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Abstract

In this paper we prove coincidence point and common fixed point results for
mappings satisfying some expansive type contractions in the setting of a cone
b-metric space. Our results improve and supplement some recent results in the
literature. Some examples are also provided to illustrate our results.

1 Introduction and Preliminaries

Metric fixed point theory is playing an increasing role in mathematics because of its
wide range of applications in applied mathematics and sciences. There has been a
number of generalizations of the usual notion of a metric space. One such general-
ization is a b-metric space introduced and studied by Bakhtin [3] and Czerwik [4]. In
[6], Huang and Zhang introduced the concept of cone metric spaces as a generaliza-
tion of metric spaces and proved some fixed point theorems for contractive mappings
that extend certain results of fixed points in metric spaces. Recently, Hussain and
Shah [7] introduced the concept of cone b-metric spaces as a generalization of b-metric
spaces and cone metric spaces. There are many related works about the fixed point of
contractive mappings (see, for example [1, 5, 10]). The aim of this work is to obtain
suffi cient conditions for existence of points of coincidence and common fixed points for a
pair of self mappings satisfying some expansive type conditions in cone b-metric spaces.

We need to recall some basic notations, definitions, and necessary results from
existing literature. Let E be a real Banach space and θ denote the zero vector of E. A
cone P is a subset of E such that

(i) P is closed, nonempty and P 6= {θ},

(ii) ax+ by ∈ P for a, b ∈ R, a, b ≥ 0, x, y ∈ P,

(iii) P ∩ (−P ) = {θ}.
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For any cone P ⊆ E, we can define a partial ordering � on E with respect to P by
x � y (equivalently, y � x) if and only if y−x ∈ P . We shall write x ≺ y (equivalently,
y � x) if x � y and x 6= y, while x � y will stand for y − x ∈ int(P ), where int(P )
denotes the interior of P . The cone P is called normal if there is a number k > 0 such
that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ k ‖y‖.

The least positive number satisfying the above inequality is called the normal constant
of P . Throughout this paper, we suppose that E is a real Banach space, P is a cone
in E with int(P ) 6= ∅ and � is a partial ordering on E with respect to P .

DEFINITION 1.1 ([6]). Let E be a real Banach space with cone P and let X be a
nonempty set. Suppose the mapping d : X ×X → E satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

DEFINITION 1.2 ([7]). Let X be a nonempty set and E a real Banach space with
cone P . A vector valued function d : X×X → E is said to be a cone b-metric function
on X with the constant s ≥ 1 if the following conditions are satisfied:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) � s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a cone b-metric space.

Observe that if s = 1, then the ordinary triangle inequality in a cone metric space
is satisfied, however it does not hold true when s > 1. Thus the class of cone b-metric
spaces is effectively larger than that of the ordinary cone metric spaces. That is, every
cone metric space is a cone b-metric space, but its converse need not be true. The
following examples illustrate these facts.

EXAMPLE 1.3 ([7]). Let X = {−1, 0, 1}, E = R2, P = {(x, y) : x ≥ 0, y ≥ 0}.
Define d : X × X → P by d(x, y) = d(y, x) for all x, y ∈ X, d(x, x) = θ, x ∈ X and
d(−1, 0) = (3, 3), d(−1, 1) = d(0, 1) = (1, 1). Then (X, d) is a cone b-metric space, but
not a cone metric space since the triangle inequality is not satisfied. Indeed, we have

d(−1, 1) + d(1, 0) = (1, 1) + (1, 1) = (2, 2) ≺ (3, 3) = d(−1, 0).

It is easy to verify that s = 3
2 .
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EXAMPLE 1.4 ([8]). Let E = R2, P = {(x, y) : x ≥ 0, y ≥ 0} ⊆ E, X = R and
d : X × X → E such that d(x, y) = (| x− y |p, α | x− y |p) where α ≥ 0 and p > 1
are two constants. Then (X, d) is a cone b-metric space with s = 2p−1, but not a cone
metric space.

DEFINITION 1.5 ([7]). Let (X, d) be a cone b-metric space, x ∈ X and (xn) be a
sequence in X. Then

(i) (xn) converges to x whenever, for every c ∈ E with θ � c, there is a natural
number n0 such that for all n > n0, d(xn, x)� c. We denote this by limn→∞ xn =
x or xn → x (n→∞);

(ii) (xn) is a Cauchy sequence whenever, for every c ∈ E with θ � c, there is a
natural number n0 such that d(xn, xm)� c for all n,m > n0;

(iii) (X, d) is a complete cone b-metric space if every Cauchy sequence is convergent.

REMARK 1.6 ([7]). Let (X, d) be a cone b-metric space over the ordered real
Banach space E with a cone P . Then the following properties are often used:

(i) If a � b and b� c, then a� c.

(ii) If a� b and b� c, then a� c.

(iii) If θ � u� c for each c ∈ int(P ), then u = θ.

(iv) If c ∈ int(P ), θ � an and an → θ, then there exists n0 such that for all n > n0
we have an � c.

(v) Let θ � c. If θ � d(xn, x) � bn and bn → θ, then eventually d(xn, x)� c, where
(xn), x are a sequence and a given point in X.

(vi) If θ � an � bn and an → a, bn → b, then a � b, for each cone P .

(vii) If E is a real Banach space with cone P and if a � λa where a ∈ P and 0 ≤ λ < 1,
then a = θ.

(viii) α int(P ) ⊆ int(P ) for α > 0.

(ix) For each δ > 0 and x ∈ int(P ) there is 0 < γ < 1 such that ‖ γx ‖< δ.

(x) For each θ � c1 and c2 ∈ P , there is an element θ � d such that c1 � d and
c2 � d.

(xi) For each θ � c1 and θ � c2, there is an element θ � e such that e � c1 and
e� c2.
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DEFINITION 1.7. Let (X, d) be a cone b-metric space and let T : X → X be a
given mapping. We say that T is continuous at x0 ∈ X if Txn → Tx0 as n → ∞ for
every sequences (xn) in X satisfying xn → x0 as n → ∞. If T is continuous at each
point x0 ∈ X, then we say that T is continuous on X.

DEFINITION 1.8. Let (X, d) be a cone b-metric space with the constant s ≥ 1. A
mapping T : X → X is called expansive if there exists a real constant k > s such that

d(Tx, Ty) � k d(x, y) for all x, y ∈ X.

DEFINITION 1.9 ([2]). Let T and S be self mappings of a set X. If y = Tx = Sx
for some x in X, then x is called a coincidence point of T and S and y is called a point
of coincidence of T and S.

DEFINITION 1.10 ([9]). The mappings T, S : X → X are weakly compatible, if
for every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

PROPOSITION 1.11 ([2]). Let S and T be weakly compatible selfmaps of a non-
empty set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is
the unique common fixed point of S and T .

2 Main Results

In this section, we prove point of coincidence and common fixed point results in cone
b-metric spaces.

THEOREM 2.1. Let (X, d) be a cone b-metric space with the constant s ≥ 1.
Suppose the mappings f, g : X → X satisfy g(X) ⊆ f(X), either f(X) or g(X) is
complete, and

d(fx, fy) � αd(gx, gy) + β d(fx, gx) + γ d(fy, gy) for all x, y ∈ X, (1)

where α, β, γ are nonnegative real numbers with α + β + γ > s, β < 1 and α 6= 0.
Then f and g have a point of coincidence in X. Moreover, if α > 1, then the point of
coincidence is unique. If f and g are weakly compatible and α > 1, then f and g have
a unique common fixed point in X.

PROOF. Let x0 ∈ X and choose x1 ∈ X such that gx0 = fx1. This is possible
since g(X) ⊆ f(X). Continuing this process, we can construct a sequence (xn) in X
such that fxn = gxn−1, for all n ≥ 1. By (1), we have

d(gxn−1, gxn) = d(fxn, fxn+1)

� αd(gxn, gxn+1) + βd(fxn, gxn) + γd(fxn+1, gxn+1)

= αd(gxn, gxn+1) + βd(gxn−1, gxn) + γd(gxn, gxn+1)
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which gives that
d(gxn, gxn+1) � λd(gxn−1, gxn)

where λ = 1−β
α+γ . It is easy to see that λ ∈ (0,

1
s ). By induction, we get that

d(gxn, gxn+1) � λnd(gx0, gx1) (2)

for all n ≥ 0. Let m,n ∈ N with m > n. Then, by using condition (2) we have

d(gxn, gxm) � s [d(gxn, gxn+1) + d(gxn+1, gxm)]

� sd(gxn, gxn+1) + s
2d(gxn+1, gxn+2) + · · ·

+sm−n−1 [d(gxm−2, gxm−1) + d(gxm−1, gxm)]

�
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−n−1λm−1

]
d(gx0, gx1)

�
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−nλm−1

]
d(gx0, gx1)

= sλn
[
1 + sλ+ (sλ)2 + · · ·+ (sλ)m−n−2 + (sλ)m−n−1

]
d(gx0, gx1)

� sλn

1− sλ d(gx0, gx1). (3)

It is to be noted that sλn

1−sλ d(gx0, gx1) → θ as n → ∞. Let θ � c be given. Then we
can find m0 ∈ N such that

sλn

1− sλ d(gx0, gx1)� c for each n > m0.

Therefore, it follows from (3) that

d(gxn, gxm) �
sλn

1− sλ d(gx0, gx1)� c for all m > n > m0.

So (gxn) is a Cauchy sequence in g(X). Suppose that g(X) is a complete subspace of
X. Then there exists y ∈ g(X) ⊆ f(X) such that gxn → y and also fxn → y. In case,
f(X) is complete, this holds also with y ∈ f(X). Let u ∈ X be such that fu = y.
For θ � c, one can choose a natural number n0 ∈ N such that d(y, gxn) � c

2s and
d(fxn, fu)� αc

2s for all n > n0. By (1), we have

d(gxn−1, fu) = d(fxn, fu)

� αd(gxn, gu) + βd(fxn, gxn) + γd(fu, gu)

� αd(gxn, gu).

If α 6= 0, then
d(gxn, gu) �

1

α
d(gxn−1, fu).

Therefore,

d(y, gu) � s[d(y, gxn) + d(gxn, gu)]

� s[d(y, gxn) +
1

α
d(gxn−1, fu)]

= s[d(y, gxn) +
1

α
d(fxn, fu)]

� c, for all n > n0.
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This gives that d(y, gu) = θ, i.e., gu = y and hence fu = gu = y. Therefore, y is a
point of coincidence of f and g.
Now we suppose that α > 1. Let v be another point of coincidence of f and g. So

fx = gx = v for some x ∈ X. Then

d(y, v) = d(fu, fx) � αd(gu, gx) + βd(fu, gu) + γd(fx, gx) = αd(y, v),

which implies that

d(y, v) � 1

α
d(y, v).

By Remark 1.6(vii), we have d(v, y) = θ i.e., v = y. Therefore, f and g have a unique
point of coincidence in X. If f and g are weakly compatible, then by Proposition 1.11,
f and g have a unique common fixed point in X. The proof is complete.

COROLLARY 2.2. Let (X, d) be a cone b-metric space with the constant s ≥ 1.
Suppose the mappings f, g : X → X satisfy the condition

d(fx, fy) � αd(gx, gy) for all x, y ∈ X,

where α > s is a constant. If g(X) ⊆ f(X) and f(X) or g(X) is complete, then f and
g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point in X.

PROOF. It follows by taking β = γ = 0 in Theorem 2.1.

The following corollary is the Theorem 2.1 [8].

COROLLARY 2.3. Let (X, d) be a complete cone b-metric space with the constant
s ≥ 1. Suppose the mapping g : X → X satisfies the contractive condition

d(gx, gy) � λ d(x, y) for all x, y ∈ X,

where λ ∈ [0, 1s ) is a constant. Then g has a unique fixed point in X. Furthermore,
the iterative sequence (gnx) converges to the fixed point.

PROOF. It follows by taking β = γ = 0 and f = I, the identity mapping on X, in
Theorem 2.1.

COROLLARY 2.4. Let (X, d) be a complete cone b-metric space with the constant
s ≥ 1. Suppose the mapping f : X → X is onto and satisfies

d(fx, fy) � αd(x, y) for all x, y ∈ X,

where α > s is a constant. Then f has a unique fixed point in X.

PROOF. Taking g = I and β = γ = 0 in Theorem 2.1, we obtain the desired result.

REMARK 2.5. Corollary 2.4 gives a suffi cient condition for the existence of unique
fixed point of an expansive mapping in cone b-metric spaces.
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COROLLARY 2.6. Let (X, d) be a complete cone b-metric space with the constant
s ≥ 1. Suppose the mapping f : X → X is onto and satisfies the condition

d(fx, fy) � αd(x, y) + β d(fx, x) + γ d(fy, y) for x, y ∈ X,

where α, β, γ are nonnegative real numbers with α 6= 0, β < 1, α + β + γ > s. Then
f has a fixed point in X. Moreover, if α > 1, then the fixed point of f is unique.

PROOF. It follows by taking g = I in Theorem 2.1.

THEOREM 2.7. Let (X, d) be a complete cone b-metric space with the constant
s ≥ 1. Suppose the mappings S, T : X → X satisfy the following conditions:

d(T (Sx), Sx) +
k

s
d(T (Sx), x) � αd(Sx, x) (4)

and

d(S(Tx), Tx) +
k

s
d(S(Tx), x) � βd(Tx, x) (5)

for all x ∈ X, where α, β, k are nonnegative real numbers with α > s + (1 + s)k and
β > s + (1 + s)k. If S and T are continuous and surjective, then S and T have a
common fixed point in X.

PROOF. Let x0 ∈ X be arbitrary and choose x1 ∈ X such that x0 = Tx1. This is
possible since T is surjective. Since S is also surjective, there exists x2 ∈ X such that
x1 = Sx2. Continuing this process, we can construct a sequence (xn) in X such that
x2n = Tx2n+1 and x2n−1 = Sx2n for all n ∈ N. Using (4), we have for n ∈ N ∪ {0}

d(T (Sx2n+2), Sx2n+2) +
k

s
d(T (Sx2n+2), x2n+2) � αd(Sx2n+2, x2n+2)

which implies that

d(x2n, x2n+1) +
k

s
d(x2n, x2n+2) � αd(x2n+1, x2n+2).

Hence, we have

αd(x2n+1, x2n+2) � d(x2n, x2n+1) + kd(x2n, x2n+1) + kd(x2n+1, x2n+2).

Therefore,

d(x2n+1, x2n+2) �
1 + k

α− kd(x2n, x2n+1). (6)

Using (5) and by an argument similar to that used above, we obtain that

d(x2n, x2n+1) �
1 + k

β − kd(x2n−1, x2n). (7)

Let λ = max
(
1+k
α−k ,

1+k
β−k

)
. It is easy to see that λ ∈ (0, 1s ). Then, by combining (6)

and (7), we get
d(xn, xn+1) � λd(xn−1, xn) (8)
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for all n ≥ 1. By repeated application of (8), we obtain

d(xn, xn+1) � λnd(x0, x1).

By an argument similar to that used in Theorem 2.1, it follows that (xn) is a Cauchy
sequence in X. Since X is complete, there exists u ∈ X such that xn → u as n→∞.
Now, x2n+1 → u and x2n → u as n → ∞. The continuity of S and T imply that
Tx2n+1 → Tu and Sx2n → Su as n→∞ i.e., x2n → Tu and x2n−1 → Su as n→∞.
The uniqueness of limit yields that u = Su = Tu. Hence, u is a common fixed point of
S and T . The proof is complete.

COROLLARY 2.8. Let (X, d) be a complete cone b-metric space with the constant
s ≥ 1. Let T : X → X be a continuous surjective mapping such that

d(T 2x, Tx) +
k

s
d(T 2x, x) � αd(Tx, x) for all x ∈ X,

where α, k are nonnegative real numbers with α > s + (1 + s)k. Then T has a fixed
point in X.

PROOF. It follows from Theorem 2.7 by taking S = T and β = α.

We conclude this paper with the following two examples.

EXAMPLE 2.9. Let E = R2, the Euclidean plane and P = {(x, y) ∈ R2 : x, y ≥ 0}
a cone in E. Let X = [0, 1] and p > 1 be a constant. We define d : X ×X → E as

d(x, y) = (| x− y |p, | x− y |p) for all x, y ∈ X.

Then (X, d) is a cone b-metric space with the constant s = 2p−1. Let us define f, g :
X → X as fx = x

3 and gx =
x
9 −

x2

27 for all x ∈ X. Then, for every x, y ∈ X one has
d(fx, fy) � 3pd(gx, gy) i.e., the condition (1) holds for α = 3p, β = γ = 0. Thus, we
have all the conditions of Theorem 2.1 and 0 ∈ X is the unique common fixed point of
f and g.

EXAMPLE 2.10. Let E = R2 and P = {(x, y) ∈ R2 : x, y ≥ 0} a cone in E. Let
X = [0,∞). We define d : X ×X → E as

d(x, y) = (| x− y |2, | x− y |2) for all x, y ∈ X.

Then (X, d) is a complete cone b-metric space with the constant s = 2. Let us define
S, T : X → X as Sx = 3x and Tx = 4x for all x ∈ X. Then, the conditions (4) and (5)
hold for α = β = 3+ 3k > s+ (1 + s)k, where k is a nonnegative real number. We see
that all hypotheses of Theorem 2.7 are satisfied and 0 ∈ X is a common fixed point of
S and T .
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