Well-Posedness Results For A Third Boundary Value Problem For The Heat Equation In A Disc*

Arezki Kheloufi ${ }^{\dagger}$

Received 10 March 2014

Abstract

In this work we prove well-posedness results for the following one space linear second order parabolic equation $\partial_{t} u-\partial_{x}^{2} u=f$, set in a domain $$
\Omega=\left\{(t, x) \in \mathbb{R}^{2}:-r<t<r ; \varphi_{1}(t)<x<\varphi_{2}(t)\right\}
$$ of \mathbb{R}^{2}, where $\varphi_{i}(t)=(-1)^{i}\left(r^{2}-t^{2}\right)^{\frac{1}{2}}, i=1,2$ and with lateral boundary conditions of Robin type. The right-hand side f of the equation is taken in $L^{2}(\Omega)$. The method used is based on the approximation of the domain Ω by a sequence of subdomains $\left(\Omega_{n}\right)_{n}$ which can be transformed into regular domains.

1 Introduction

Let $\Omega=D(0, r)$ be the open disc centred at the origin of \mathbb{R}^{2} and with radius $r>0$, characterized by $\Omega=\left\{(t, x) \in \mathbb{R}^{2}:-r<t<r ; \varphi_{1}(t)<x<\varphi_{2}(t)\right\}$, where φ_{1} and φ_{2} are defined on $[-r, r]$ by $\varphi_{k}(t)=(-1)^{k}\left(r^{2}-t^{2}\right)^{\frac{1}{2}}, k=1,2$. The lateral boundary of Ω is defined by $\Gamma_{k}=\left\{\left(t, \varphi_{k}(t)\right) \in \mathbb{R}^{2}:-r<t<r\right\}, k=1,2$. In Ω, we consider the Robin type boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\partial_{x}^{2} u=f \text { in } \Omega \tag{1}\\
\partial_{x} u+\left.\beta_{k} u\right|_{\Gamma_{k}}=0, k=1,2
\end{array}\right.
$$

where the coefficients $\beta_{k}, k=1,2$ are real numbers satisfying non-degeneracy assumptions (to be made more precise later) and the right-hand side term f of the equation lies in $L^{2}(\Omega)$, the space of square-integrable functions on Ω with the measure $d t d x$.

The main difficulty related to this kind of problems is due to the fact that φ_{1} coincides with φ_{2} for $t=-r$ and for $t=r$, which prevents the domain Ω to be transformed into a regular domain by means of a smooth transformation.

The case $\beta_{k}=\infty, k=1,2$, corresponding to Dirichlet boundary conditions is considered in [19]. We can find in [6] a study of the case $\beta_{k}=0, k=1,2$, corresponding to Neumann boundary conditions and in [23] an abstract study in the case

[^0]$\left(\beta_{1}, \beta_{2}\right)=(\infty, 0)$, corresponding to mixed (Dirichlet-Neumann) lateral boundary conditions. However, the boundary assumptions dealt with by the authors exclude our domain. Further references on the analysis of parabolic problems in non-cylindrical domains are: Labbas et al. [13, 14, 15], Kheloufi et al. [8, 9, 10, 12], Degtyarev [5], Aref'ev and Bagirov [3, 4], Sadallah [20, 21, 22], Alkhutov [1, 2] and Paronetto [17].

In this work, we consider the case of Robin type boundary condition, namely, the case where $\beta_{k} \neq 0, k=1,2$, and we look for sufficient conditions (as weak as possible) on the lateral boundary of the domain and on the coefficients $\beta_{k}, k=1,2$ in order to obtain the maximal regularity of the solution in an anisotropic Hilbertian Sobolev space.

In previous works (see $[7,11]$), we have studied the case where

$$
\Omega=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T ; \psi_{1}(t)<x<\psi_{2}(t)\right\}
$$

with the fundamental hypothesis $\psi_{1}(0)=\psi_{2}(0)$ and we have proved that the solution u of Problem (1) is unique and has the optimal regularity, that is a solution u belonging to the anisotropic Sobolev space

$$
H_{\gamma}^{1,2}(\Omega):=\left\{u \in H^{1,2}(\Omega): \partial_{x} u+\left.\beta_{k} u\right|_{\Gamma_{k}}=0, k=1,2\right\}
$$

with

$$
H^{1,2}(\Omega)=\left\{u \in L^{2}(\Omega): \partial_{t} u, \partial_{x} u, \partial_{x}^{2} u \in L^{2}(\Omega)\right\}
$$

under sufficient conditions on $\psi_{k}, k=1,2$, that are

$$
\psi_{k}^{\prime}(t)\left(\psi_{2}(t)-\psi_{1}(t)\right) \quad \longrightarrow \quad 0 \quad \text { as } t \longrightarrow 0, \quad k=1,2 .
$$

Examples of functions satisfying this last condition are $\psi_{k}(t)=(-1)^{k}\left(r^{2}-t^{2}\right)^{\frac{1}{2+\epsilon}}, k=$ 1,2 for all $\epsilon<0$. However, the above condition is false in the case $\epsilon=0$ corresponding to the class of domains considered in this article. So, the well-posedeness result which we will prove here can not be derived from [7] and [11]. In order to overcome this difficulty, we impose sufficient conditions on the lateral boundary of the domain and on the coefficients $\beta_{k}, k=1,2$, that are,

$$
\begin{gather*}
\beta_{1}<0, \beta_{2}>0 \tag{2}\\
\left.(-1)^{k}\left(\beta_{k}-\frac{t}{2 \sqrt{r^{2}-t^{2}}}\right) \geq 0 \text { a.e. } t \in\right]-r, r[, k=1,2 \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
1-\left[\left(16+4 \beta_{1}^{2}+4 \beta_{2}^{2}\right) r+\left(4\left|\beta_{1}\right|+4\left|\beta_{2}\right|\right) r^{2}+\left(8+4 \beta_{1}^{2}+4 \beta_{2}^{2}\right) r^{3}\right]>0 \tag{4}
\end{equation*}
$$

Then, our main result is following:
THEOREM 1. Under the hypothesis (2), (3) and (4), the heat operator $L=\partial_{t}-\partial_{x}^{2}$ is an isomorphism from $H_{\gamma}^{1,2}(\Omega)$ into $L^{2}(\Omega)$.

It is not difficult to prove the injectivity of the operator L. Indeed, If u is a solution of Problem (1) with a null right-hand side, the calculations show that the inner product $\langle L u, u\rangle$ in $L^{2}(\Omega)$ gives

$$
0=\sum_{k=1}^{2} \int_{\Gamma_{k}}(-1)^{k}\left(\beta_{k}-\frac{t}{2 \sqrt{r^{2}-t^{2}}}\right) u^{2}\left(t, \varphi_{k}(t)\right) d t+\int_{\Omega}\left(\partial_{x} u\right)^{2} d t d x
$$

The hypothesis (3) implies that $\partial_{x} u=0$ and consequently $\partial_{x}^{2} u=0$. Then, the equation of Problem (1) gives $\partial_{t} u=0$. Thus, u is constant. The boundary conditions and the fact that $\beta_{k} \neq 0, k=1,2$ imply that $u=0$ in Ω. So, in the sequel, we will be interested only by the question of the surjectivity of the operator L.

The method used here is the domain decomposition method. More precisely, we divide Ω into two parts

$$
\Omega_{1}=\{(t, x) \in \Omega:-r<t<0\} \text { and } \Omega_{2}=\{(t, x) \in \Omega: 0<t<r\} .
$$

So, we obtain two solutions $u_{k} \in H^{1,2}\left(\Omega_{k}\right)$ in $\Omega_{k}, k=1,2$. Finally, we prove that the function u defined by

$$
u:=\left\{\begin{array}{l}
u_{1} \text { in } \Omega_{1}, \\
u_{2} \text { in } \Omega_{2},
\end{array}\right.
$$

is the solution of problem (1) and has the optimal regularity, that is $u \in H^{1,2}(\Omega)$. The plan of this paper is as follows. In Section 2, we prove that Problem (1) admits a (unique) solution in the case of a "truncated" domain. Then, in Section 3, we approximate Ω by a sequence $\left(\Omega_{n}\right)$ of such truncated domains and we establish an energy estimate which will allow us to pass to the limit and complete the proof of our main result.

2 Resolution of Problem (1) in a Truncated Disc Ω_{n}

For each $n \in \mathbb{N}^{*}$, we define

$$
\Omega_{n}:=\left\{(t, x) \in \mathbb{R}^{2}:-r<t<r-\frac{1}{n} ; \varphi_{1}(t)<x<\varphi_{2}(t)\right\} .
$$

THEOREM 2. Assume that β_{k} and $\varphi_{k}, k=1,2$ verify assumptions (2) and (3) and let $f_{n}=\left.f\right|_{\Omega_{n}}$ and

$$
\Gamma_{n, k}=\left\{\left(t, \varphi_{k}(t)\right) \in \mathbb{R}^{2}:-r<t<r-\frac{1}{n}\right\} \text { for } k=1,2
$$

Then, for each $n \in \mathbb{N}^{*}$, the problem

$$
\left\{\begin{align*}
& \partial_{t} u_{n}-\partial_{x}^{2} u_{n}=f_{n} \in L^{2}\left(\Omega_{n}\right), \tag{5}\\
& \partial_{x} u_{n}+\left.\beta_{k} u_{n}\right|_{\Gamma_{n, k}}=0, k=1,2,
\end{align*}\right.
$$

admits a (unique) solution $u_{n} \in H^{1,2}\left(\Omega_{n}\right)$.

PROOF. We divide $\Omega_{n}, n \in \mathbb{N}^{*}$ into two parts

$$
\Omega^{-}=\{(t, x) \in \Omega:-r<t<0\} \text { and } \Omega_{n}^{+}=\left\{(t, x) \in \Omega: 0<t<r-\frac{1}{n}\right\} .
$$

So, we have $\Omega_{n}=\Omega^{-} \cup \Omega_{n}^{+} \cup(\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[)$.
LEMMA 1. Let $f^{-}=\left.f\right|_{\Omega^{-}}$and

$$
\Gamma_{k}^{-}=\left\{\left(t, \varphi_{k}(t)\right) \in \mathbb{R}^{2}:-r<t<0\right\} \text { for } k=1,2 .
$$

Then, the problem

$$
\left\{\begin{array}{l}
\partial_{t} u^{-}-\partial_{x}^{2} u^{-}=f^{-} \in L^{2}\left(\Omega^{-}\right), \\
\partial_{x} u^{-}+\left.\beta_{k} u^{-}\right|_{\Gamma_{k}^{-}}=0, k=1,2,
\end{array}\right.
$$

admits a (unique) solution $u^{-} \in H^{1,2}\left(\Omega^{-}\right)$.
PROOF. Since φ_{1} is a decreasing function on $]-r, 0\left[\right.$ and φ_{2} is an increasing function on $]-r, 0[$, then the result follows from [18].

Hereafter, we denote the trace $\left.u^{-}\right|_{\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[}$ by ψ, which is in the Sobolev space $H^{1}(\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[)$ because $u^{-} \in H^{1,2}\left(\Omega^{-}\right)$(see [16]). Now, consider the following problem on $\Omega_{n}^{+}, n \in \mathbb{N}^{*}$

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}^{+}-\partial_{x}^{2} u_{n}^{+}=f_{n}^{+} \in L^{2}\left(\Omega_{n}^{+}\right), \tag{6}\\
\left.u_{n}^{+}\right|_{\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[}=\psi \in H^{1}(\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[), \\
\partial_{x} u_{n}^{+}+\left.\beta_{k} u_{n}^{+}\right|_{\Gamma_{n, k}} ^{+}=0, k=1,2,
\end{array}\right.
$$

where $\Gamma_{n, k}^{+}=\left\{\left(t, \varphi_{k}(t)\right) \in \mathbb{R}^{2}: 0<t<r-\frac{1}{n}\right\}, k=1,2$.
We use the following result, which is a consequence of Theorem 4.3 in [16] to solve Problem (6).

PROPOSITION 1. Let Q be the rectangle $] 0, T[\times] 0,1\left[, f \in L^{2}(Q)\right.$ and $\psi \in H^{1}\left(\gamma_{0}\right)$ with $\left.\gamma_{0}=\{0\} \times\right] 0,1[$. Then, the problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\partial_{x}^{2} u=f \in L^{2}(Q), \\
\left.u\right|_{\gamma_{0}}=\psi, \\
\partial_{x} u+\left.\beta_{k} u\right|_{\gamma_{k}}=0, k=1,2,
\end{array}\right.
$$

where $\left.\gamma_{1}=\right] 0, T\left[\times\{0\}\right.$ and $\left.\gamma_{2}=\right] 0, T\left[\times\{1\}\right.$ admits a (unique) solution $u \in H^{1,2}(Q)$.
REMARK 1. We have ψ lies in $H^{1}(\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[)$, then $\partial_{x} \psi$ is (only) in $L^{2}(\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[)$ and its pointwise values should not make sense. So in the application of [[16] Theorem 4.3, Vol. 2], there are no compatibility conditions to satisfy.

Thanks to the transformation $(t, x) \mapsto(t, y)=\left(t,\left(\varphi_{2}(t)-\varphi_{1}(t)\right) x+\varphi_{1}(t)\right)$, we deduce the following result:

PROPOSITION 2. For each $n \in \mathbb{N}^{*}$, Problem (6) admits a unique solution $u_{n}^{+} \in$ $H^{1,2}\left(\Omega_{n}^{+}\right)$.

So, the function $u_{n} \in H^{1,2}\left(\Omega_{n}\right), n \in \mathbb{N}^{*}$ defined by

$$
u_{n}:=\left\{\begin{array}{l}
u^{-} \text {in } \Omega^{-}, \\
u_{n}^{+} \text {in } \Omega_{n}^{+},
\end{array}\right.
$$

is the (unique) solution of Problem (5). This completes the proof of Theorem 2.

3 Resolution of Problem (1) in the Half Disc Ω^{+}

In this section, we define

$$
\Omega^{+}:=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<r ; \varphi_{1}(t)<x<\varphi_{2}(t)\right\}
$$

and consider the following problem in Ω^{+}

$$
\left\{\begin{array}{l}
\partial_{t} u^{+}-\partial_{x}^{2} u^{+}=f+\in L^{2}\left(\Omega^{+}\right), \tag{7}\\
\left.u^{+}\right|_{\{0\} \times] \varphi_{1}(0), \varphi_{2}(0)[}=0, \\
\partial_{x} u^{+}+\left.\beta_{k} u^{+}\right|_{\Gamma_{k}^{+}}=0, k=1,2,
\end{array}\right.
$$

where $f^{+}=\left.f\right|_{\Omega^{+}}$and

$$
\Gamma_{k}^{+}=\left\{\left(t, \varphi_{k}(t)\right) \in \mathbb{R}^{2}: 0<t<r\right\} \text { for } k=1,2
$$

We assume that β_{k} and $\varphi_{k}, k=1,2$ verify assumptions (2), (3) and (4) and we denote $f_{n}^{+}=\left.f^{+}\right|_{\Omega_{n}^{+}}$and $u_{n}^{+} \in H^{1,2}\left(\Omega_{n}^{+}\right)$the solution of Problem (7) in Ω_{n}^{+}. Such a solution exists by Proposition 2.

PROPOSITION 3. There exists a constant $K>0$ independent of n such that

$$
\left\|u_{n}^{+}\right\|_{H^{1,2}\left(\Omega_{n}^{+}\right)} \leq K\left\|f_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)} \leq K\left\|f^{+}\right\|_{L^{2}\left(\Omega^{+}\right)}
$$

where

$$
\left\|u_{n}^{+}\right\|_{H^{1,2}\left(\Omega_{n}^{+}\right)}=\sqrt{\left\|u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}+\left\|\partial_{t} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}+\left\|\partial_{x} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}+\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}} .
$$

In order to prove Proposition 3, we need the following result
LEMMA 2. We have the following estimations
(i) $\left|\varphi_{k}^{\prime}(t)\right|\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \leq 2 r$ for $\left.t \in\right]-r, r[$ and $k=1,2$.
(ii) $\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x}^{j} u_{n}^{+}(s, x)\right]^{2} d s \leq\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{2} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x}^{j+1} u_{n}^{+}(s, x)\right]^{2} d s$ for $j=0,1$.
(iii) $\left\|\partial_{x} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \leq 4 r^{2}\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}$.

PROOF OF PROPOSITION 3. We have

$$
\begin{aligned}
\left\|f_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} & =\left\langle\partial_{t} u_{n}^{+}-\partial_{x}^{2} u_{n}^{+}, \partial_{t} u_{n}^{+}-\partial_{x}^{2} u_{n}^{+}\right\rangle \\
& =\left\|\partial_{t} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}+\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}-2 \int_{\Omega_{n}^{+}} \partial_{t} u_{n}^{+} . \partial_{x}^{2} u_{n}^{+} d t d x
\end{aligned}
$$

Let us consider the term $-2 \int_{\Omega_{n}^{+}} \partial_{t} u_{n}^{+} . \partial_{x}^{2} u_{n}^{+} d t d x$. We have

$$
\partial_{t} u_{n}^{+} . \partial_{x}^{2} u_{n}^{+}=\partial_{x}\left(\partial_{t} u_{n}^{+} . \partial_{x} u_{n}^{+}\right)-\frac{1}{2} \partial_{t}\left(\partial_{x} u_{n}^{+}\right)^{2}
$$

Then

$$
\begin{aligned}
-2 \int_{\Omega_{n}^{+}} \partial_{t} u_{n}^{+} . \partial_{x}^{2} u_{n}^{+} d t d x & =-2 \int_{\Omega_{n}^{+}} \partial_{x}\left(\partial_{t} u_{n}^{+} \partial_{x} u_{n}^{+}\right) d t d x+\int_{\Omega_{n}^{+}} \partial_{t}\left(\partial_{x} u_{n}^{+}\right)^{2} d t d x \\
& =\int_{\partial \Omega_{n}^{+}}\left[\left(\partial_{x} u_{n}^{+}\right)^{2} \nu_{t}-2 \partial_{t} u_{n}^{+} \partial_{x} u_{n}^{+} \nu_{x}\right] d \sigma
\end{aligned}
$$

with ν_{t}, ν_{x} are the components of the unit outward normal vector at $\partial \Omega_{n}^{+}$. We shall rewrite the boundary integral making use of the boundary conditions. On the part of the boundary of Ω_{n}^{+}where $t=0$, we have $u_{n}^{+}=0$ and consequently $\partial_{x} u_{n}^{+}=0$. The corresponding boundary integral vanishes. On the part of the boundary where $t=r-\frac{1}{n}$, we have $\nu_{x}=0$ and $\nu_{t}=1$. Accordingly the corresponding boundary integral $\int_{\varphi_{1}\left(r-\frac{1}{n}\right)}^{\varphi_{2}\left(r-\frac{1}{n}\right)}\left(\partial_{x} u_{n}^{+}\right)^{2} d x$ is nonnegative. On the parts of the boundary where $x=\varphi_{k}(t), k=1,2$, we have
$\nu_{x}=\frac{(-1)^{k}}{\sqrt{1+\left(\varphi_{k}^{\prime}\right)^{2}(t)}}, \nu_{t}=\frac{(-1)^{k+1} \varphi_{k}^{\prime}(t)}{\sqrt{1+\left(\varphi_{k}^{\prime}\right)^{2}(t)}}$ and $\partial_{x} u_{n}^{+}\left(t, \varphi_{k}(t)\right)+\beta_{k} u_{n}^{+}\left(t, \varphi_{k}(t)\right)=0$.
Consequently, the corresponding boundary integrals $I_{n, k}$ and $J_{n, k}, k=1,2$ are the following:

$$
\begin{aligned}
I_{n, k} & =(-1)^{k+1} \int_{0}^{r-\frac{1}{n}} \varphi_{k}^{\prime}(t)\left[\partial_{x} u_{n}^{+}\left(t, \varphi_{k}(t)\right)\right]^{2} d t, k=1,2 \\
J_{n, k} & =(-1)^{k} 2 \int_{0}^{r-\frac{1}{n}} \beta_{k} \partial_{t} u_{n}^{+}\left(t, \varphi_{k}(t)\right) \cdot u_{n}^{+}\left(t, \varphi_{k}(t)\right) d t, k=1,2
\end{aligned}
$$

We have

$$
\begin{equation*}
-2 \int_{\Omega_{n}^{+}} \partial_{t} u_{n}^{+} \cdot \partial_{x}^{2} u_{n}^{+} d t d x \geq-\left|I_{n, 1}\right|-\left|I_{n, 2}\right|-\left|J_{n, 1}\right|-\left|J_{n, 2}\right| \tag{8}
\end{equation*}
$$

It is the reason for which we look for an estimate of the type

$$
\left|I_{n, 1}\right|+\left|I_{n, 2}\right|+\left|J_{n, 1}\right|+\left|J_{n, 2}\right| \leq \delta\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
$$

where δ is a positive constant independent of n belonging to the interval $] 0,1[$. By introducing the function $\phi(t, x)=\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)}$ like in [18], we write for $I_{n, 1}$

$$
\begin{aligned}
\left|I_{n, 1}\right| & =\left|\int_{0}^{r-\frac{1}{n}}\left\{\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \varphi_{1}^{\prime}(t) \partial_{x}\left(\phi(t, x)\left[\partial_{x} u_{n}^{+}(t, x)\right]^{2}\right) d x\right\} d t\right| \\
& \leq \int_{\Omega_{n}^{+}} \varphi_{1}^{\prime}(t)\left(\varphi_{2}(t)-\varphi_{1}(t)\right)\left[\partial_{x}^{2} u_{n}^{+}\right]^{2} d t d x+2 \int_{\Omega_{n}^{+}}\left|\varphi_{1}^{\prime}\right|\left|\partial_{x} u_{n}^{+}\right|\left|\partial_{x}^{2} u_{n}^{+}\right| d t d x \\
& \leq 2 r\left\|\partial_{x}^{2} u_{n}^{+}\right\|^{2}+\epsilon\left\|\partial_{x}^{2} u_{n}^{+}\right\|^{2}+\frac{1}{\epsilon} \int_{\Omega_{n}^{+}}\left|\varphi_{1}^{\prime}\right|^{2}\left[\partial_{x} u_{n}^{+}\right]^{2} d t d x \\
& \leq\left[2 r+\epsilon+\frac{4 r^{2}}{\epsilon}\right]\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \\
& \leq 7 r\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
\end{aligned}
$$

The last inequality is obtained by choosing $\epsilon=r$. Similarly, we have

$$
\left|I_{n, 2}\right| \leq 7 r\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
$$

Let us now consider the terms $J_{n, k}, k=1,2$. By setting $h(t)=\left(u_{n}^{+}\right)^{2}\left(t, \varphi_{k}(t)\right)$, we obtain

$$
\begin{aligned}
J_{n, k} & =(-1)^{k} \int_{0}^{r-\frac{1}{n}} \beta_{k} \cdot\left[h^{\prime}(t)-\varphi_{k}^{\prime}(t) \partial_{x}\left(u_{n}^{+}\right)^{2}\left(t, \varphi_{k}(t)\right)\right] d t \\
& =\left.(-1)^{k} \beta_{k} \cdot h(t)\right|_{0} ^{r-\frac{1}{n}}+(-1)^{k+1} \int_{0}^{r-\frac{1}{n}} \beta_{k} \cdot \varphi_{k}^{\prime}(t) \partial_{x}\left(u_{n}^{+}\right)^{2}\left(t, \varphi_{k}(t)\right) d t
\end{aligned}
$$

Condition (2) and the fact that $\left(u_{n}^{+}\right)^{2}\left(0, \varphi_{k}(0)\right)=0$ give $\left.(-1)^{k} \beta_{k} \cdot h(t)\right|_{0} ^{r-\frac{1}{n}} \geq 0$. In the sequel, we estimate the last boundary integral in the expression of $J_{n, k}$, namely

$$
L_{n, k}=(-1)^{k+1} \int_{0}^{r-\frac{1}{n}} \beta_{k} \cdot \varphi_{k}^{\prime}(t) \partial_{x}\left(u_{n}^{+}\right)^{2}\left(t, \varphi_{k}(t)\right) d t
$$

We have

$$
\begin{aligned}
& \partial_{x}\left(u_{n}^{+}\right)^{2}\left(t, \varphi_{1}(t)\right) \\
= & -\left.\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x}\left(u_{n}^{+}\right)^{2}(t, x)\right|_{x=\varphi_{1}(t)} ^{x=\varphi_{2}(t)} \\
= & -\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \partial_{x}\left\{\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x}\left(u_{n}^{+}\right)^{2}(t, x)\right\} d x \\
= & \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\frac{1}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x}\left(u_{n}^{+}\right)^{2}(t, x)-\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x}^{2}\left(u_{n}^{+}\right)^{2}(t, x)\right] d x .
\end{aligned}
$$

So,
$L_{n, 1}=\int_{\Omega_{n}^{+}}\left[\frac{\beta_{1} \cdot \varphi_{1}^{\prime}(t)}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x}\left(u_{n}^{+}\right)^{2}(t, x)-\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} \beta_{1} \cdot \varphi_{1}^{\prime}(t) \partial_{x}^{2}\left(u_{n}^{+}\right)^{2}(t, x)\right] d t d x$.
By using the equalities

$$
\partial_{x}\left(u_{n}^{+}\right)^{2}(t, x)=2 \partial_{x} u_{n}^{+}(t, x) u_{n}^{+}(t, x)
$$

and

$$
\partial_{x}^{2}\left(u_{n}^{+}\right)^{2}(t, x)=2 \partial_{x}^{2} u_{n}^{+}(t, x) u_{n}^{+}(t, x)+2\left[\partial_{x} u_{n}^{+}(t, x)\right]^{2}
$$

we obtain

$$
\begin{aligned}
L_{n, 1}= & \int_{\Omega_{n}^{+}} \frac{2 \beta_{1} \cdot \varphi_{1}^{\prime}(t)}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x} u_{n}^{+}(t, x) u_{n}^{+}(t, x) d t d x \\
& -\int_{\Omega_{n}^{+}} \frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} 2 \beta_{1} \cdot \varphi_{1}^{\prime}(t) \partial_{x}^{2} u_{n}^{+}(t, x) u_{n}^{+}(t, x) d t d x \\
& -\int_{\Omega_{n}^{+}} \frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} 2 \beta_{1} \cdot \varphi_{1}^{\prime}(t)\left[\partial_{x} u_{n}^{+}(t, x)\right]^{2} d t d x \\
= & A_{n, 1}+B_{n, 1}+C_{n, 1} .
\end{aligned}
$$

Estimation of $A_{n, 1}, B_{n, 1}$ and $C_{n, 1}$
a) We have

$$
A_{n, 1}=\int_{\Omega_{n}^{+}} \frac{2 \beta_{1} \cdot \varphi_{1}^{\prime}(t)}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x} u_{n}^{+}(t, x) u_{n}^{+}(t, x) d t d x
$$

then

$$
\begin{aligned}
\left|A_{n, 1}\right| \leq & \int_{\Omega_{n}^{+}} \frac{1}{\epsilon}\left[\beta_{1} \cdot \varphi_{1}^{\prime}(t)\right]^{2}\left[\partial_{x} u_{n}^{+}(t, x)\right]^{2} d t d x \\
& +\epsilon \int_{\Omega_{n}^{+}} \frac{1}{\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{2}}\left[u_{n}^{+}(t, x)\right]^{2} d t d x \\
\leq & \int_{\Omega_{n}^{+}} \frac{1}{\epsilon}\left[\beta_{1} \cdot \varphi_{1}^{\prime}(t)\right]^{2}\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{2}\left[\partial_{x}^{2} u_{n}^{+}(t, x)\right]^{2} d t d x \\
& +\epsilon \int_{\Omega_{n}^{+}}\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{2}\left[\partial_{x}^{2} u_{n}^{+}(t, x)\right]^{2} d t d x \\
\leq & {\left[\frac{\beta_{1}^{2}}{\epsilon} 4 r^{2}+4 r^{2} \epsilon\right]\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \leq\left[4 r^{3}+4 \beta_{1}^{2} r\right]\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} }
\end{aligned}
$$

The last inequality is obtained by choosing $\epsilon=r$.
b) We have

$$
B_{n, 1}=-\int_{\Omega_{n}^{+}} \frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} 2 \beta_{1} \cdot \varphi_{1}^{\prime}(t) \partial_{x}^{2} u_{n}^{+}(t, x) u_{n}^{+}(t, x) d t d x
$$

then

$$
\begin{aligned}
\left|B_{n, 1}\right| \leq & \frac{\beta_{1}^{2}}{\epsilon} \int_{\Omega_{n}^{+}}\left|\varphi_{1}^{\prime}(t)\right|^{2}\left[u_{n}^{+}(t, x)\right]^{2} d t d x+\epsilon\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \\
\leq & \frac{\beta_{1}^{2}}{\epsilon} \sup _{t \in[0, r]}\left(\left|\varphi_{1}^{\prime}(t)\right|^{2}\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{4}\right)\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \\
& +\epsilon\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \\
\leq & \left(\frac{4 \beta_{1}^{2} r^{4}}{\epsilon}+\epsilon\right)\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \leq\left(4 \beta_{1}^{2} r^{3}+r\right)\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} .
\end{aligned}
$$

The last inequality is obtained by choosing $\epsilon=r$.
c) We have

$$
C_{n, 1}=-\int_{\Omega_{n}^{+}} \frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} 2 \beta_{1} \cdot \varphi_{1}^{\prime}(t)\left[\partial_{x} u_{n}^{+}(t, x)\right]^{2} d t d x
$$

then

$$
\begin{aligned}
\left|C_{n, 1}\right| & \leq 2\left|\beta_{1}\right| \int_{\Omega_{n}^{+}}\left|\varphi_{1}^{\prime}(t)\right|\left|\varphi_{2}(t)-\varphi_{1}(t)\right|^{2}\left[\partial_{x}^{2} u_{n}^{+}(t, x)\right]^{2} d t d x \\
& \leq 4\left|\beta_{1}\right| r^{2}\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
\end{aligned}
$$

Consequently,

$$
\left|L_{n, 1}\right| \leq\left[\left(4+4 \beta_{1}^{2}\right) r^{3}+4\left|\beta_{1}\right| r^{2}+\left(1+4 \beta_{1}^{2}\right) r\right]\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
$$

Similarly, we can obtain

$$
\left|L_{n, 2}\right| \leq\left[\left(4+4 \beta_{2}^{2}\right) r^{3}+4\left|\beta_{2}\right| r^{2}+\left(1+4 \beta_{2}^{2}\right) r\right]\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
$$

Summing up the above estimates, we obtain

$$
\begin{aligned}
\left\|f_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \geq & \left\|\partial_{t} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}+\left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}-\left|I_{n, 1}\right|-\left|I_{n, 2}\right|-\left|L_{n, 1}\right|-\left|L_{n, 2}\right| \\
\geq & \left\|\partial_{x}^{2} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}\left\{1-\left[\left(16+4 \beta_{1}^{2}+4 \beta_{2}^{2}\right) r+\left(4\left|\beta_{1}\right|+4\left|\beta_{2}\right|\right) r^{2}\right.\right. \\
& \left.\left.+\left(8+4 \beta_{1}^{2}+4 \beta_{2}^{2}\right) r^{3}\right]\right\}+\left\|\partial_{t} u_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2}
\end{aligned}
$$

Using the condition (4) and since $\left\|f_{n}^{+}\right\|_{L^{2}\left(\Omega_{n}^{+}\right)}^{2} \leq\left\|f^{+}\right\|_{L^{2}\left(\Omega^{+}\right)}^{2}$, then Proposition 3 is proved.

THEOREM 3. Problem (7) admits a (unique) solution $u^{+} \in H^{1,2}\left(\Omega^{+}\right)$.

PROOF. The estimation of Proposition 3 shows that

$$
\left\|\widetilde{u_{n}^{+}}\right\|_{L^{2}\left(\Omega^{+}\right)}+\left\|\widetilde{\partial_{t} u_{n}^{+}}\right\|_{L^{2}\left(\Omega^{+}\right)}+\sum_{i=1}^{2}\left\|\widetilde{\partial_{x}^{i} u_{n}^{+}}\right\|_{L^{2}\left(\Omega^{+}\right)} \leq C\left\|f^{+}\right\|_{L^{2}\left(\Omega^{+}\right)}
$$

where \sim denotes the $0-$ extension of u_{n}^{+}to Ω^{+}. This means that $\widetilde{u_{n}^{+}} \widetilde{\partial_{t} u_{n}^{+}}, \widetilde{\partial_{x}^{i} u_{n}^{+}}, i=1,2$ are bounded functions in $L^{2}\left(\Omega^{+}\right)$. The following compactness result is well known: A bounded sequence in a reflexive Banach space (and in particular in a Hilbert space) is weakly convergent. So for a suitable increasing sequence of integers $n_{k}, k=1,2, \ldots$, there exists functions $u^{+}, v^{+}, v_{i}^{+}, i=1,2$ in $L^{2}\left(\Omega^{+}\right)$such that

$$
\widetilde{u_{n_{k}}^{+}} \rightharpoonup u^{+}, \widetilde{\partial_{t} u_{n_{k}}^{+}} \rightharpoonup v^{+}, \widetilde{\partial_{x}^{i} u_{n_{k}}^{+}} \rightharpoonup v_{i}^{+}, i=1,2
$$

weakly in $L^{2}\left(\Omega^{+}\right)$as $k \rightarrow \infty$. Clearly, $v^{+}=\partial_{t} u^{+}, v_{i}^{+}=\partial_{x}^{i} u^{+}, i=1,2$ in the sense of distributions in Ω^{+}and so in $L^{2}\left(\Omega^{+}\right)$. Finally, $u^{+} \in H^{1,2}\left(\Omega^{+}\right)$and

$$
\partial_{t} u^{+}-\partial_{x}^{2} u^{+}=f \text { in } \Omega^{+}
$$

On the other hand, the solution u^{+}satisfies the boundary conditions, since

$$
\forall n \in \mathbb{N}^{*},\left.\quad u^{+}\right|_{\Omega_{n}^{+}}=u_{n}^{+}
$$

REMARK 2. The function $u \in H^{1,2}(\Omega)$ defined by

$$
u:=\left\{\begin{array}{l}
u^{-} \text {in } \Omega^{-} \\
u^{+} \text {in } \Omega^{+},
\end{array}\right.
$$

is the (unique) solution of Problem (1).
Acknowledgment. I want to thank the anonymous referee for a careful reading of the manuscript and for his/her helpful suggestions.

References

[1] Yu. A. Alkhutov, L_{p}-solubility of the Dirichlet problem for the heat equation in noncylindrical domains, (Russian) Mat. Sb., 193(2002), 3-40; translation in Sb. Math., 193(2002), 1243-1279.
[2] Yu. A. Alkhutov, L_{p}-estimates of solutions of the Dirichlet problem for the heat equation in a ball, J. Math. Sci., 3(2007), 2021-2032.
[3] V. N. Aref'ev and L. A. Bagirov, Asymptotic behavior of solutions to the Dirichlet problem for parabolic equations in domains with singularities, Math. Notes, 59 (1996), 10-17.
[4] V. N. Aref'ev and L. A. Bagirov, Solutions of the heat equation in domains with singularities, Math. Notes, 64(1998), 139-153.
[5] S. P. Degtyarev, The solvability of the first initial-boundary problem for parabolic and degenerate parabolic equations in domains with a conical point, Sb. Math., 201(2010), 999-1028.
[6] S. Hofmann and J. L. Lewis, The L^{p} regularity problems for the heat equation in non-cylindrical domains, J. Funct. Anal., 220(2005), 1-54.
[7] A. Kheloufi and B. K. Sadallah, Parabolic equations with Robin type boundary conditions in a non-rectangular domain, Electron. J. Differential Equations 2010, No. 25, 14 pp..
[8] A. Kheloufi, R. Labbas and B. K. Sadallah, On the resolution of a parabolic equation in a nonregular domain of \mathbb{R}^{3}, Differ. Equ. Appl., 2(2010), 251-263.
[9] A. Kheloufi and B. K. Sadallah, On the regularity of the heat equation solution in non-cylindrical domains: two approaches, Appl. Math. Comput., 218(2011), 1623-1633.
[10] A. Kheloufi, Resolutions of parabolic equations in non-symmetric conical domains, Electron. J. Differential Equations 2012, No. 116, 14 pp.
[11] A. Kheloufi, Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of \mathbb{R}^{3}, Appl. Math. Comput., 220(2013), 756-769.
[12] A. Kheloufi and B. K. Sadallah, Study of the heat equation in a symmetric conical type domain of \mathbb{R}^{N+1}, Math. Meth. Appl. Sci., (37)(2014), 1807-1818.
[13] R. Labbas, A. Medeghri and B. K. Sadallah, Sur une équation parabolique dans un domaine non cylindrique, C. R. Math. Acad. Sci. Paris 335(2002), 1017-1022.
[14] R. Labbas, A. Medeghri and B. K. Sadallah, On a parabolic equation in a triangular domain, Appl. Math. Comput., 130 (2002), 511-523.
[15] R. Labbas, A. Medeghri and B. K. Sadallah, An L^{p} approach for the study of degenerate parabolic equation, Electron. J. Differential Equations 2005, No. 36, 20 pp.
[16] J. L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes Et Applications, Vol. 2. (French) Travaux et Recherches Mathématiques, No. 18 Dunod, Paris 1968.
[17] F. Paronetto, An existence result for evolution equations in non-cylindrical domains, NoDEA Nonlinear Differential Equations Appl., 20(2013), 1723-1740.
[18] B. K. Sadallah, Etude d'un problème $2 m$-parabolique dans des domaines plan non rectangulaires, Boll. Un. Mat. Ital., 2(1983), 51-112.
[19] B. K. Sadallah, Existence de la solution de l'équation de la chaleur dans un disque, C. R. Acad. Sci. Paris Sér. I Math., 327(1998), 813-816.
[20] B. K. Sadallah, Regularity of a parabolic equation solution in a non-smooth and unbounded domain, J. Aust. Math. Soc., 84(2008), 265-276.
[21] B. K. Sadallah, A remark on a parabolic problem in a sectorial domain, Appl. Math. E-Notes, 8(2008), 263-270.
[22] B. K. Sadallah, Study of a parabolic problem in a conical domain, Math. J. Okayama Univ., 56(2014), 157-169.
[23] G. Savaré, Parabolic problems with mixed variable lateral conditions: an abstract approach, J. Math. Pures et Appl., 76(1997), 321-351.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 35K05, 35K20.
 ${ }^{\dagger}$ Laboratoire des Mathématiques Appliquées, Faculté des Sciences Exactes, Université de Bejaia, 6000, Béjaia, Algeria. Lab. E.D.P.N.L., Ecole Normale Supérieure, 16050-Kouba, Algiers, Algeria

