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Abstract

In this paper we introduce a boundary value problem involving powers of the
p-Laplace operator. We will then prove a variant of Talenti inequality which
shows that the Schwarz symmetrization of the solution of the boundary value
problem is majorized by the solution of the appropriately symmetrized version of
the problem. The case of equality is also investigated. Finally, as an application,
we will consider an optimization problem related to the mean exit time of a
Wiener process and derive a symmetry result.

1 Introduction

Partial differential equations involving the p-Laplace operator ∆p have become im-
portant subjects of research for a wide spectrum of scientists, e. g. mathematicians,
engineers, biologists, economists, etc. The reason is obvious as this operator can be
used to model a range of physical phenomena. To name a few areas of applications we
mention non-Newtonian fluids, logistic equations, flows through porous media, nonlin-
ear elasticity, glaciology (see e. g. [1, 2, 5]). However, equations involving powers of ∆p

have not been suffi ciently investigated. In this paper we introduce one such case, and
look at some applications related to the mean exit time of a Wiener process. This paper
is mainly motivated by [8, 9]. The former discusses the Talenti inequality for the case
of the biharmonic operator ∆2 whilst the latter focuses on radial symmetry problems
and, amongst other results, draws a rather nice conclusion pertaining to the connection
between radial symmetry and the maximal mean exit time of a Wiener process.
Let us now expand further on the motivation behind the present paper. Consider

the boundary value problem {
−∆pu = f in D,
u = 0 on ∂D,

(1)
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174 Maximal Mean Exit Time Related to the p-Laplace Operator

where D is a bounded smooth domain in Rn, f : D → R a bounded positive function,
and ∆p stands for the usual p-Laplace operator

∆pu = ∇ ·
(
|∇u|p−2∇u

)
(where p > 1)

The symmetrized problem associated with (1) is as follows{
−∆pv = f∗ in B,
v = 0 on ∂B,

(2)

where f∗ is the Schwarz symmetrization of f (see e. g. [8]) and B is the ball in Rn
centred at the origin such that |B| = |D|. Henceforth, for a measurable set E ⊆ Rn,
|E| denotes the Lebesgue measure of E. The following pointwise inequality is attributed
to G. Talenti [12]

u∗(x) ≤ v(x) (3)

almost everywhere in B. Actually, the inequality (3) is a special case of Theorem 1
in [12]. In Section 2 we will present a proof of (3) for the convenience of the reader.1

As a consequence of (3), we will see that if u∗(0) = v(0), then u∗(x) = v(x) almost
everywhere in B. When f = 1 this will lend itself to drawing an interesting conclusion
pertaining to an optimization problem involving the mean exit time of a Wiener process
starting at a point within D.
Let us describe the setting. First, we introduce a system as follows. Let f ∈ L∞(D)

be a non-negative function. Consider the system

(S)

{
−∆pvj = vj−1 in D,
vj = 0 on ∂D,

for j = 1, . . . , N in which v0 = f . Note that for every j the function vj ∈ W 1,p
0 (D) is

the unique minimizer of the functional

Fj(w) =
1

p

∫
D

|∇w|p dx−
∫
D

vj−1w dx

relative to w ∈ W 1,p
0 (D). Clearly the system (S) has a unique solution (v1, . . . , vN ) ∈

W 1,p
0 (D)×· · ·×W 1,p

0 (D). In addition each vj is in H2(D)∩C1,α(D) and is positive in
D. For 1 ≤ k ≤ N , we define the projection operator Pk : W 1,p

0 (D)× · · ·×W 1,p
0 (D)→

W 1,p
0 (D) by Pk(w1, . . . , wN ) = wk. Henceforth, we set uf := PN (v1, . . . , vN ), where

(v1, . . . , vN ) is the solution of the system (S). We also prefer to identify the system
(S) with the following nonstandard boundary value problem{

(−∆p)
Nu = f in D,

(−∆p)
ku = 0 on ∂D (0 ≤ k ≤ N − 1),

(4)

where N ∈ N.

REMARK 1.1. The reader should distinguish (4) from the standard boundary value
problems where solutions lie in the Sobolev space W 2N,p(D). The notation used in (4)

1See Lemma 2.2.
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is merely symbolic. So, by a solution to (4) we mean the function uf which is the
solution of (S) corresponding to the input f .

Note that the level sets of uf

{u = c} := {x ∈ D : u(x) = c} (c ≥ 0)

have zero measure. This follows from the positiveness of f and Lemma 7.7 in [6]. We
now state a comparison result whose proof follows readily from the standard comparison
results for the p-Laplace operator.

LEMMA 1.1. Suppose{
(−∆p)

Ju1 ≥ (−∆p)
Ju2 in D,

(−∆p)
ju1 = (−∆p)

ju2 = 0 on ∂D, (0 ≤ j ≤ J − 1).
(5)

Then u1 ≥ u2 in D.

REMARK 1.2. The meaning of (5) is that there are two nonstandard boundary
value problems {

(−∆p)
Ju1 = f1 in D,

(−∆p)
ju1 = 0 on ∂D, (0 ≤ j ≤ J − 1),

and {
(−∆p)

Ju2 = f2 in D,
(−∆p)

ju2 = 0 on ∂D, (0 ≤ j ≤ J − 1),

where f1 ≥ f2.

In order to state our main result we first need to introduce the symmetrized problem
associated with (4){

(−∆p)
NV = f∗ in B,

(−∆p)
kV = 0 on ∂B, (0 ≤ k ≤ N − 1).

(6)

Our main result is the following theorem

THEOREM 1.2. Let u and V be the solutions of (4) and (6), respectively. Then

u∗(x) ≤ V (x) (7)

almost everywhere in B.

2 Preliminaries

Let us recall the definition of the distribution function. For a bounded non-negative
function h : D → R, the function λh : [0, ‖h‖∞] → [0, |D|]– called the distribution
function of h– is defined by

λh(t) = |{x ∈ D : h(x) ≥ t}| ≡ |{h ≥ t}|.
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The decreasing rearrangement of h, denoted by h∆ : [0, |D|]→ [0, ‖h‖∞], is defined as

h∆(s) = inf{t : λh(t) ≤ s}.

It is well known that if h is continuous, and its graph has no significant flat sections
(i.e. the sets {h = c} all have zero measure), then h∆ is the inverse of λh:

∀t ∈ [0, ‖h‖∞], s ∈ [0, |D|] : (h∆ ◦ λh(t) = t) ∧ (λh ◦ h∆(s) = s).

For a non-negative u : D → R, the function u∗ : B → R denotes the Schwarz
symmetrization of u which is defined as follows

u∗(x) = u∆(ωn|x|n)

in which

ωn =
π
n
2

Γ
(
n
2 + 1

)
is the measure of the unit ball in Rn, and B is the ball in Rn centred at the origin
satisfying |B| = |D|. In Section 4, we will use the following well known result (see e. g.
[4])

LEMMA 2.1. Suppose u ∈ W 1,p
0 (Rn) is non-negative. Then the following two

statements hold.

(i) u∗ ∈W 1,p
0 (Rn), and ∫

Rn
|∇u∗|pdx ≤

∫
Rn
|∇u|pdx.

(ii) If u has compact support and∫
Rn
|∇u∗|pdx =

∫
Rn
|∇u|pdx,

then for all 0 ≤ α < M ≡ ess sup u, the set u−1(α,∞) is a translate of the ball
(u∗)−1(α,∞), apart from a set of measure zero.

As promised in Section 1, we present a proof of inequality (3).

LEMMA 2.2. Let u and v be the solutions of (1) and (2), respectively. Then
u∗(x) ≤ v(x) almost everywhere in B.

PROOF. First we observe that

v(x) =
1

nqω
q
n
n

∫ |D|
ωn|x|n

sq(
1
n−1)

(∫ s

0

f∆(τ)dτ

) 1
p−1

ds,

where q = p
p−1 . From the differential equation in (1) and Divergence theorem we obtain
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∫
{u>t}

f dx = −
∫
{u>t}

∇ · (|∇u|p−2∇u) dx

= −
∫
{u=t}

|∇u|p−2 ∂u

∂ν
dHn−1

=

∫
{u=t}

|∇u|p−1 dHn−1, (8)

where dHn−1 denotes the (n−1)-dimensional Hausdorffmeasure. The following formula
is well known and it is a consequence of the coarea formula (see [10])

− d

dt

∫
{u>t}

|∇u|p dx =

∫
{u=t}

|∇u|p−1dHn−1. (9)

On the other hand,

− d

dt

∫
{u>t}

|∇u|p dx

= − lim
h→0

1

h

(∫
{u>t+h}

|∇u|p dx−
∫
{u>t}

|∇u|p dx
)

=

(
lim
h→0

|{t < u < t+ h}|
h

)(
lim
h→0

1

|{t < u < t+ h}|

∫
{t<u<t+h}

|∇u|pdx
)

≥ (−λ′u(t)) lim
h→0

1

|{t < u < t+ h}|

∫
{t<u<t+h}

|∇u|pdx. (10)

By applying the Jensen inequality to the last limit in (10) we get

− d

dt

∫
{u>t}

|∇u|p dx ≥ (−λ′u(t))

(
lim
h→0

1

|{t < u < t+ h}|

∫
{t<u<t+h}

|∇u| dx
)p

= (−λ′u(t))

(
1

(−λ′u(t))

∫
{u=t}

dHn−1

)p
, (11)

where in the last equality in (11) we have used the coarea formula. An application of
the isoperimetric inequality (see e. g. [3])

P ({u > t}) ≥ nω
1
n
n λ

1− 1
n

u (t),

to (11) yields

− d

dt

∫
{u>t}

|∇u|p dx ≥ (−λ′u(t))1−pnpω
p
n
n λ

p− pn
u (t). (12)

From (8), (9) and (12) we deduce

1 ≤ 1

nqω
q
n
n

(−λ′u(t))λ
q( 1n−1)
u (t)

(∫
{u>t}

f dx

) 1
p−1

. (13)
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From the Hardy-Littlewood inequality [7], we infer∫
{u>t}

f dx ≤
∫ λu(t)

0

f∆(s)ds. (14)

So, the combination of (13) and (14) leads to

1 ≤ 1

nqω
q
n
n

(−λ′u(t))λ
q( 1n−1)
u (t)

(∫ λu(t)

0

f∆(s)ds

) 1
p−1

≡ H(t). (15)

Integrating (15) from 0 to t, and changing variables give us

t ≤ 1

nqω
q
n
n

∫ |D|
λu(t)

sq(
1
n−1)

(∫ s

0

f∆(τ)dτ

) 1
p−1

ds. (16)

By setting t = u∗(x) = u∆(ωn|x|n) in (16), we obtain

u∗(x) ≤ 1

nqω
q
n
n

∫ |D|
ωn|x|n

sq(
1
n−1)

(∫ s

0

f∆(τ)dτ

) 1
p−1

ds ≡ v(x),

as desired. The proof is complete.

LEMMA 2.3. Let the hypotheses of Lemma 2.2 hold. Suppose u∗(0) = v(0). Then

u∗(x) = v(x) (17)

almost everywhere in B.

PROOF. We begin by recalling the function H(t) from (15). One can readily verify
the following identity ∫ u∗(x)

0

H(t)dt = v(x). (18)

Since H(t) ≥ 1 in [0,maxD (u)] = [0, u∗(0)], we infer that H(t) = 1 throughout the
interval [0,maxD (u)], whence (17) follows from (18). The proof is complete.

3 Proof of the Main Theorem

In this section, we prove THEOREM 1.2. We apply the method of induction. Let P (l)
stand for the following claim

P (l) : Every pair of systems of the form{
(−∆p)

l̂w = g in D,
(−∆p)

kw = 0 on ∂D,
and

{
(−∆p)

l̂W = g∗ in B,
(−∆p)

kW = 0 on ∂B,

in which l̂ ∈ {1, . . . , l} and k ranges over all values in {0, . . . , l̂ − 1} satisfies

w∗(x) ≤W (x)

almost everywhere in B.
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For the base case, from Lemma 2.2 we see that P (1) is a valid statement. Then,
assuming the validity of P (l) we will prove that of P (l + 1). To this end, consider an
arbitrary pair of systems{

(−∆p)
l+1w = g in D,

(−∆p)
kw = 0 on ∂D.

and
{

(−∆p)
l+1W = g∗ in B,

(−∆p)
kW = 0 on ∂B,

with 0 ≤ k ≤ l. Next, set w̃ = (−∆p)
lw. Thus, we obtain{

(−∆p)
lw = w̃ in D,

(−∆p)
kw = 0 on ∂D, (0 ≤ k ≤ l − 1).

(19)

The symmetric problem associated with (19) is{
(−∆p)

lZ = w̃∗ in B,
(−∆p)

kZ = 0 on ∂B, (0 ≤ k ≤ l − 1).
(20)

By hypothesis, w∗ ≤ Z almost everywhere in B. On the other hand, we have{
(−∆p)w̃ = g in D,
−∆pw̃ = 0 on ∂D.

(21)

The symmetric problem associated with (21) is{
(−∆p)ŵ = g∗ in B,
−∆pŵ = 0 on ∂B.

(22)

Since P (1) holds, we have w̃∗ ≤ ŵ = (−∆p)
lW . Thus, we derive{

(−∆p)
lZ ≤ (−∆p)

lW in B,
(−∆p)

kZ = (−∆p)
kW = 0 on ∂B, (0 ≤ k ≤ l − 1).

(23)

By applying Lemma 1.1 to (23), we deduce Z ≤ W almost everywhere in B. So, we
obtain the desired result

w∗(x) ≤ Z(x) ≤W (x)

almost everywhere in B. The proof is complete.

COROLLARY 3.1. Suppose the hypotheses of Theorem 1.2 hold. In addition,
suppose u∗(0) = V (0). Then

u∗(x) = V (x)

almost everywhere in B.

PROOF. Let w1 = (−∆p)
N−1u. Then{

(−∆p)
N−1u = w1 in D,

(−∆p)
ku = 0 on ∂D,

and
{

(−∆p)
N−1Z1 = w1

∗ in B,
(−∆p)

kZ1 = 0 on ∂B.
(24)

for k = 0, . . . , N − 2. The problem on the right hand side in (24) is the symmetrized
problem associated with the one on the left hand side, a convention which will be



180 Maximal Mean Exit Time Related to the p-Laplace Operator

followed throughout the proof, and thereafter. So by Theorem 1.2 we infer that u∗ ≤ Z1

almost everywhere in B. On the other hand we have{
−∆pw1 = f in D,
w1 = 0 on ∂D,

and
{
−∆pW1 = f∗ in B,
−∆pW1 = 0 on ∂B.

(25)

So, by applying Lemma 2.2 to (25), we get w1
∗ ≤ W1 = (−∆p)

N−1V . This, in turn,
yields {

(−∆p)
N−1Z1 ≤ (−∆p)

N−1V in B,
(−∆p)

kZ1 = (−∆p)
kV = 0 on ∂B,

(26)

for k = 0, . . . , N − 2. We can now apply Lemma 1.1 to (26) to obtain Z1 ≤ V , almost
everywhere in B. Whence, we derive u∗ ≤ Z1 ≤ V , almost everywhere in B.

Next, we set wj = (−∆p)
N−ju, where 2 ≤ j ≤ N − 1. Hence, we have{

(−∆p)
N−ju = wj in D,

(−∆p)
ku = 0 on ∂D,

and
{

(−∆p)
N−jZj = wj

∗ in B,
(−∆p)

kZj = 0 on ∂B,
(27)

for k = 0, . . . , N − j − 1. We can apply the above arguments to the pairs in (27) and
obtain

u∗(x) ≤ ZN−1(x) ≤ · · · ≤ Z1(x) ≤ V (x), (28)

almost everywhere in B. From the hypothesis, u∗(0) = V (0), and (28), we obtain

u∗(0) = ZN−1(0) = · · · = Z1(0) = V (0). (29)

By applying Lemma 2.2 to each pair (u∗, ZN−1), (ZN−1, ZN−2), . . . , (Z2, Z1), (Z1, V )
and taking into account (29), we derive

u∗(x) = ZN−1(x) = · · · = V (x),

almost everywhere in B. This completes the proof.

4 Maximal Mean Exit Time

This section is motivated by [9] in which the author discusses an optimization problem
related to the mean exit time of a Wiener process. Let us briefly review this problem
as described in [9]. Consider the classical Poisson problem{

−∆w = 2 in D,
w = 0 on ∂D.

(30)

Fix x̂ ∈ D and let {X(t)} be a Wiener process starting at x̂, i. e. X(0) = x̂. Define

τ = inf {t | X(t) ∈ ∂D}.

That is, τ is the first exit time and as a result ∀t < τ : X(t) ∈ D.
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By a straightforward application of Dynkin’s formula (see e. g. [11]) one would get

E (w(X(0)))−E (w(X(τ))) = E

(∫ τ

0

dt

)
= E(τ). (31)

From the boundary condition in (30), we see that w(X(τ)) = 0, hence (31) reduces to

w(x̂) = E(w(x̂)) = E(τ). (32)

Now, assume that x̂ is a point where w attains its maximum, i. e. w(x̂) = maxD w.
Note that by the Maximum Principle w(x̂) is positive, hence x̂ is an interior point of
D. Clearly w depends on the domain D, so let us stress this point by writing wD
instead of w. Next, we define a quantity Φ(D) as follows

Φ(D) = maxD wD = E(τ).

We can state the following

LEMMA 4.1 ([9]). The maximization problem

sup
D∈Aα

Φ(D)

in which α > 0 is some prescribed positive constant and Aα = {Ω ⊆ Rn | Ω is
open, |Ω| = α} has the unique solution B modulo translations. Here, B is the ball in
Rn with |B| = α.

So the interpretation of Lemma 4.1 is that amongst all bounded open sets with
given measure it is the ball B that attains the maximal mean exit time (at its center).
We will prove a result similar to Lemma 4.1, in the framework of the previous

sections. Prior to this, we need some notation. For D ∈ Aα, we let uD denote the
unique solution of the boundary value problem{

(−∆p)
Nu = 1 in D,

(−∆p)
ku = 0 on ∂D, (0 ≤ k ≤ N − 1).

(33)

We introduce a quantity Ψ(D) associated with (33) as follows

Ψ(D) = maxDuD.

We can now state the main result of this section.

THEOREM 4.2. The maximization problem

sup
D∈Aα

Ψ(D) (34)

has the unique solution B modulo translations.
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PROOF. Consider D ∈ Aα. Following the convention mentioned in the previous
section, we have the pair{

(−∆p)
NuD = 1 in D

(−∆p)
kuD = 0 on ∂D

and
{

(−∆p)
NV = 1 in B

(−∆p)
kV = 0 on ∂B

(35)

in which 0 ≤ k ≤ N−1. By applying Theorem 1.2 to (35) we obtain u∗D ≤ V , which can
be assumed to hold everywhere in B. So, in particular, we have u∗D(0) ≤ V (0). Note
that u∗D(0) = maxD uD and V (0) = maxD V . Since Ψ(D) = u∗D(0) and Ψ(B) = V (0),
we deduce that Ψ(D) ≤ Ψ(B) and B is a solution of the maximization problem (34).

It remains to prove the uniqueness part. So let us assume that Ψ(D) = Ψ(B) for
some D ∈ Aα. In what follows, for simplicity we write u instead of uD. As in Corollary
3.1, there exist functions Z1, . . . , ZN−1 such that

∀x ∈ B : u∗(x) ≤ ZN−1(x) ≤ · · · ≤ Z1(x) ≤ V (x).

From the hypothesis we infer u∗(0) = V (0). Hence

u∗(0) = ZN−1(0) = · · · = Z1(0) = V (0).

Thus, from Corollary 3.1 we obtain

∀x ∈ B : u∗(x) = ZN−1(x) = · · · = Z1(x) = V (x). (36)

Now we focus on the last equality in (36), that is Z1(x) = V (x), which holds in B. Let
us recall from the proof of Corollary 3.1 the following pairing{

(−∆p)
N−1u = w1 in D,

(−∆p)
ku = 0 on ∂D,

and
{

(−∆p)
N−1Z1 = w1

∗ in B,
(−∆p)

kZ1 = 0 on ∂B,
(37)

in which 0 ≤ k ≤ N − 2. We also have the following pairing{
−∆pw1 = 1 in D,
w1 = 0 on ∂D,

and
{
−∆pW1 = 1 in B,
−∆pW1 = 0 on ∂B,

(38)

Lemma 2.2 together with (37) and (38) would imply that

(−∆p)
N−1Z1 = w∗1 ≤W1 = (−∆p)

N−1V. (39)

From (39), recalling that Z1 = V , we obtain w∗1 = W1 in B.
The combination of (38) and Lemma 2.1 yields∫

D

w1 dx =

∫
D

|∇w1|p dx ≥
∫
B

|∇w∗1 |p dx =

∫
B

|∇W1|pdx

=

∫
B

W1 dx =

∫
B

w∗1 dx =

∫
D

w1 dx,

which in turn implies ∫
D

|∇w1|p dx =

∫
B

|∇w∗1 |pdx.
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By Lemma 2.1, we deduce that {w1 ≥ δ} is a translation of {w∗1 ≥ δ}, for all 0 ≤ δ <
maxDw1. So, if we choose δ = 0 we will see that {w1 ≥ 0} = D must be a ball. This
completes the proof of the theorem.
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