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Abstract

We study the existence of weak solutions for a parametric Robin problem
driven by the p(x)-Laplacian. Our approach relies on the variable exponent the-
ory of generalized Lebesgue-Sobolev spaces, combined with adequate variational
methods and the Mountain Pass Theorem.

1 Introduction

The purpose of this article is to study the existence of solutions for the following
problem: {

−∆p(x)u = λ
(
a(x)|u|q(x)−2u+ b(x)|u|r(x)−2u

)
, in Ω,

|∇u|p(x)−2 ∂u
∂ν + β(x)|u|p(x)−2u = 0, in ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, ∂u∂ν is the outer unit normal
derivative on ∂Ω, λ is a positive number, p is Lipschitz continuous on Ω, β ∈ L∞(∂Ω)
with β− := infx∈∂Ω β(x) > 0, and q, r are continuous functions on Ω with q− :=
infx∈Ω q(x) > 1, r− := infx∈Ω r(x) > 1, a(x), b(x) > 0 for x ∈ Ω such that a ∈ Lα(x)(Ω),

α(x) = p(x)
p(x)−q(x) and b ∈ L

γ(x)(Ω), γ(x) = p∗(x)
p∗(x)−r(x) . Here

p∗(x) =

{
Np(x)
N−p(x) , if p(x) < N,

+∞, if p(x) ≥ N.

We will use the notations such as h− and h+ where

h− := inf
x∈Ω

h(x) ≤ h(x) ≤ h+ := sup
x∈Ω

h(x) < +∞.

Throughout this paper, assuming the condition

1 < q− ≤ q+ < p− ≤ p+ < r− ≤ r+ < (p−)∗ and p+ < N. (2)
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The main interest in studying such problems arises from the presence of the p(x)-
Laplace operator div(|∇u|p(x)−2∇u), which is a natural extension of the classical p-
Laplace operator div(|∇u|p−2∇u) obtained in the case when p is a positive constant.
However, such generalizations are not trivial since the p(x)- Laplace operator possesses
a more complicated structure than p Laplace operator; for example, it is inhomoge-
neous.
Nonlinear boundary value problems with variable exponent have received consid-

erable attention in recent years. This is partly due to their frequent appearance in
applications such as the modeling of electro-rheological fluids [12, 13, 17] and image
processing [4], but these problems are very interesting from a purely mathematical
point of view as well. Many results have been obtained on this kind of problems; see
for example [1, 3, 5, 6, 8, 14, 15, 16]. In [5], the authors have studied the case a(x) = 1,
b(x) = 0 and q(x) = p(x) , they proved that the existence of infinitely many eigenvalue
sequences. Unlike the p-Laplacian case, for a variable exponent p(x) ( 6= constant),
there does not exist a principal eigenvalue and the set of all eigenvalues is not closed
under some assumptions. Finally, they presented some suffi cient conditions for the
infimum of all eigenvalues to be zero and positive, respectively.
The main result of this paper is as follows.

THEOREM 1. Assume p is Lipschitz continuous, q, r ∈ C+(Ω) and condition (2) is
fulfilled. Then there exists λ∗ > 0 such that for any λ ∈ (0, λ∗), problem (1) possesses
a nontrivial weak solution.

This article is organized as follows. First, we will introduce some basic preliminary
results and lemmas in Section 2. In Section 3, we will give the proof of our main result.

2 Preliminaries

For completeness, we first recall some facts on the variable exponent spaces Lp(x)(Ω)
and W 1,p(x)(Ω). For more details, see [9, 10]. Suppose that Ω is a bounded open
domain of RN with smooth boundary ∂Ω and p ∈ C+(Ω) where

C+(Ω) =

{
p ∈ C(Ω) and inf

x∈Ω
p(x) > 1

}
.

Denote by p− := infx∈Ω p(x) and p+ := supx∈Ω p(x). Define the variable exponent
Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) =

{
u : Ω→ R is measurable and

∫
Ω

|u|p(x)
dx < +∞

}
,

with the norm

|u|p(x) = inf

{
τ > 0;

∫
Ω

∣∣∣u
τ

∣∣∣p(x)

dx ≤ 1

}
.

Define the variable exponent Sobolev space W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
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with the norm

‖u‖ = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇uτ
∣∣∣∣p(x)

+
∣∣∣u
τ

∣∣∣p(x)
)
dx ≤ 1

}
,

‖u‖ = |∇u|p(x) + |u|p(x) .

We refer the reader to [8, 9] for the basic properties of the variable exponent
Lebesgue and Sobolev spaces.

LEMMA 1 (cf. [10]). Both (Lp(x)(Ω), |·|p(x)) and (W 1,p(x)(Ω), ‖ · ‖) are separable
and uniformly convex Banach spaces.

LEMMA 2 (cf. [10]). Hölder inequality holds, namely∫
Ω

|uv| dx ≤ 2 |u|p(x) |v|p′(x) for all u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω),

where 1
p(x) + 1

p′(x) = 1.

LEMMA 3 (cf. [2]). Assume that h ∈ L∞+ (Ω) and p ∈ C+(Ω). If |u|h(x) ∈ Lp(x)(Ω),
then we have

min
{
|u|h

−

h(x)p(x) , |u|
h+

h(x)p(x)

}
≤
∣∣∣|u|h(x)

∣∣∣
p(x)
≤ max

{
|u|h

−

h(x)p(x) , |u|
h+

h(x)p(x)

}
.

LEMMA 4 (cf. [9]). Assume that Ω is bounded and smooth.

(i) If p is Lipschitz continuous and p+ < N , then for h ∈ L∞+ (Ω) with p(x) ≤ h(x) ≤
p∗(x) there is a continuous embedding W 1,p(x)(Ω) ↪→ Lh(x)(Ω).

(ii) If p ∈ C(Ω) and 1 ≤ q(x) < p∗(x) for x ∈ Ω where

p∗(x) =

{
Np(x)
N−p(x) , if p(x) < N,

+∞, if p(x) ≥ N,

then there is a compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Now, we introduce a norm, which will be used later. Let β ∈ L∞(∂Ω) with β− :=
infx∈∂Ω β(x) > 0 and for u ∈W 1,p(x)(Ω), define

‖u‖β = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇uτ
∣∣∣∣p(x)

dx+

∫
∂Ω

β(x)
∣∣∣u
τ

∣∣∣p(x)
)
dσ ≤ 1

}
.

Then, by Theorem 2.1 in [7], ‖.‖β is also a norm on W 1,p(x)(Ω) which is equivalent to
‖.‖.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the mapping defined by the following.

LEMMA 5 (cf. [7]). Let Iβ(u) =
∫

Ω
|∇u|p(x)

dx +
∫
∂Ω
β(x) |u|p(x)

dσ with β− > 0.
For u ∈W 1,p(x)(Ω) we have that



110 Existence of Solutions for a Robin Problem

(i) ‖u‖β < 1(= 1, > 1)⇔ Iβ(u) < 1(= 1, > 1),

(ii) ‖u‖β ≤ 1⇒ ‖u‖p
+

β ≤ Iβ(u) ≤ ‖u‖p
−

β , and

(iii) ‖u‖β ≥ 1⇒ ‖u‖p
−

β ≤ Iβ(u) ≤ ‖u‖p
+

β .

Here, problem (1) is stated in the framework of the generalized Sobolev space
X := W 1,p(x)(Ω).

The Euler-Lagrange functional associated with (1) is defined as Φλ : X → R,

Φλ(u) =

∫
Ω

1

p(x)
|∇u|p(x)

dx+

∫
∂Ω

β(x)

p(x)
|u|p(x)

dσ − λ
∫

Ω

a(x)

q(x)
|u|q(x)

dx

−λ
∫

Ω

b(x)

r(x)
|u|r(x)

dx.

We say that u ∈ X is a weak solution of (1) if∫
Ω

|∇u|p(x)−2∇u∇v dx+

∫
∂Ω

β(x) |u|p(x)−2
uvdσ

= λ

∫
Ω

a(x) |u|q(x)−2
uvdx+ λ

∫
Ω

b(x) |u|r(x)−2
uvdx

for all v ∈ X.
Standard arguments imply that Φλ ∈ C1(X,R) and

〈Φ′λ(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇v dx+

∫
∂Ω

β(x) |u|p(x)−2
uvdσ

− λ
∫

Ω

a(x) |u|q(x)−2
uvdx− λ

∫
Ω

b(x) |u|r(x)−2
uvdx,

for all u, v ∈ X. Thus the weak solutions of (1) coincide with the critical points of
Φλ. If such a weak solution exists and is nontrivial, then the corresponding λ is an
eigenvalue of problem (1).
Next, we write Φ′λ as

Φ′λ = A− λB,
where A,B : X → X ′ are defined by

〈A(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇v dx+

∫
∂Ω

β(x) |u|p(x)−2
uv dσ

and

〈B(u), v〉 =

∫
Ω

a(x) |u|q(x)−2
uv dx+

∫
Ω

b(x) |u|r(x)−2
uv dx.

Denote by M,C,Ci, i = 1, 2... the general positive constants which are the exact
values may change from line to line.

LEMMA 6 (cf. [11]). A satisfies condition (S+), namely, un ⇀ u, in X and
lim sup〈A(un), un − u〉 ≤ 0, imply un → u in X.

REMARK 1. Noting that Φ′λ is still of type (S+). Hence, any bounded (PS)
sequence of Φλ in the reflexive Banach space X has a convergent subsequence.
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3 Proof of Main Result

For the proof of our theorem, we will use the Mountain Pass Lemma. We need to
establish some lemmas.

LEMMA 7. The functional Φλ satisfies the Palais-Smale condition (PS).

PROOF. Suppose that (un) ⊂ X is a (PS) sequence; that is,

sup |φλ(un)| ≤M (for any n or as n→∞ ?) and φ′λ(un)→ 0 as n→∞.

Let us show that (un) is bounded in X. Assume ‖un‖β > 1 for convenience. Since
φλ(un) is bounded, we have for n large enough:

M + 1 ≥ φλ(un)− 1

r−
〈φ′λ(un), un〉+

1

r−
〈φ′λ(un), un〉

=

∫
Ω

1

p(x)
|∇un|p(x)

dx+

∫
∂Ω

β(x)

p(x)
|un|p(x)

dσ − λ
∫

Ω

a(x)

q(x)
|un|q(x)dx

−λ
∫

Ω

b(x)

r(x)
|un|r(x)dx− 1

r−

(∫
Ω

|∇un|p(x)
dx+

∫
∂Ω

β(x)|un|p(x) dσ
)

+
λ

r−

∫
Ω

a(x)|un|q(x)dx+
λ

r−

∫
Ω

b(x) |un|r(x)
dx+

1

r−
〈φ′λ(un), un〉

≥ 1

p+
Iβ(un)− λ

q−

∫
Ω

a(x)|un|q(x)dx− λ

r−

∫
Ω

b(x)|un|r(x)dx− 1

r−
Iβ(un)

+
λ

r−

∫
Ω

a(x)|un|q(x)dx+
λ

r−

∫
Ω

b(x)|un|r(x)dx+
1

r−
〈φ′λ(un), un〉

≥
(

1

p+
− 1

r−

)
Iβ(un)− λ

(
1

q−
− 1

r−

)
C1|a|α(x) ‖un‖q

+

− 1

r−
∥∥φ′λ(un)

∥∥
X′
‖un‖

≥
(

1

p+
− 1

r−

)
‖un‖p

−

β − λ
(

1

q−
− 1

r−

)
C1 |a|α(x) ‖un‖

q+ − C2

r−
‖un‖

≥
(

1

p+
− 1

r−

)
C3 ‖un‖p

−
− λ

(
1

q−
− 1

r−

)
C1|a|α(x)‖un‖q

+

− C2

r−
‖un‖,

hence (un) is bounded in X since q− ≤ q+ < p− ≤ p+ < r−. The proof is completed.

LEMMA 8. There exists λ∗ > 0 such that for any λ ∈ (0, λ∗) there exist ρ, τ > 0
such that Φλ(u) ≥ τ > 0 for any u ∈ X with ‖u‖β = ρ.

PROOF. Using Lemma 4, there exists a positive constant C4 such that

|u|p(x) ≤ C4 ‖u‖β and |u|p∗(x) ≤ C4 ‖u‖β for all u ∈ X. (3)
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Fix ρ ∈]0, 1[ such that ρ < 1
C4
. Then relation (3) implies |u|p(x) < 1, |u|p∗(x) < 1, for

all u ∈ X with ‖u‖β = ρ. Using Lemmas 2 and 3, we obtain∫
Ω

a(x) |u|q(x)
dx ≤ 2|a|α(x)

∣∣∣|u|q(x)
∣∣∣
p(x)
q(x)

≤ 2 |a|α(x) |u|
q−

p(x) , (4)

and ∫
Ω

b(x)|u|r(x)dx ≤ 2 |b|γ(x) |
∣∣∣u|r(x)

∣∣∣
p∗(x)
r(x)

≤ 2|b|γ(x) |u|r
−

p∗(x) , (5)

for all u ∈ X with ‖u‖β = ρ. Combining (3), (4) and (5), we obtain∫
Ω

a(x)|u|q(x)dx ≤ 2|a|α(x)C
q−

4 ‖u‖
q−

β , (6)

and ∫
Ω

b(x)|u|r(x)dx ≤ 2|b|γ(x)C
r−

4 ‖u‖
r−

β , (7)

for all u ∈ X with ‖u‖β = ρ. Hence, from (6), (7) we deduce that for any u ∈ X with
‖u‖β = ρ, we have

Φλ(u) ≥ 1

p+

(∫
Ω

|∇u|p(x)
dx+

∫
∂Ω

β(x)|u|p(x)dσ

)
− λ

q−

∫
Ω

a(x) |u|q(x)
dx

− λ

r−

∫
Ω

b(x) |u|r(x)
dx

≥ 1

p+
‖u‖p

+

β −
λ

q−
2|a|α(x)C

q−

4 ‖u‖
q−

β −
λ

r−
2|b|γ(x)C

r−

4 ‖u‖
r−

β .

Putting

λ∗ = min

{
q−ρp

+−q−

8Cq
−

4 p+|a|α(x)

,
r−ρp

+−r−

8Cr
−

4 p+|b|γ(x)

}
(8)

for any u ∈ X with ‖u‖β = ρ, there exists τ = ρp
+

/(2p+) such that

Φλ(u) ≥ τ > 0.

This completes the proof.

LEMMA 9. There exists ξ ∈ X such that ξ ≥ 0, ξ 6= 0 and Φλ(tξ) < 0, for t > 0
small enough.
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PROOF. Let ξ ∈ C∞0 (Ω), ξ ≥ 0, ξ 6= 0 and t ∈ (0, 1). We have

Φλ(tξ) =

∫
Ω

tp(x)

p(x)
|∇ξ|p(x)

dx+

∫
∂Ω

tp(x)β(x)

p(x)
|ξ|p(x)

dσ − λ
∫

Ω

a(x)
tq(x)

q(x)
|ξ|q(x)

dx

−λ
∫

Ω

b(x)
tr(x)

r(x)
|ξ|r(x)

dx

≤ tp
−

p−

(∫
Ω

|∇ξ|p(x)
dx+

∫
∂Ω

β(x) |ξ|p(x)
dσ

)
− λtq

+

q+

∫
Ω

a(x) |ξ|q(x)
dx

−λt
r+

r+

∫
Ω

b(x) |ξ|r(x)
dx

≤ tp
−

p−

(∫
Ω

|∇ξ|p(x)
dx+

∫
∂Ω

β(x) |ξ|p(x)
dσ

)
−λt

q+

q+

(∫
Ω

a(x) |ξ|q(x)
dx+

∫
Ω

b(x) |ξ|r(x)
dx

)
.

Then, for any t < δ
1

p−−q+ , with

0 < δ < min

1,
λp−

(∫
Ω
a(x) |ξ|q(x)

dx+
∫

Ω
b(x) |ξ|r(x)

dx
)

q+
(∫

Ω
|∇ξ|p(x)

dx+
∫
∂Ω
β(x) |ξ|p(x)

dσ
)
 ,

we conclude that
Φλ(tξ) < 0.

The proof is complete.

We now turn to the proof of Theorem 1. To apply the Mountain Pass Theorem, we
need to prove that

φ(tu)→ −∞ as t→ +∞,
for a certain u ∈ X. Let ω ∈ C∞0 (Ω), ω ≥ 0, ω 6= 0 and t > 1. We have

Φλ(tω) =

∫
Ω

tp(x)

p(x)
|∇ω|p(x)

dx+

∫
∂Ω

tp(x)β(x)

p(x)
|ω|p(x)

dσ − λ
∫

Ω

a(x)
tq(x)

q(x)
|ω|q(x)

dx

−λ
∫

Ω

b(x)
tr(x)

r(x)
|ω|r(x)dx

≤ tp
+

p−

(∫
Ω

|∇ω|p(x)
dx+

∫
∂Ω

β(x) |ω|p(x)
dσ

)
− λtq

−

q+

∫
Ω

a(x) |ω|q(x)
dx

−λt
r−

r+

∫
Ω

b(x) |ω|r(x)
dx.

Since q−, p+ < r− we have φ(tω)→ −∞ as t→ +∞. It follows that there exists e ∈ X
such that ‖e‖β > ρ and φλ(e) < 0. According to the Mountain Pass Theorem, φλ
admits a critical value θ ≥ τ which is characterized by

θ = inf
g∈Γ

sup
t∈[0,1]

φλ(g(t)),
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where
Γ = {g ∈ C([0, 1], X) : g(0) = 0 and g(1) = e}.

This completes the proof.

Acknowledgment. The author thanks the referees for their careful reading of the
manuscript and insightful comments.
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