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Abstract

In this work we prove well-posedness results for the following one space linear
second order parabolic equation ∂tu− ∂2xu = f , set in a domain

Ω =
{

(t, x) ∈ R2 : −r < t < r;ϕ1 (t) < x < ϕ2 (t)
}

of R2, where ϕi (t) = (−1)i
(
r2 − t2

) 1
2 , i = 1, 2 and with lateral boundary con-

ditions of Robin type. The right-hand side f of the equation is taken in L2 (Ω).
The method used is based on the approximation of the domain Ω by a sequence
of subdomains (Ωn)n which can be transformed into regular domains.

1 Introduction

Let Ω = D (0, r) be the open disc centred at the origin of R2 and with radius r > 0,
characterized by Ω =

{
(t, x) ∈ R2 : −r < t < r;ϕ1 (t) < x < ϕ2 (t)

}
, where ϕ1 and ϕ2

are defined on [−r, r] by ϕk (t) = (−1)
k (
r2 − t2

) 1
2 , k = 1, 2. The lateral boundary of

Ω is defined by Γk =
{

(t, ϕk (t)) ∈ R2 : −r < t < r
}
, k = 1, 2. In Ω, we consider the

Robin type boundary value problem{
∂tu− ∂2

xu = f in Ω,
∂xu+ βku|Γk = 0, k = 1, 2, (1)

where the coeffi cients βk, k = 1,2 are real numbers satisfying non-degeneracy assump-
tions (to be made more precise later) and the right-hand side term f of the equation
lies in L2 (Ω), the space of square-integrable functions on Ω with the measure dtdx.
The main diffi culty related to this kind of problems is due to the fact that ϕ1

coincides with ϕ2 for t = −r and for t = r, which prevents the domain Ω to be
transformed into a regular domain by means of a smooth transformation.
The case βk = ∞, k = 1, 2, corresponding to Dirichlet boundary conditions is

considered in [19]. We can find in [6] a study of the case βk = 0, k = 1, 2, corre-
sponding to Neumann boundary conditions and in [23] an abstract study in the case
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162 Well-Posedness Results for the Heat Equation

(β1, β2) = (∞, 0), corresponding to mixed (Dirichlet-Neumann) lateral boundary con-
ditions. However, the boundary assumptions dealt with by the authors exclude our
domain. Further references on the analysis of parabolic problems in non-cylindrical
domains are: Labbas et al. [13, 14, 15], Kheloufi et al. [8, 9, 10, 12], Degtyarev [5],
Aref’ev and Bagirov [3, 4], Sadallah [20, 21, 22], Alkhutov [1, 2] and Paronetto [17].
In this work, we consider the case of Robin type boundary condition, namely, the

case where βk 6= 0, k = 1,2, and we look for suffi cient conditions (as weak as possible)
on the lateral boundary of the domain and on the coeffi cients βk, k = 1, 2 in order
to obtain the maximal regularity of the solution in an anisotropic Hilbertian Sobolev
space.
In previous works (see [7, 11]), we have studied the case where

Ω =
{

(t, x) ∈ R2 : 0 < t < T ;ψ1 (t) < x < ψ2 (t)
}

with the fundamental hypothesis ψ1 (0) = ψ2 (0) and we have proved that the solution
u of Problem (1) is unique and has the optimal regularity, that is a solution u belonging
to the anisotropic Sobolev space

H1,2
γ (Ω) :=

{
u ∈ H1,2 (Ω) : ∂xu+ βku|Γk = 0, k = 1,2

}
with

H1,2 (Ω) =
{
u ∈ L2 (Ω) : ∂tu, ∂xu, ∂

2
xu ∈ L2 (Ω)

}
,

under suffi cient conditions on ψk, k = 1, 2, that are

ψ′k (t) (ψ2 (t)− ψ1 (t)) −→ 0 as t −→ 0, k = 1, 2.

Examples of functions satisfying this last condition are ψk (t) = (−1)
k (
r2 − t2

) 1
2+ε , k =

1, 2 for all ε < 0. However, the above condition is false in the case ε = 0 corresponding
to the class of domains considered in this article. So, the well-posedeness result which
we will prove here can not be derived from [7] and [11]. In order to overcome this
diffi culty, we impose suffi cient conditions on the lateral boundary of the domain and
on the coeffi cients βk, k = 1, 2, that are,

β1 < 0, β2 > 0, (2)

(−1)
k

(
βk −

t

2
√
r2 − t2

)
≥ 0 a.e. t ∈ ]−r, r[ , k = 1, 2, (3)

and

1−
[
(16 + 4β2

1 + 4β2
2)r + (4 |β1|+ 4 |β2|) r2 + (8 + 4β2

1 + 4β2
2)r3

]
> 0. (4)

Then, our main result is following:

THEOREM 1. Under the hypothesis (2), (3) and (4), the heat operator L = ∂t−∂2
x

is an isomorphism from H1,2
γ (Ω) into L2 (Ω).
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It is not diffi cult to prove the injectivity of the operator L. Indeed, If u is a solution
of Problem (1) with a null right-hand side, the calculations show that the inner product
〈Lu, u〉 in L2 (Ω) gives

0 =

2∑
k=1

∫
Γk

(−1)
k

(
βk −

t

2
√
r2 − t2

)
u2 (t, ϕk (t)) dt+

∫
Ω

(∂xu)
2
dtdx.

The hypothesis (3) implies that ∂xu = 0 and consequently ∂2
xu = 0. Then, the equation

of Problem (1) gives ∂tu = 0. Thus, u is constant. The boundary conditions and the
fact that βk 6= 0, k = 1, 2 imply that u = 0 in Ω. So, in the sequel, we will be interested
only by the question of the surjectivity of the operator L.

The method used here is the domain decomposition method. More precisely, we
divide Ω into two parts

Ω1 = {(t, x) ∈ Ω : −r < t < 0} and Ω2 = {(t, x) ∈ Ω : 0 < t < r} .

So, we obtain two solutions uk ∈ H1,2 (Ωk) in Ωk, k = 1, 2. Finally, we prove that the
function u defined by

u :=

{
u1 in Ω1,
u2 in Ω2,

is the solution of problem (1) and has the optimal regularity, that is u ∈ H1,2 (Ω).
The plan of this paper is as follows. In Section 2, we prove that Problem (1) admits
a (unique) solution in the case of a "truncated" domain. Then, in Section 3, we
approximate Ω by a sequence (Ωn) of such truncated domains and we establish an
energy estimate which will allow us to pass to the limit and complete the proof of our
main result.

2 Resolution of Problem (1) in a Truncated Disc Ωn

For each n ∈ N∗, we define

Ωn :=

{
(t, x) ∈ R2 : −r < t < r − 1

n
;ϕ1 (t) < x < ϕ2 (t)

}
.

THEOREM 2. Assume that βk and ϕk, k = 1, 2 verify assumptions (2) and (3)
and let fn = f |Ωn and

Γn,k =

{
(t, ϕk (t)) ∈ R2 : −r < t < r − 1

n

}
for k = 1, 2.

Then, for each n ∈ N∗, the problem{
∂tun − ∂2

xun = fn ∈ L2 (Ωn) ,
∂xun + βkun|Γn,k = 0, k = 1, 2, (5)

admits a (unique) solution un ∈ H1,2 (Ωn).
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PROOF. We divide Ωn, n ∈ N∗ into two parts

Ω− = {(t, x) ∈ Ω : −r < t < 0} and Ω+
n =

{
(t, x) ∈ Ω : 0 < t < r − 1

n

}
.

So, we have Ωn = Ω− ∪ Ω+
n ∪ ({0} × ]ϕ1 (0) , ϕ2 (0)[) .

LEMMA 1. Let f− = f |Ω− and

Γ−k =
{

(t, ϕk (t)) ∈ R2 : −r < t < 0
}
for k = 1, 2.

Then, the problem {
∂tu
− − ∂2

xu
− = f− ∈ L2 (Ω−) ,

∂xu
− + βku

−|Γ−k = 0, k = 1,2,

admits a (unique) solution u− ∈ H1,2 (Ω−).

PROOF. Since ϕ1 is a decreasing function on ]−r, 0[ and ϕ2 is an increasing function
on ]−r, 0[, then the result follows from [18].

Hereafter, we denote the trace u−|{0}×]ϕ1(0),ϕ2(0)[ by ψ, which is in the Sobolev
space H1 ({0} × ]ϕ1 (0) , ϕ2 (0)[) because u− ∈ H1,2 (Ω−) (see [16]). Now, consider the
following problem on Ω+

n , n ∈ N∗
∂tu

+
n − ∂2

xu
+
n = f+

n ∈ L2 (Ω+
n ) ,

u+
n |{0}×]ϕ1(0),ϕ2(0)[ = ψ ∈ H1 ({0} × ]ϕ1 (0) , ϕ2 (0)[) ,

∂xu
+
n + βku

+
n |Γ+n,k = 0, k = 1, 2,

(6)

where Γ+
n,k =

{
(t, ϕk (t)) ∈ R2 : 0 < t < r − 1

n

}
, k = 1, 2.

We use the following result, which is a consequence of Theorem 4.3 in [16] to solve
Problem (6).

PROPOSITION 1. Let Q be the rectangle ]0, T [×]0, 1[, f ∈ L2 (Q) and ψ ∈ H1 (γ0)
with γ0 = {0} × ]0, 1[. Then, the problem

∂tu− ∂2
xu = f ∈ L2 (Q) ,

u|γ0 = ψ,

∂xu+ βku|γk = 0, k = 1, 2,

where γ1 = ]0, T [×{0} and γ2 = ]0, T [×{1} admits a (unique) solution u ∈ H1,2 (Q).

REMARK 1. We have ψ lies in H1 ({0} × ]ϕ1 (0) , ϕ2 (0)[), then ∂xψ is (only)
in L2 ({0} × ]ϕ1 (0) , ϕ2 (0)[) and its pointwise values should not make sense. So in
the application of [[16] Theorem 4.3, Vol. 2], there are no compatibility conditions to
satisfy.

Thanks to the transformation (t, x) 7→ (t, y) = (t, (ϕ2 (t)− ϕ1 (t))x+ ϕ1 (t)) , we
deduce the following result:
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PROPOSITION 2. For each n ∈ N∗, Problem (6) admits a unique solution u+
n ∈

H1,2 (Ω+
n ).

So, the function un ∈ H1,2 (Ωn), n ∈ N∗ defined by

un :=

{
u− in Ω−,
u+
n in Ω+

n ,

is the (unique) solution of Problem (5). This completes the proof of Theorem 2.

3 Resolution of Problem (1) in the Half Disc Ω+

In this section, we define

Ω+ :=
{

(t, x) ∈ R2 : 0 < t < r;ϕ1 (t) < x < ϕ2 (t)
}

and consider the following problem in Ω+
∂tu

+ − ∂2
xu

+ = f + ∈ L2 (Ω+) ,
u+|{0}×]ϕ1(0),ϕ2(0)[ = 0,
∂xu

+ + βku
+|Γ+k = 0, k = 1, 2,

(7)

where f+ = f |Ω+ and

Γ+
k =

{
(t, ϕk (t)) ∈ R2 : 0 < t < r

}
for k = 1, 2.

We assume that βk and ϕk, k = 1, 2 verify assumptions (2), (3) and (4) and we denote
f+
n = f+|Ω+

n
and u+

n ∈ H1,2 (Ω+
n ) the solution of Problem (7) in Ω+

n . Such a solution
exists by Proposition 2.

PROPOSITION 3. There exists a constant K > 0 independent of n such that∥∥u+
n

∥∥
H1,2(Ω+

n ) ≤ K
∥∥f+
n

∥∥
L2(Ω+

n ) ≤ K
∥∥f+

∥∥
L2(Ω+)

,

where∥∥u+
n

∥∥
H1,2(Ω+

n ) =

√∥∥u+
n

∥∥2

L2(Ω+
n ) +

∥∥∂tu+
n

∥∥2

L2(Ω+
n ) +

∥∥∂xu+
n

∥∥2

L2(Ω+
n ) +

∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n ).

In order to prove Proposition 3, we need the following result

LEMMA 2. We have the following estimations

(i) |ϕ′k (t)| (ϕ2 (t)− ϕ1 (t)) ≤ 2r for t ∈ ]−r, r[ and k = 1, 2.

(ii)
∫ ϕ2(t)

ϕ1(t)
[∂jxu

+
n (s, x)]2ds ≤ [ϕ2 (t)− ϕ1 (t)]

2 ∫ ϕ2(t)

ϕ1(t)
[∂j+1
x u+

n (s, x)]2ds for j = 0, 1.
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(iii) ‖∂xu+
n ‖

2
L2(Ω+

n ) ≤ 4r2
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ).

PROOF OF PROPOSITION 3. We have∥∥f+
n

∥∥2

L2(Ω+
n ) = 〈∂tu+

n − ∂2
xu

+
n , ∂tu

+
n − ∂2

xu
+
n 〉

=
∥∥∂tu+

n

∥∥2

L2(Ω+
n ) +

∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n ) − 2

∫
Ω+
n

∂tu
+
n .∂

2
xu

+
n dtdx.

Let us consider the term −2
∫

Ω+
n
∂tu

+
n .∂

2
xu

+
n dtdx. We have

∂tu
+
n .∂

2
xu

+
n = ∂x

(
∂tu

+
n .∂xu

+
n

)
− 1

2
∂t
(
∂xu

+
n

)2
.

Then

−2

∫
Ω+
n

∂tu
+
n .∂

2
xu

+
n dtdx = −2

∫
Ω+
n

∂x
(
∂tu

+
n ∂xu

+
n

)
dt dx+

∫
Ω+
n

∂t
(
∂xu

+
n

)2
dt dx

=

∫
∂Ω+

n

[(
∂xu

+
n

)2
νt − 2∂tu

+
n ∂xu

+
n νx

]
dσ,

with νt, νx are the components of the unit outward normal vector at ∂Ω+
n . We shall

rewrite the boundary integral making use of the boundary conditions. On the part
of the boundary of Ω+

n where t = 0, we have u+
n = 0 and consequently ∂xu+

n = 0.
The corresponding boundary integral vanishes. On the part of the boundary where
t = r − 1

n , we have νx = 0 and νt = 1. Accordingly the corresponding boundary

integral
∫ ϕ2(r− 1

n )
ϕ1(r− 1

n )
(∂xu

+
n )

2
dx is nonnegative. On the parts of the boundary where

x = ϕk (t), k = 1, 2, we have

νx =
(−1)

k√
1 + (ϕ′k)

2
(t)
, νt =

(−1)
k+1

ϕ′k (t)√
1 + (ϕ′k)

2
(t)

and ∂xu+
n (t, ϕk (t)) + βku

+
n (t, ϕk (t)) = 0.

Consequently, the corresponding boundary integrals In,k and Jn,k, k = 1, 2 are the
following:

In,k = (−1)
k+1

∫ r− 1
n

0

ϕ′k (t)
[
∂xu

+
n (t, ϕk (t))

]2
dt, k = 1, 2,

Jn,k = (−1)
k

2

∫ r− 1
n

0

βk∂tu
+
n (t, ϕk (t)) .u+

n (t, ϕk (t)) dt, k = 1, 2.

We have

−2

∫
Ω+
n

∂tu
+
n .∂

2
xu

+
n dtdx ≥ − |In,1| − |In,2| − |Jn,1| − |Jn,2| . (8)

It is the reason for which we look for an estimate of the type

|In,1|+ |In,2|+ |Jn,1|+ |Jn,2| ≤ δ
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) ,
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where δ is a positive constant independent of n belonging to the interval ]0, 1[. By
introducing the function φ (t, x) = ϕ2(t)−x

ϕ2(t)−ϕ1(t) like in [18], we write for In,1

|In,1| =

∣∣∣∣∣
∫ r− 1

n

0

{∫ ϕ2(t)

ϕ1(t)

ϕ′1 (t) ∂x

(
φ (t, x)

[
∂xu

+
n (t, x)

]2)
dx

}
dt

∣∣∣∣∣
≤

∫
Ω+
n

ϕ′1 (t) (ϕ2 (t)− ϕ1 (t))
[
∂2
xu

+
n

]2
dtdx+ 2

∫
Ω+
n

|ϕ′1|
∣∣∂xu+

n

∣∣ ∣∣∂2
xu

+
n

∣∣ dtdx
≤ 2r

∥∥∂2
xu

+
n

∥∥2
+ ε
∥∥∂2

xu
+
n

∥∥2
+

1

ε

∫
Ω+
n

|ϕ′1|
2 [
∂xu

+
n

]2
dtdx

≤
[
2r + ε+

4r2

ε

] ∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n )

≤ 7r
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) .

The last inequality is obtained by choosing ε = r. Similarly, we have

|In,2| ≤ 7r
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) .

Let us now consider the terms Jn,k, k = 1, 2. By setting h (t) = (u+
n )

2
(t, ϕk (t)) , we

obtain

Jn,k = (−1)
k
∫ r− 1

n

0

βk.
[
h′ (t)− ϕ′k (t) ∂x

(
u+
n

)2
(t, ϕk (t))

]
dt

= (−1)
k
βk.h (t)

∣∣∣r− 1
n

0
+ (−1)

k+1
∫ r− 1

n

0

βk.ϕ
′
k (t) ∂x

(
u+
n

)2
(t, ϕk (t)) dt.

Condition (2) and the fact that (u+
n )

2
(0, ϕk (0)) = 0 give (−1)

k
βk.h (t)

∣∣∣r− 1
n

0
≥ 0. In

the sequel, we estimate the last boundary integral in the expression of Jn,k, namely

Ln,k = (−1)
k+1

∫ r− 1
n

0

βk.ϕ
′
k (t) ∂x

(
u+
n

)2
(t, ϕk (t)) dt.

We have

∂x
(
u+
n

)2
(t, ϕ1 (t))

= − ϕ2 (t)− x
ϕ2 (t)− ϕ1 (t)

∂x
(
u+
n

)2
(t, x)

∣∣∣∣x=ϕ2(t)

x=ϕ1(t)

= −
∫ ϕ2(t)

ϕ1(t)

∂x

{
ϕ2 (t)− x

ϕ2 (t)− ϕ1 (t)
∂x
(
u+
n

)2
(t, x)

}
dx

=

∫ ϕ2(t)

ϕ1(t)

[
1

ϕ2 (t)− ϕ1 (t)
∂x
(
u+
n

)2
(t, x)− ϕ2 (t)− x

ϕ2 (t)− ϕ1 (t)
∂2
x

(
u+
n

)2
(t, x)

]
dx.
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So,

Ln,1 =

∫
Ω+
n

[
β1.ϕ

′
1 (t)

ϕ2 (t)− ϕ1 (t)
∂x
(
u+
n

)2
(t, x)− ϕ2 (t)− x

ϕ2 (t)− ϕ1 (t)
β1.ϕ

′
1 (t) ∂2

x

(
u+
n

)2
(t, x)

]
dtdx.

By using the equalities

∂x
(
u+
n

)2
(t, x) = 2∂xu

+
n (t, x)u+

n (t, x)

and
∂2
x

(
u+
n

)2
(t, x) = 2∂2

xu
+
n (t, x)u+

n (t, x) + 2
[
∂xu

+
n (t, x)

]2
,

we obtain

Ln,1 =

∫
Ω+
n

2β1.ϕ
′
1 (t)

ϕ2 (t)− ϕ1 (t)
∂xu

+
n (t, x)u+

n (t, x) dtdx

−
∫

Ω+
n

ϕ2 (t)− x
ϕ2 (t)− ϕ1 (t)

2β1.ϕ
′
1 (t) ∂2

xu
+
n (t, x)u+

n (t, x) dtdx

−
∫

Ω+
n

ϕ2 (t)− x
ϕ2 (t)− ϕ1 (t)

2β1.ϕ
′
1 (t)

[
∂xu

+
n (t, x)

]2
dtdx

= An,1 +Bn,1 + Cn,1.

Estimation of An,1, Bn,1 and Cn,1
a) We have

An,1 =

∫
Ω+
n

2β1.ϕ
′
1 (t)

ϕ2 (t)− ϕ1 (t)
∂xu

+
n (t, x)u+

n (t, x) dtdx,

then

|An,1| ≤
∫

Ω+
n

1

ε
[β1.ϕ

′
1 (t)]

2 [
∂xu

+
n (t, x)

]2
dtdx

+ε

∫
Ω+
n

1

[ϕ2 (t)− ϕ1 (t)]
2

[
u+
n (t, x)

]2
dtdx

≤
∫

Ω+
n

1

ε
[β1.ϕ

′
1 (t)]

2
[ϕ2 (t)− ϕ1 (t)]

2 [
∂2
xu

+
n (t, x)

]2
dtdx

+ε

∫
Ω+
n

[ϕ2 (t)− ϕ1 (t)]
2 [
∂2
xu

+
n (t, x)

]2
dtdx

≤
[
β2

1

ε
4r2 + 4r2ε

] ∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n ) ≤

[
4r3 + 4β2

1r
] ∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) .

The last inequality is obtained by choosing ε = r.
b) We have

Bn,1 = −
∫

Ω+
n

ϕ2 (t)− x
ϕ2 (t)− ϕ1 (t)

2β1.ϕ
′
1 (t) ∂2

xu
+
n (t, x)u+

n (t, x) dtdx,



A. Kheloufi 169

then

|Bn,1| ≤
β2

1

ε

∫
Ω+
n

|ϕ′1 (t)|2
[
u+
n (t, x)

]2
dtdx+ ε

∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n )

≤ β2
1

ε
sup
t∈[0,r]

(
|ϕ′1 (t)|2 [ϕ2 (t)− ϕ1 (t)]

4
)∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n )

+ε
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n )

≤
(

4β2
1r

4

ε
+ ε

)∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n ) ≤

(
4β2

1r
3 + r

) ∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n ) .

The last inequality is obtained by choosing ε = r.
c) We have

Cn,1 = −
∫

Ω+
n

ϕ2 (t)− x
ϕ2 (t)− ϕ1 (t)

2β1.ϕ
′
1 (t)

[
∂xu

+
n (t, x)

]2
dtdx

then

|Cn,1| ≤ 2 |β1|
∫

Ω+
n

|ϕ′1 (t)| |ϕ2 (t)− ϕ1 (t)|2
[
∂2
xu

+
n (t, x)

]2
dtdx

≤ 4 |β1| r2
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) .

Consequently,

|Ln,1| ≤
[
(4 + 4β2

1)r3 + 4 |β1| r2 + (1 + 4β2
1)r
] ∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) .

Similarly, we can obtain

|Ln,2| ≤
[
(4 + 4β2

2)r3 + 4 |β2| r2 + (1 + 4β2
2)r
] ∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n ) .

Summing up the above estimates, we obtain

∥∥f+
n

∥∥2

L2(Ω+
n ) ≥

∥∥∂tu+
n

∥∥2

L2(Ω+
n ) +

∥∥∂2
xu

+
n

∥∥2

L2(Ω+
n ) − |In,1| − |In,2| − |Ln,1| − |Ln,2|

≥
∥∥∂2

xu
+
n

∥∥2

L2(Ω+
n )

{
1−

[
(16 + 4β2

1 + 4β2
2)r + (4 |β1|+ 4 |β2|) r2

+(8 + 4β2
1 + 4β2

2)r3
]}

+
∥∥∂tu+

n

∥∥2

L2(Ω+
n ) .

Using the condition (4) and since ‖f+
n ‖

2
L2(Ω+

n ) ≤ ‖f
+‖2L2(Ω+), then Proposition 3 is

proved.

THEOREM 3. Problem (7) admits a (unique) solution u+ ∈ H1,2 (Ω+).
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PROOF. The estimation of Proposition 3 shows that

∥∥∥ũ+
n

∥∥∥
L2(Ω+)

+
∥∥∥∂̃tu+

n

∥∥∥
L2(Ω+)

+

2∑
i=1

∥∥∥∂̃ixu+
n

∥∥∥
L2(Ω+)

≤ C
∥∥f+

∥∥
L2(Ω+)

,

where .̃ denotes the 0−extension of u+
n to Ω+. This means that ũ+

n , ∂̃tu
+
n , ∂̃ixu

+
n , i = 1, 2

are bounded functions in L2 (Ω+). The following compactness result is well known: A
bounded sequence in a reflexive Banach space (and in particular in a Hilbert space) is
weakly convergent. So for a suitable increasing sequence of integers nk, k = 1, 2, ...,
there exists functions u+, v+, v+

i , i = 1, 2 in L2 (Ω+) such that

ũ+
nk ⇀ u+, ∂̃tu

+
nk ⇀ v+, ∂̃ixu

+
nk ⇀ v+

i , i = 1, 2

weakly in L2 (Ω+) as k → ∞. Clearly, v+ = ∂tu
+, v+

i = ∂ixu
+, i = 1, 2 in the sense of

distributions in Ω+ and so in L2 (Ω+). Finally, u+ ∈ H1,2 (Ω+) and

∂tu
+ − ∂2

xu
+ = f in Ω+.

On the other hand, the solution u+ satisfies the boundary conditions, since

∀n ∈ N∗, u+
∣∣
Ω+
n

= u+
n .

REMARK 2. The function u ∈ H1,2 (Ω) defined by

u :=

{
u− in Ω−,
u+ in Ω+,

is the (unique) solution of Problem (1).
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