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Abstract

It is shown that the iteration technique gives a better approximation for the
problem with long wavelengths.

1 Introduction

This paper is based on the study of the scattering of a scalar plane wave by an in-
homogeneous medium which can be applied in many interests such as scattering by
inhomogeneous spheres and scattering of acoustic waves in the ocean. Since the analo-
gous classical problems with scattering by spherically symmetric inhomogeneities have
not been thoroughly studied, the purpose of this paper is to show that the classical
problems and some simple solvable problems can be simply treated by a quantum-
mechanical method. Moreover, in practice (in optical and industrial applications at
least) the inhomogeneous scattering media will be piecewise constant continuous, so a
useful approach to the problem may be to mimic the continuous cases for piecewise
increasing or decreasing refractive index profiles. Therefore, the application of the Jost
function formulation of potential scattering theory [1] to the scattering of a scalar plane
wave by a medium with a piecewise constant two-layer spherical inhomogeneity is of
interest.

2 Scattering From a Piecewise Constant by Multi-
Layer Spherically Symmetric Inhomogeneities

We are now in a position to apply the method outlined in [1] to the problem of scattering
from a piecewise constant in a multi-layer spherical inhomogeneities. For a three-layer
inhomogeneity we define the following potential

Region 1 : V (r) = −V1, k(r) = k1, r < R1;

Region 2 : V (r) = −V2, k(r) = k2, R1 < r < R2;

Region 3 : V (r) = 0, k(r) = k, r > R2. (1)
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The solutions in the three regions are:

Region 1 : u
(1)

λ− 1
2

(k1, r) = r[Ajλ− 1
2
(k1r) +Byλ− 1

2
(k1r)];

Region 2 : u
(2)

λ− 1
2

(k2, r) = r[Cjλ− 1
2
(k2r) +Dyλ− 1

2
(k2r)];

Region 3 : u
(3)

λ− 1
2

(k, r) = r[Eh
(1)

λ− 1
2

(kr) + Fh
(2)

λ− 1
2

(kr)].

where again jλ− 1
2
(k1r), yλ− 1

2
(k2r), h

(1)

λ− 1
2

(kr), and h(2)
λ− 1

2

(kr) are spherical Bessel, Neu-

mann, and Hankel functions of the first kind and second kind, respectively.
Choosing u(1)

λ− 1
2

(k1r) to be φ1(λ, k1, r) and imposing the boundary conditions at

r = 0 (see [1, (13)]), we find that B = 0 and

φ1(λ, k1, r) = 2λ+
1
2π−

1
2 k
−λ+ 1

2
1 Γ(λ+ 1)rjλ− 1

2
(k1r)

and
φ
′

1(λ, k1, r) = 2λ+
1
2π−

1
2 k
−λ+ 1

2
1 Γ(λ+ 1)× [jλ− 1

2
(k1r) + k1rj

′

λ− 1
2
(k1r)],

where the prime denotes differentiation with respect to the argument of the function,
Γ is the gamma function, and we have used the following series representation for
jλ− 1

2
(k1r) [Handbook of Mathematical Functions (McGraw Hill Book, p. 263)]:

jλ− 1
2
(k1r) =

∞∑
n=0

(−1)nπ
1
2 (k1r/2)λ+2n−

1
2

2n!Γ(λ+ n+ 1)
, λ− 1

2
6= −1,−2,−3, ....

Choosing u(2)
λ− 1

2

(k2r) to be φ2(λ, k2, r) and imposing the continuity at the boundary

r = R1 by matching the continuity of φ1 with φ2 and φ
′
1 with φ

′
2, we have

φ2(λ, k2, r) = r
[
Cjλ− 1

2
(k2r) +Dyλ− 1

2
(k2r)

]
and

φ
′

2(λ, k2, r) = C
[
jλ− 1

2
(k2r) + k2rj

′

λ− 1
2
(k2r)

]
+D

[
yλ− 1

2
(k2r) + k2ry

′

λ− 1
2
(k2r)

]
,

where

C = −
m
(
jλ− 1

2
(k1R1)y

′
λ− 1

2

(k2R1)− k1
k2
j′
λ− 1

2

(k1R1)yλ− 1
2
(k2R1)

)
j′
λ− 1

2

(k2R1)yλ− 1
2
(k2R1)− jλ− 1

2
(k2R1)y′λ− 1

2

(k2R1)
,

D =
m
(
jλ− 1

2
(k1R1)j

′
λ− 1

2

(k2R1)− k1
k2
j′
λ− 1

2

(k1R1)jλ− 1
2
(k2R1)

)
j′
λ− 1

2

(k2R1)yλ− 1
2
(k2R1)− jλ− 1

2
(k2R1)y′λ− 1

2

(k2R1)
,

and
m = 2λ+

1
2π−

1
2 k
−λ+ 1

2
1 Γ(λ+ 1).
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Choosing u(3)
λ− 1

2

(k, r) to be f(λ, k, r) and imposing the Jost solution condition at infinity

(see [1, (20)]) we find that E = 0, F = ke−i
π
2 (λ+

1
2 ), and hence

f(λ, k, r) = ke−i
π
2 (λ+

1
2 )rh

(2)

λ− 1
2

(kr)

and

f
′
(λ, k, r) = ke−i

π
2 (λ+

1
2 )

[
h
(2)

λ− 1
2

(kr) + krh
(2)
′

λ− 1
2

(kr)

]
,

where we have used the following asymptotic form for h(2)
λ− 1

2

(kr):

lim
kr→∞

h
(2)

λ− 1
2

(kr) =
1

kr
e−i[kr−

π
2 (λ+

1
2 )].

Since the point r = R2 is the common domain of φ2(λ, k2, r) and f(λ, k, r), we evaluate
the Jost function at r = R2 and thus obtain

f(λ, k) = W [f(λ, k, r), φ2(λ, k2, r)]r=R2

= f(λ, k, r)φ′2(λ, k2, r)− f ′(λ, k, r)φ2(λ, k2, r)

=
2λ+

1
2π−

1
2 Γ(λ+ 1)k

−λ+ 1
2

1 ke−i
π
2 (λ+

1
2 )R22

j′
λ− 1

2

(k2R1)yλ− 1
2
(k2R1)− jλ− 1

2
(k2R1)y′λ− 1

2

(k2R1)

×
{
h
(2)

λ− 1
2

(kR2)k2

[
a1jλ− 1

2
(k1R1) +

k1
k2
a3j
′
λ− 1

2
(k1R1)

]
−h(2)

′

λ− 1
2

(kR2)k

[
a2jλ− 1

2
(k1R1) +

k1
k2
a4j
′
λ− 1

2
(k1R1)

]}
. (2)

We also have that

f(λ,−k) =
2λ+

1
2π−

1
2 Γ(λ+ 1)k

−λ+ 1
2

1 ke−i
π
2 (λ+

1
2 )R22e

iπ(λ− 1
2 )

j′
λ− 1

2

(k2R1)yλ− 1
2
(k2R1)− jλ− 1

2
(k2R1)y′λ− 1

2

(k2R1)

×
{
−h(1)

λ− 1
2

(kR2)k2

[
a1jλ− 1

2
(k1R1) +

k1
k2
a3j
′
λ− 1

2
(k1R1)

]
+h

(1)
′

λ− 1
2

(kR2)k

[
a2jλ− 1

2
(k1R1) +

k1
k2
a4j
′
λ− 1

2
(k1R1)

]}
,

where we have used the following identities:

h
(2)

λ− 1
2

(kreiπ) = h
(2)

λ− 1
2

(−kr) = (−1)λ−
1
2h

(1)

λ− 1
2

(kr) = eiπ(λ−
1
2 )h

(1)

λ− 1
2

(kr)

and

h
(2)
′

λ− 1
2

(−kr) = (−1)λ+
1
2h

(1)′

λ− 1
2

(kr) = eiπ(λ+
1
2 )h

(1)′

λ− 1
2

(kr) = −eiπ(λ− 1
2 )h

(1)′

λ− 1
2

(kr),

where λ− 1
2 = 0, 1, 2, .... The S-matrix is then given by

S(λ, k) = −
{
kh

(2)
′

λ− 1
2

(kR2)

[
a2jλ− 1

2
(k1R1) +

k1
k2
a4j
′
λ− 1

2
(k1R1)

]
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−k2h(2)λ− 1
2

(kR2)

[
a1jλ− 1

2
(k1R1) +

k1
k2
a3j
′
λ− 1

2
(k1R1)

]}
/{

kh
(1)
′

λ− 1
2

(kR2)

[
a2jλ− 1

2
(k1R1) +

k1
k2
a4j
′
λ− 1

2
(k1R1)

]
−k2h(1)λ− 1

2

(kR2)

[
a1jλ− 1

2
(k1R1) +

k1
k2
a3j
′
λ− 1

2
(k1R1)

]}
,

where
a1 = j′λ− 1

2
(k2R1)y

′
λ− 1

2
(k2R2)− y′λ− 1

2
(k2R1)j

′
λ− 1

2
(k2R2),

a2 = j′λ− 1
2
(k2R1)yλ− 1

2
(k2R2)− jλ− 1

2
(k2R2)y

′
λ− 1

2
(k2R1),

a3 = yλ− 1
2
(k2R1)j

′
λ− 1

2
(k2R2)− jλ− 1

2
(k2R1)y

′
λ− 1

2
(k2R2),

a4 = jλ− 1
2
(k2R1)yλ− 1

2
(k2R2)− yλ− 1

2
(k2R1)jλ− 1

2
(k2R2).

We can calculate the Jost function for λ = 1
2 from (2):

f

(
1

2
, k

)
=

1

4
e−ikR2

{[(
k − ik2
k1

+
ik + k2
k2

)
ek2(R2−R1)

+

(
k + ik2
k1

+
k2 − ik
k2

)
e−k2(R2−R1)

]
eik1R1

+

[(
ik + k2
k2

− k − ik2
k1

)
ek2(R2−R1)

+

(
k2 − ik
k2

− k + ik2
k1

)
e−k2(R2−R1)

]
e−ik1R1

}
, (3)

where we have used the following relations:

j0(kR) =
sin kR

kR
, j′0(kR) =

cos kR

kR
− sin kR

(kR)2
,

h
(2)
0 (kR) =

−e−ikR
ikR

, and h(2)
′

0 (kR) =
e−ikR

(
1 + 1

ikR

)
kR

.

3 The Jost Integral Equation for λ = 1
2 and Some Ap-

proximate Solutions for The Three-Layer Model

We now apply the method in section I [1] to the case of scattering from a piecewise
constant by multi-layer spherical inhomogeneity. We have already calculated f( 12 , k)
exactly in equation (3). Elsewhere we use the exact solution of the Jost function to
check for the accuracy of the iteration procedure. If we assume there is an R such that
V (r) = 0 for r > R (certainly true in optics!) and let

g

(
1

2
, k, r

)
= eikrf

(
1

2
, k, r

)
, (4)
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then (24) in [1] becomes the Jost integral equation for λ = 1
2 :

g

(
1

2
, k, r

)
= 1 + (2ik)−1

∫ R

r

[1− e2ik(r−r
′)]V (r′)g

(
1

2
, k, r′

)
dr′

= 1− V1(2ik)−1
∫ R1

r

[1− e2ik(r−r
′)]g

(
1

2
, k, r′

)
dr′, (5)

for the potential defined by region 1 in equation (1). Next we write the solution of (5)
as a perturbation expansion

g

(
1

2
, k, r

)
=

∞∑
n=0

gn

(
1

2
, k, r

)
,

where

g0

(
1

2
, k, r

)
= 1

and

gn

(
1

2
, k, r

)
= 1 + (2ik)−1

∫ R

r

[1− e2ik(r−r
′)]V (r′)gn−1

(
1

2
, k, r′

)
dr′.

From (13) in [1], we have

lim
r→0

φ

(
1

2
, k, r

)
= 0 and lim

r→0

φ′
(
1
2 , k, r

)
dr

= 1. (6)

f( 12 , k, r) and f
′( 12 , k, r) are finite and we can evaluate f( 12 , k) at r = 0 using (6), thus

obtaining the useful relation

f

(
1

2
, k

)
= f

(
1

2
, k, 0

)
= g

(
1

2
, k, 0

)
.

The first iteration gI( 12 , k, 0) of (5) is

gI

(
1

2
, k, 0

)
= g0

(
1

2
, k, 0

)
+ g1

(
1

2
, k, 0

)
= 1− 1

4

{[(
k1
k

)2
− 1

]
(1− cos 2kR1) +

[
1−

(
k2
k

)2]
(cos 2kR2 − cos 2kR1)

}

+
i

2

{[(
k1
k

)2
− 1

](
kR1 −

1

2
sin 2kR1

)
+

[
1−

(
k2
k

)2] [
k(R2 −R1)

− 1

2
(sin 2kR2 − sin 2kR1)

]}
.
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The second iteration gII( 12 , k, 0) is

gII

(
1

2
, k, 0

)
= g0

(
1

2
, k, 0

)
+ g1

(
1

2
, k, 0

)
+ g2

(
1

2
, k, 0

)
= 1 +

1

4

{[(
k1
k

)2
− 1

]
(cos 2kR1 − 1) +

[
1−

(
k2
k

)2]
(cos 2kR2 − cos 2kR1)

}

− 1

8

{[(
k1
k

)2
− 1

]2 [
kR1 (kR1 + sin 2kR1) +

3

2
(cos 2kR1 − 1)

]

+

[(
k1
k

)2
− 1

][
1−

(
k2
k

)2][
k(R2 −R1) (2kR1 − k(R2 −R1)− sin 2kR1)

− (cos 2k(R2 −R1)− 1) +
3

2
(cos 2kR2 − cos 2kR1)

+ k(R2 −R1) (sin 2kR2 + sin 2kR1) + kR1 (sin 2kR2 − sin 2kR1)

]

+

[
1−

(
k2
k

)2]2 [
k(R2 −R1)[2k(R2 −R1)− sin 2k(R2 −R1)

+ sin 2kR2 − sin 2kR1] + (cos 2k(R2 −R1)− 1)

]}

+ i

{
1

2

{[(
k1
k

)2
− 1

](
kR1 −

1

2
sin 2kR1

)

+

[
1−

(
k2
k

)2] [
k(R2 −R1)−

1

2
(sin 2kR2 − sin 2kR1)

]}

− 1

8

{[(
k1
k

)2
− 1

]2 [
kR1 (cos 2kR1 + 2)− 3

2
sin 2kR1

]

+

[(
k1
k

)2
− 1

][
1−

(
k2
k

)2] [
kR1 (cos 2kR2 − cos 2kR1)

+ k(R2 −R1) (cos 2kR2 + cos 2kR1)

− k(R2 −R1) (cos 2kR1 − 1)− 3

2
(sin 2kR2 − sin 2kR1)

]
−
[

1−
(
k2
k

)2]2 [
k(R2 −R1) (cos 2k(R2 −R1)− cos 2kR2 + cos 2kR1)

]}}
.

For real λ and k, we have
f(λ,−k) = f∗(λ, k),
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and therefore

σ0
πR21

=

∣∣∣1− e2iδ( 12 ,k)∣∣∣2
(kR1)2

=

∣∣∣∣1− f( 12 ,k)
f∗( 12 ,k)

∣∣∣∣2
(kR1)2

,

where σ0 is the l = 0 total cross section. The accuracy of these approximations as
functions of k, k1 and k2 will be reported elsewhere.

4 Jost Integral Equation Formulation for Arbitrary
λ: 3-Layer Model

In case of scattering from a piecewise constant spherical inhomogeneity, the two integral
equations (60) and (61) in [1] become:

φ(λ, k, r) = rλ+
1
2 +

1

2
λ−1

∫ R1

0

[(ξ/r)λ − (r/ξ)λ]× (rξ)
1
2 [k2 + V1]φ(λ, k, ξ)dξ

+
1

2
λ−1

∫ R2

R1

[(ξ/r)λ − (r/ξ)λ]× (rξ)
1
2 [k2 + V2]φ(λ, k, ξ)dξ

+
1

2
λ−1

∫ r

R2

[(ξ/r)λ − (r/ξ)λ](rξ)
1
2 k2φ(λ, k, ξ)dξ

and

f(λ, k, r) = e−ikr + k−1
∫ R1

r

[sin k(r′ − r)]
[
−V1 +

(λ2 − 1
4 )

r′2

]
f(λ, k, r′)dr′

+ k−1
∫ R2

R1

[sin k(r′ − r)]
[
−V2 +

(λ2 − 1
4 )

r′2

]
f(λ, k, r′)dr′

+ k−1
∫ ∞
R2

sin k(r′ − r)
(
λ2 − 1

4

r′2

)
f(λ, k, r′)dr′.

5 Summary

This iterative technique may be most useful when the scattering system is more com-
plicated than those discussed here. By comparing the present formulation with the
numerical results obtained for a constant spherical inhomogeneity [1], it appears that
the iteration technique is good for problems with long wavelengths (kR1 << 1) for any
k1/k. For shorter wavelengths, small k1/k (e.g., k1/k = 1.1) gives a good approxima-
tion to σ0 for the entire range of kR1 considered (0 ≤ R1 ≤ 2π); however, large k1/k
(e.g., k1/k = 1.5, 2.0) gives a good approximation to σ0 in the range of 0 < kR1 < 3π/4.
In case of a piecewise constant spherical inhomogeneity, the iteration procedure gives a
better approximation for the problem with long wavelengths (kR1 << 1) only for small
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ratios of k1/k and k2/k (e.g., k1/k = 0.7, k2/k = 0.9; k1/k = 1.1, k2/k = 1.3). For a
larger k1/k and k2/k (e.g., k1/k = 1.5, k2/k = 1.2), it gives a good approximation when
kR1 < 2π/3. The approximation for the Jost function becomes less accurate for larger
ratios of wavenumber k1/k and k2/k (e.g., k1/k = 2.0, k2/k = 1.5). When the ratios
of wavenumbers k1/k is greater than k2/k, we have a better approximation. However,
the approximation for the Jost function is still better than the total cross section for
the large wavelengths. For shorter wavelengths, all ratios of the wavenumbers give a
better approximation to σ0 for approximately kR1 > 2π/3 [4]. These results will be
reported in more detail elsewhere.
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