation

$$
B_{n+1}=\sqrt{a b} B_{n}+c B_{n-1} \text { for } j \geq 1
$$

with $B_{0}=0, B_{1}=1$, we have

$$
B_{3}=a b+c \text { and } B_{4}=\sqrt{a b}(a b+2 c)
$$

Then, setting $j=4, l=0$, (5) reduces to (3), and so Theorem C is also a special case of Theorem 2.

References

[1] J. L. Díaz-Barrero, An annulus for the zeros of polynomials, J. Math. Anal. Appl., 273(2002), 349-352.
[2] J. L. Díaz-Barrero and J. J. Egozcue, Bounds for the moduli of zeros, Appl. Math. Lett., 17(2004), 993-996.
[3] M. Bidkham and E. Shashahani, An annulus for the zeros of polynomials, Appl. Math. Lett., 24(2011), 122-125.
[4] D. Redmond, Problem 132, Missori J. Math. Sci., 11(1999), 197.
[5] N. A. Rather and S. G. Mattoo, On annulus containing all the zeros of a polynomial, Appl. Math. E-Notes, 13(2013), 155-159.
[6] O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput., 217(2011), 5603-5611.

[^0]: *Mathematics Subject Classifications: 30C10, 30C15.
 ${ }^{\dagger}$ Department of Electronic and Electrical Engineering, Hongik University, Sejong 339-701, Korea

