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Abstract
In this paper we present some results on the annular bound for the zeros of a

polynomial based on the identities related to the generalized Fibonacci sequence
with arbitrary initial condition. Several recently reported results in the same
direction are special cases of our results.

1 Introduction

Several attempts have been made to obtain an explicit annular bound containing all
the zeros of a polynomial based on the identities related to the Fibonacci sequence
{Fn}∞n=0 (F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1, n ≥ 1) or generalized Fibonacci
sequence {F (a,b,c,d)n }∞n=0 defined by

F (a,b,c,d)n =

{
aF

(a,b,c,d)
n−1 + cF

(a,b,c,d)
n−2 , if n is even,

bF
(a,b,c,d)
n−1 + dF

(a,b,c,d)
n−2 , if n is odd,

(n ≥ 2)

where F (a,b,c,d)0 = 0, F (a,b,c,d)1 = 1, and a, b, c, d > 0.
Based on the identity

n∑
k=1

2n−k3kFkC(n, k) = F4n, (1)

where C(n, k) = n!
(n−k)!k! , Díaz-Barrero [1] proved the following theorem:

THEOREM A. A complex polynomial P (z) =
∑n
k=0 dkz

k (dk 6= 0) has all its zeros
in the annulus C = {z : r1 ≤ |z| ≤ r2}, where

r1 =
3

2
min
1≤k≤n

{
2nFkC(n, k)

F4n

|d0|
|dk|

} 1
k

and r2 =
2

3
max
1≤k≤n

{
F4n

2nFkC(n, k)

|dn−k|
|dn|

} 1
k

.

Later Bidkham and Shashahani [3] derived the identity

n∑
k=1

(a2 + 1)n−k(a3 + 2a)kF
(a,a,1,1)
k C(n, k) = F

(a,a,1,1)
4n , (2)
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and extended Theorem A as follows:

THEOREM B. All the zeros of a complex polynomial P (z) =
∑n
k=0 dkz

k (dk 6= 0)
are contained in the annulus C = {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
(a2 + 1)n−k(a3 + 2a)kF

(a,a,1,1)
k C(n, k)

F
(a,a,1,1)
4n

|d0|
|dk|

} 1
k

,

and

r2 = max
1≤k≤n

{
F
(a,a,1,1)
4n

(a2 + 1)n−k(a3 + 2a)kF
(a,a,1,1)
k C(n, k)

|dn−k|
|dn|

} 1
k

.

Recently Rather and Mattoo [5] proved the identity

n∑
k=1

(abc+ c2)n−k(ab+ 2c)kaξ(k)(ab)[
k
2 ]F

(a,b,c,c)
k C(n, k) = F

(a,b,c,c)
4n , (3)

where ξ(k) = k − 2[k2 ], and then extended Theorem A and Theorem B as follows:

THEOREM C. All the zeros of a complex polynomial P (z) =
∑n
k=0 dkz

k (dk 6= 0)
lie in the annulus C = {z : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
(abc+ c2)n−k(ab+ 2c)kaξ(k)(ab)[

k
2 ]F

(a,b,c,c)
k C(n, k)

F
(a,b,c,c)
4n

|d0|
|dk|

} 1
k

,

and

r2 = max
1≤k≤n

{
F
(a,b,c,c)
4n

(abc+ c2)n−k(ab+ 2c)kaξ(k)(ab)[
k
2 ]F

(a,b,c,c)
k C(n, k)

|dn−k|
|dn|

} 1
k

.

In this paper we present further results in the same direction. Two theorems on the
annular bound for the zeros of a polynomial are given respectively based on the iden-
tities related to the generalized Fibonacci sequences {F (a,b,c,d)n }∞n=0 and {F

(a,b,c,c)
n }∞n=0

with arbitrary initial conditions. The second one includes Theorem C as a special case.

2 Main Results

Before presenting our main results, we state some preliminary results.

LEMMA 1. Let r and s (r 6= s) be nonzero roots of x2 − ax − b = 0. Then the
following three statements are equivalent:

(i) Bj = b0

(
rj+1−sj+1

r−s

)
+ (b1 − ab0)

(
rj−sj
r−s

)
for j ≥ 0.
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(ii) Bj = aBj−1 + bBj−2, j ≥ 2 with B0 = b0, B1 = b1.

(iii) b0xj+1 + (b1 − ab0)xj = xBj + bBj−1 for j ≥ 1 and x = r, s where B0 = b0.

PROOF. (i)⇒(ii) follows from the fact that B0 = b0, B1 = b1 and, for j ≥ 0

rj+2 − sj+2 − a(rj+1 − sj+1)− b(rj − sj)
= (rj+2 − sj+2 − (r + s)(rj+1 − sj+1) + rs(rj − sj)
= 0.

To prove (ii)⇒(iii), we proceed by induction as in [4]. If (ii) holds, (iii) is true for j = 1
since

b0x
2 + (b1 − ab0)x = b0(ax+ b) + (b1 − ab0)x

= xb1 + bb0

= xB1 + bB0.

If (iii) holds for j = m, then, for j = m+ 1

b0x
m+2 + (b1 − ab0)xm+1 = x[b0x

m+1 + (b1 − ab0)xm]
= x2Bj + xbBj−1

= (ax+ b)Bj + xbBj−1

= x(aBj + bBj−1 + bBj

= xBj+1 + bBj ,

hence (iii) follows. Now suppose (iii) holds. Then

b0r
j+1 + (b1 − ab0)rj = rBj + bBj−1,

b0s
j+1 + (b1 − ab0)sj = sBj + bBj−1,

and so

Bj = b0

(
rj+1 − sj+1

r − s

)
+ (b1 − ab0)

(
rj − sj
r − s

)
for j ≥ 1.

Since B0 = b0, (i) also holds, and the proof is completed.

REMARK 1. Although the closed-form expression for Bj in (i) satisfying the re-
currence relation (ii) can also be computed by using the generating function, Lemma
1 provides another simple way to obtain the formula for Bj .

Lemma 2 and Lemma 3 below are slight generalizations of Theorem 1 and Theorem
2 in [2]. The proof of Lemma 3 is similar to that of [2, Theorem 2] and is omitted.
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LEMMA 2. Let r and s (r 6= s) be nonzero roots of x2 − ax − b = 0. Define
two sequences {An}∞n=0 and {Bn}∞n=0 by An = γn(cr

n + dsn), where γn, c, d ∈ R, and
Bn =

rn−sn
r−s . Then for j ≥ 2 and l ≥ 0

n∑
k=1

C(n, k)(bBj−1)
n−k(Bj)

k
γjn+l
γk+l

Ak+l = Ajn+l. (4)

PROOF. Using the equivalence (i) and (iii) in Lemma 1 for b0 = 0 and b1 = 1, we
have

Ajn+l
γjn+l

= crjn+l + dsjn+l

= crl(rj)n + dsl(sj)n

= crl(bBj−1 + rBj)
n + dsl(bBj−1 + sBj)

n

=

n∑
k=1

C(n, k)(bBj−1)
n−k(Bj)

k(crk+l + dsk+l)

=

n∑
k=1

C(n, k)(bBj−1)
n−k(Bj)

kAk+l
γk+l

.

LEMMA 3. With the same notation as in Lemma 2, all the zeros of a complex
polynomial P (z) =

∑n
k=0 dkz

k (dk 6= 0) are contained in the annulus C = {z : r1 ≤
|z| ≤ r2} where

r1 = min
1≤k≤n

{
C(n, k)(bBj−1)

n−k(Bj)
kγjn+lAk+l

γk+lAjn+l

|d0|
|dk|

} 1
k

,

and

r2 = max
1≤k≤n

{
γk+lAjn+l

C(n, k)(bBj−1)n−k(Bj)kγjn+lAk+l

|dn−k|
|dn|

} 1
k

.

Now consider the generalized Fibonacci sequence {F (a,b,c,d)n }∞n=0 defined in Section
1 with initial condition F (a,b,c,d)0 = f0, F

(a,b,c,d)
1 = f1. It is easily seen that

F (a,b,c,d)n = (ab+ c+ d)F
(a,b,c,d)
n−2 − cdF (a,b,c,d)n−4 for n ≥ 4.

Let G(a,b,c,d)n = F
(a,b,c,d)
2n , n ≥ 0. Then G(a,b,c,d)0 = f0, G

(a,b,c,d)
1 = af1 + cf0 and

G(a,b,c,d)n = (ab+ c+ d)G
(a,b,c,d)
n−1 − cdG(a,b,c,d)n−2 for n ≥ 2.

Hence, from Lemma 1, we have

G(a,b,c,d)n = G
(a,b,c,d)
0

(
αn+1 − βn+1

α− β

)
+{G(a,b,c,d)1 − (ab+ c+ d)G(a,b,c,d)0 }

(
αn − βn

α− β

)
= c1αn + d1βn,
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where α and β are roots of the equation x2 − (ab+ c+ d)x+ cd = 0, and

c1 =
(α− ab− d)f0 + af1

α− β , d1 = −
(β − ab− d)f0 + af1

α− β .

On the other hand, let Ĝ(a,b,c,d)n = F
(a,b,c,d)
2n+1 for n ≥ 0. Then

Ĝ(a,b,c,d)n =
1

a
(G

(a,b,c,d)
n+1 − cG(a,b,c,d)n ) = c2αn + d2βn,

where

c2 =
c1(α− c)

a
and d2 =

d1(β − c)
a

.

Hence, from Lemma 2 and Lemma 3, we obtain the following theorem.

THEOREM 1. Consider a complex polynomial P (z) =
∑n
k=0 dkz

k (dk 6= 0), and
let Bn =

αn−βn
α−β , n ≥ 0, where α and β are roots of x2 − (ab+ c+ d)x+ cd = 0. Then,

for j ≥ 2 and l ≥ 0, all the zeros of P (z) lie in the annulus C = {z : r1 ≤ |z| ≤ r2} or
Ĉ = {z : r̂1 ≤ |z| ≤ r̂2} where

r1 = min
1≤k≤n

C(n, k)(−cdBj−1)
n−k(Bj)

kF
(a,b,c,d)
2(k+l)

F
(a,b,c,d)
2(jn+l)

|d0|
|dk|


1
k

,

r2 = max
1≤k≤n

 F
(a,b,c,d)
2(jn+l)

C(n, k)(−cdBj−1)n−k(Bj)kF (a,b,c,d)2(k+l)

|dn−k|
|dn|


1
k

,

r̂1 = min
1≤k≤n

C(n, k)(−cdBj−1)
n−k(Bj)

kF
(a,b,c,d)
2(k+l)+1

F
(a,b,c,d)
2(jn+l)+1

|d0|
|dk|


1
k

,

and

r̂2 = max
1≤k≤n

 F
(a,b,c,d)
2(jn+l)+1

C(n, k)(−cdBj−1)n−k(Bj)kF (a,b,c,d)2(k+l)+1

|dn−k|
|dn|


1
k

.

Next we consider the case where c = d. To this end we first find the formulae for
G
(a,b,c,c)
n = F

(a,b,c,c)
2n and Ĝ(a,b,c,c)n = F

(a,b,c,c)
2n+1 in terms of r =

√
α, s = −

√
β. It is

easily seen that r and s are roots of the equation x2 −
√
ab− c = 0. Now we have

G(a,b,c,c)n = G
(a,b,c,c)
0

(αn+1 − βn+1
α− β

)
+{G(a,b,c,c)1 − (ab+ 2c)G(a,b,c,c)0 }

(αn − βn
α− β

)
=

1√
ab

[
G
(a,b,c,c)
0

(r2n+2 − s2n+2
r − s

)
+{G(a,b,c,c)1 − (ab+ 2c)G(a,b,c,c)0 }

(r2n − s2n
r − s

)]
.
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On the other hand

Ĝ(a,b,c,c)n =
1

a
(G

(a,b,c,c)
n+1 − cG(a,b,c,c)n )

=
1

a

[
G
(a,b,c,c)
0

{ (r2 − c)r2n+3
r(r2 − s2) − (s

2 − c)s2n+3
s(r2 − s2)

}
+{G(a,b,c,c)1 − (ab+ 2c)G(a,b,c,c)0 }

{ (r2 − c)r2n+1
r(r2 − s2) − (s

2 − c)s2n+1
s(r2 − s2)

}]
=

1

a

[
G
(a,b,c,c)
0

(r2n+3 − s2n+3
r − s

)
+{G(a,b,c,c)1 − (ab+ 2c)G(a,b,c,c)0 }

(r2n+1 − r2n+1
r − s

)]
.

Consequently Fn(a, b, c, c) can be expressed as

F (a,b,c,c)n =
1

aξ(n)(
√
ab)1−ξ(n)

[
G
(a,b,c,c)
0

(rn+2 − sn+2
r − s

)
+{G(a,b,c,c)1 − (ab+ 2c)G(a,b,c,c)0 }

(rn − sn
r − s

)]
=

1

aξ(n)(
√
ab)1−ξ(n)

(c3r
n + d3s

n),

where

c3 =
(r2 − ab− c)f0 + af1

r − s , d3 = −
(s2 − ab− c)f0 + af1

r − s .

From Lemma 2, we obtain the identity

n∑
k=1

C(n, k)(cBj−1)
n−k(Bj)

k a
ξ(k+l)(

√
ab)ξ(jn+l)

aξ(jn+l)(
√
ab)ξ(k+l)

F
(a,b,c,c)
k+l = F

(a,b,c,c)
jn+l , (5)

where Bn = rn−sn
r−s . Finally, from Lemma 3, we obtain the following theorem.

THEOREM 2. Consider a complex polynomial P (z) =
∑n
k=0 dkz

k (dk 6= 0), and
let Bn = rn−sn

r−s , n ≥ 0, where r and s are roots of x
2 −
√
abx− c = 0. Then, for j ≥ 2

and l ≥ 0, all the zeros of P (z) lie in the annulus C = {z : r3 ≤ |z| ≤ r4}, where

r3 = min
1≤k≤n

{
C(n, k)(cBj−1)

n−k(Bj)
kaξ(k+l)(

√
ab)ξ(jn+l)F

(a,b,c,c)
k+l

aξ(jn+l)(
√
ab)ξ(k+l)F

(a,b,c,c)
jn+l

|d0|
|dk

} 1
k

,

r4 = max
1≤k≤n

{
aξ(jn+l)(

√
ab)ξ(k+l)F

(a,b,c,c)
jn+l

C(n, k)(cBj−1)n−k(Bj)kaξ(k+l)(
√
ab)ξ(jn+l)F

(a,b,c,c)
k+l

|dn−k|
|dn|

} 1
k

.

REMARK 2. Since {Bn}∞n=0 satisfies the recurrence relation

Bn+1 =
√
abBn + cBn−1 for j ≥ 1
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with B0 = 0, B1 = 1, we have

B3 = ab+ c and B4 =
√
ab(ab+ 2c).

Then, setting j = 4, l = 0, (5) reduces to (3), and so Theorem C is also a special case
of Theorem 2.
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