Coincidence Points And Common Fixed Points For Expansive Type Mappings In Cone b-Metric Spaces*

Sushanta Kumar Mohanta[†], Rima Maitra[‡]

Received 22 January 2014

Abstract

In this paper we prove coincidence point and common fixed point results for mappings satisfying some expansive type contractions in the setting of a cone b-metric space. Our results improve and supplement some recent results in the literature. Some examples are also provided to illustrate our results.

1 Introduction and Preliminaries

Metric fixed point theory is playing an increasing role in mathematics because of its wide range of applications in applied mathematics and sciences. There has been a number of generalizations of the usual notion of a metric space. One such generalization is a b-metric space introduced and studied by Bakhtin [3] and Czerwik [4]. In [6], Huang and Zhang introduced the concept of cone metric spaces as a generalization of metric spaces and proved some fixed point theorems for contractive mappings that extend certain results of fixed points in metric spaces. Recently, Hussain and Shah [7] introduced the concept of cone b-metric spaces as a generalization of b-metric spaces and cone metric spaces. There are many related works about the fixed point of contractive mappings (see, for example [1, 5, 10]). The aim of this work is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in cone b-metric spaces.

We need to recall some basic notations, definitions, and necessary results from existing literature. Let E be a real Banach space and θ denote the zero vector of E. A cone P is a subset of E such that

- (i) P is closed, nonempty and $P \neq \{\theta\}$,
- (ii) $ax + by \in P$ for $a, b \in \mathbb{R}$, $a, b \ge 0$, $x, y \in P$,
- (iii) $P \cap (-P) = \{\theta\}.$

^{*}Mathematics Subject Classifications: 54H25, 47H10.

 $^{^\}dagger Department$ of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India

 $^{^{\}ddagger}$ Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India

For any cone $P \subseteq E$, we can define a partial ordering \leq on E with respect to P by $x \leq y$ (equivalently, $y \succeq x$) if and only if $y - x \in P$. We shall write $x \prec y$ (equivalently, $y \succ x$) if $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in int(P)$, where int(P) denotes the interior of P. The cone P is called normal if there is a number k > 0 such that for all $x, y \in E$,

$$\theta \leq x \leq y \text{ implies } ||x|| \leq k ||y||.$$

The least positive number satisfying the above inequality is called the normal constant of P. Throughout this paper, we suppose that E is a real Banach space, P is a cone in E with $int(P) \neq \emptyset$ and \leq is a partial ordering on E with respect to P.

DEFINITION 1.1 ([6]). Let E be a real Banach space with cone P and let X be a nonempty set. Suppose the mapping $d: X \times X \to E$ satisfies

- (i) $\theta \leq d(x,y)$ for all $x,y \in X$ and $d(x,y) = \theta$ if and only if x = y,
- (ii) d(x,y) = d(y,x) for all $x, y \in X$,
- (iii) $d(x,y) \leq d(x,z) + d(z,y)$ for all $x,y,z \in X$.

Then d is called a cone metric on X, and (X,d) is called a cone metric space.

DEFINITION 1.2 ([7]). Let X be a nonempty set and E a real Banach space with cone P. A vector valued function $d: X \times X \to E$ is said to be a cone b-metric function on X with the constant $s \ge 1$ if the following conditions are satisfied:

- (i) $\theta \leq d(x,y)$ for all $x,y \in X$ and $d(x,y) = \theta$ if and only if x = y,
- (ii) d(x,y) = d(y,x) for all $x, y \in X$,
- (iii) $d(x,y) \leq s (d(x,z) + d(z,y))$ for all $x,y,z \in X$.

The pair (X, d) is called a cone b-metric space.

Observe that if s = 1, then the ordinary triangle inequality in a cone metric space is satisfied, however it does not hold true when s > 1. Thus the class of cone b-metric spaces is effectively larger than that of the ordinary cone metric spaces. That is, every cone metric space is a cone b-metric space, but its converse need not be true. The following examples illustrate these facts.

EXAMPLE 1.3 ([7]). Let $X = \{-1,0,1\}$, $E = \mathbb{R}^2$, $P = \{(x,y) : x \ge 0, y \ge 0\}$. Define $d: X \times X \to P$ by d(x,y) = d(y,x) for all $x,y \in X$, $d(x,x) = \theta$, $x \in X$ and d(-1,0) = (3,3), d(-1,1) = d(0,1) = (1,1). Then (X,d) is a cone b-metric space, but not a cone metric space since the triangle inequality is not satisfied. Indeed, we have

$$d(-1,1) + d(1,0) = (1,1) + (1,1) = (2,2) \prec (3,3) = d(-1,0).$$

It is easy to verify that $s = \frac{3}{2}$.

EXAMPLE 1.4 ([8]). Let $E = \mathbb{R}^2$, $P = \{(x,y) : x \ge 0, y \ge 0\} \subseteq E$, $X = \mathbb{R}$ and $d : X \times X \to E$ such that $d(x,y) = (|x-y|^p, \alpha |x-y|^p)$ where $\alpha \ge 0$ and p > 1 are two constants. Then (X,d) is a cone b-metric space with $s = 2^{p-1}$, but not a cone metric space.

DEFINITION 1.5 ([7]). Let (X, d) be a cone b-metric space, $x \in X$ and (x_n) be a sequence in X. Then

- (i) (x_n) converges to x whenever, for every $c \in E$ with $\theta \ll c$, there is a natural number n_0 such that for all $n > n_0$, $d(x_n, x) \ll c$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ $(n \to \infty)$;
- (ii) (x_n) is a Cauchy sequence whenever, for every $c \in E$ with $\theta \ll c$, there is a natural number n_0 such that $d(x_n, x_m) \ll c$ for all $n, m > n_0$;
- (iii) (X, d) is a complete cone b-metric space if every Cauchy sequence is convergent.

REMARK 1.6 ([7]). Let (X,d) be a cone b-metric space over the ordered real Banach space E with a cone P. Then the following properties are often used:

- (i) If $a \leq b$ and $b \ll c$, then $a \ll c$.
- (ii) If $a \ll b$ and $b \ll c$, then $a \ll c$.
- (iii) If $\theta \leq u \ll c$ for each $c \in int(P)$, then $u = \theta$.
- (iv) If $c \in int(P)$, $\theta \leq a_n$ and $a_n \to \theta$, then there exists n_0 such that for all $n > n_0$ we have $a_n \ll c$.
- (v) Let $\theta \ll c$. If $\theta \leq d(x_n, x) \leq b_n$ and $b_n \to \theta$, then eventually $d(x_n, x) \ll c$, where (x_n) , x are a sequence and a given point in X.
- (vi) If $\theta \leq a_n \leq b_n$ and $a_n \to a$, $b_n \to b$, then $a \leq b$, for each cone P.
- (vii) If E is a real Banach space with cone P and if $a \leq \lambda a$ where $a \in P$ and $0 \leq \lambda < 1$, then $a = \theta$.
- (viii) $\alpha int(P) \subseteq int(P)$ for $\alpha > 0$.
- (ix) For each $\delta > 0$ and $x \in int(P)$ there is $0 < \gamma < 1$ such that $|| \gamma x || < \delta$.
- (x) For each $\theta \ll c_1$ and $c_2 \in P$, there is an element $\theta \ll d$ such that $c_1 \ll d$ and $c_2 \ll d$.
- (xi) For each $\theta \ll c_1$ and $\theta \ll c_2$, there is an element $\theta \ll e$ such that $e \ll c_1$ and $e \ll c_2$.

DEFINITION 1.7. Let (X, d) be a cone b-metric space and let $T: X \to X$ be a given mapping. We say that T is continuous at $x_0 \in X$ if $Tx_n \to Tx_0$ as $n \to \infty$ for every sequences (x_n) in X satisfying $x_n \to x_0$ as $n \to \infty$. If T is continuous at each point $x_0 \in X$, then we say that T is continuous on X.

DEFINITION 1.8. Let (X, d) be a cone b-metric space with the constant $s \ge 1$. A mapping $T: X \to X$ is called expansive if there exists a real constant k > s such that

$$d(Tx, Ty) \succeq k d(x, y)$$
 for all $x, y \in X$.

DEFINITION 1.9 ([2]). Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X, then x is called a coincidence point of T and S and Y is called a point of coincidence of T and S.

DEFINITION 1.10 ([9]). The mappings $T, S : X \to X$ are weakly compatible, if for every $x \in X$, the following holds:

$$T(Sx) = S(Tx)$$
 whenever $Sx = Tx$.

PROPOSITION 1.11 ([2]). Let S and T be weakly compatible selfmaps of a nonempty set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of S and T.

2 Main Results

In this section, we prove point of coincidence and common fixed point results in cone b-metric spaces.

THEOREM 2.1. Let (X,d) be a cone *b*-metric space with the constant $s \geq 1$. Suppose the mappings $f, g: X \to X$ satisfy $g(X) \subseteq f(X)$, either f(X) or g(X) is complete, and

$$d(fx, fy) \succeq \alpha d(gx, gy) + \beta d(fx, gx) + \gamma d(fy, gy)$$
 for all $x, y \in X$, (1)

where α , β , γ are nonnegative real numbers with $\alpha + \beta + \gamma > s$, $\beta < 1$ and $\alpha \neq 0$. Then f and g have a point of coincidence in X. Moreover, if $\alpha > 1$, then the point of coincidence is unique. If f and g are weakly compatible and $\alpha > 1$, then f and g have a unique common fixed point in X.

PROOF. Let $x_0 \in X$ and choose $x_1 \in X$ such that $gx_0 = fx_1$. This is possible since $g(X) \subseteq f(X)$. Continuing this process, we can construct a sequence (x_n) in X such that $fx_n = gx_{n-1}$, for all $n \ge 1$. By (1), we have

$$\begin{array}{lcl} d(gx_{n-1},gx_n) & = & d(fx_n,fx_{n+1}) \\ & \succeq & \alpha d(gx_n,gx_{n+1}) + \beta d(fx_n,gx_n) + \gamma d(fx_{n+1},gx_{n+1}) \\ & = & \alpha d(gx_n,gx_{n+1}) + \beta d(gx_{n-1},gx_n) + \gamma d(gx_n,gx_{n+1}) \end{array}$$

which gives that

$$d(gx_n, gx_{n+1}) \leq \lambda d(gx_{n-1}, gx_n)$$

where $\lambda = \frac{1-\beta}{\alpha+\gamma}$. It is easy to see that $\lambda \in (0, \frac{1}{s})$. By induction, we get that

$$d(gx_n, gx_{n+1}) \le \lambda^n d(gx_0, gx_1) \tag{2}$$

for all $n \geq 0$. Let $m, n \in \mathbb{N}$ with m > n. Then, by using condition (2) we have

$$d(gx_{n}, gx_{m}) \leq s \left[d(gx_{n}, gx_{n+1}) + d(gx_{n+1}, gx_{m})\right]$$

$$\leq s d(gx_{n}, gx_{n+1}) + s^{2} d(gx_{n+1}, gx_{n+2}) + \cdots$$

$$+ s^{m-n-1} \left[d(gx_{m-2}, gx_{m-1}) + d(gx_{m-1}, gx_{m})\right]$$

$$\leq \left[s\lambda^{n} + s^{2}\lambda^{n+1} + \cdots + s^{m-n-1}\lambda^{m-2} + s^{m-n-1}\lambda^{m-1}\right] d(gx_{0}, gx_{1})$$

$$\leq \left[s\lambda^{n} + s^{2}\lambda^{n+1} + \cdots + s^{m-n-1}\lambda^{m-2} + s^{m-n}\lambda^{m-1}\right] d(gx_{0}, gx_{1})$$

$$= s\lambda^{n} \left[1 + s\lambda + (s\lambda)^{2} + \cdots + (s\lambda)^{m-n-2} + (s\lambda)^{m-n-1}\right] d(gx_{0}, gx_{1})$$

$$\leq \frac{s\lambda^{n}}{1 - s\lambda} d(gx_{0}, gx_{1}). \tag{3}$$

It is to be noted that $\frac{s\lambda^n}{1-s\lambda}d(gx_0,gx_1)\to\theta$ as $n\to\infty$. Let $\theta\ll c$ be given. Then we can find $m_0\in\mathbb{N}$ such that

$$\frac{s\lambda^n}{1-s\lambda}\,d(gx_0,gx_1)\ll c \text{ for each } n>m_0.$$

Therefore, it follows from (3) that

$$d(gx_n, gx_m) \leq \frac{s\lambda^n}{1-s\lambda} d(gx_0, gx_1) \ll c \text{ for all } m > n > m_0.$$

So (gx_n) is a Cauchy sequence in g(X). Suppose that g(X) is a complete subspace of X. Then there exists $y \in g(X) \subseteq f(X)$ such that $gx_n \to y$ and also $fx_n \to y$. In case, f(X) is complete, this holds also with $y \in f(X)$. Let $u \in X$ be such that fu = y. For $\theta \ll c$, one can choose a natural number $n_0 \in \mathbb{N}$ such that $d(y, gx_n) \ll \frac{c}{2s}$ and $d(fx_n, fu) \ll \frac{\alpha c}{2s}$ for all $n > n_0$. By (1), we have

$$d(gx_{n-1}, fu) = d(fx_n, fu)$$

$$\succeq \alpha d(gx_n, gu) + \beta d(fx_n, gx_n) + \gamma d(fu, gu)$$

$$\succeq \alpha d(gx_n, gu).$$

If $\alpha \neq 0$, then

$$d(gx_n, gu) \leq \frac{1}{\alpha} d(gx_{n-1}, fu).$$

Therefore,

$$\begin{aligned} d(y,gu) & \leq & s[d(y,gx_n) + d(gx_n,gu)] \\ & \leq & s[d(y,gx_n) + \frac{1}{\alpha}d(gx_{n-1},fu)] \\ & = & s[d(y,gx_n) + \frac{1}{\alpha}d(fx_n,fu)] \\ & \ll & c, \ for \ all \ n > n_0. \end{aligned}$$

This gives that $d(y, gu) = \theta$, i.e., gu = y and hence fu = gu = y. Therefore, y is a point of coincidence of f and q.

Now we suppose that $\alpha > 1$. Let v be another point of coincidence of f and g. So fx = gx = v for some $x \in X$. Then

$$d(y, v) = d(fu, fx) \succeq \alpha d(gu, gx) + \beta d(fu, gu) + \gamma d(fx, gx) = \alpha d(y, v),$$

which implies that

$$d(y,v) \leq \frac{1}{\alpha}d(y,v).$$

By Remark 1.6(vii), we have $d(v, y) = \theta$ i.e., v = y. Therefore, f and g have a unique point of coincidence in X. If f and g are weakly compatible, then by Proposition 1.11, f and g have a unique common fixed point in X. The proof is complete.

COROLLARY 2.2. Let (X, d) be a cone b-metric space with the constant $s \ge 1$. Suppose the mappings $f, g: X \to X$ satisfy the condition

$$d(fx, fy) \succeq \alpha d(gx, gy)$$
 for all $x, y \in X$,

where $\alpha > s$ is a constant. If $g(X) \subseteq f(X)$ and f(X) or g(X) is complete, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

PROOF. It follows by taking $\beta = \gamma = 0$ in Theorem 2.1.

The following corollary is the Theorem 2.1 [8].

COROLLARY 2.3. Let (X, d) be a complete cone b-metric space with the constant $s \ge 1$. Suppose the mapping $g: X \to X$ satisfies the contractive condition

$$d(gx, gy) \leq \lambda d(x, y)$$
 for all $x, y \in X$,

where $\lambda \in [0, \frac{1}{s})$ is a constant. Then g has a unique fixed point in X. Furthermore, the iterative sequence $(q^n x)$ converges to the fixed point.

PROOF. It follows by taking $\beta = \gamma = 0$ and f = I, the identity mapping on X, in Theorem 2.1.

COROLLARY 2.4. Let (X, d) be a complete cone b-metric space with the constant $s \ge 1$. Suppose the mapping $f: X \to X$ is onto and satisfies

$$d(fx, fy) \succeq \alpha d(x, y)$$
 for all $x, y \in X$,

where $\alpha > s$ is a constant. Then f has a unique fixed point in X.

PROOF. Taking q = I and $\beta = \gamma = 0$ in Theorem 2.1, we obtain the desired result.

REMARK 2.5. Corollary 2.4 gives a sufficient condition for the existence of unique fixed point of an expansive mapping in cone b-metric spaces.

COROLLARY 2.6. Let (X, d) be a complete cone b-metric space with the constant $s \ge 1$. Suppose the mapping $f: X \to X$ is onto and satisfies the condition

$$d(fx, fy) \succeq \alpha d(x, y) + \beta d(fx, x) + \gamma d(fy, y)$$
 for $x, y \in X$,

where α , β , γ are nonnegative real numbers with $\alpha \neq 0$, $\beta < 1$, $\alpha + \beta + \gamma > s$. Then f has a fixed point in X. Moreover, if $\alpha > 1$, then the fixed point of f is unique.

PROOF. It follows by taking g = I in Theorem 2.1.

THEOREM 2.7. Let (X, d) be a complete cone b-metric space with the constant $s \ge 1$. Suppose the mappings $S, T: X \to X$ satisfy the following conditions:

$$d(T(Sx), Sx) + \frac{k}{s}d(T(Sx), x) \succeq \alpha d(Sx, x)$$
(4)

and

$$d(S(Tx), Tx) + \frac{k}{s}d(S(Tx), x) \succeq \beta d(Tx, x)$$
 (5)

for all $x \in X$, where α, β, k are nonnegative real numbers with $\alpha > s + (1+s)k$ and $\beta > s + (1+s)k$. If S and T are continuous and surjective, then S and T have a common fixed point in X.

PROOF. Let $x_0 \in X$ be arbitrary and choose $x_1 \in X$ such that $x_0 = Tx_1$. This is possible since T is surjective. Since S is also surjective, there exists $x_2 \in X$ such that $x_1 = Sx_2$. Continuing this process, we can construct a sequence (x_n) in X such that $x_{2n} = Tx_{2n+1}$ and $x_{2n-1} = Sx_{2n}$ for all $n \in \mathbb{N}$. Using (4), we have for $n \in \mathbb{N} \cup \{0\}$

$$d(T(Sx_{2n+2}), Sx_{2n+2}) + \frac{k}{s}d(T(Sx_{2n+2}), x_{2n+2}) \succeq \alpha d(Sx_{2n+2}, x_{2n+2})$$

which implies that

$$d(x_{2n}, x_{2n+1}) + \frac{k}{s} d(x_{2n}, x_{2n+2}) \succeq \alpha d(x_{2n+1}, x_{2n+2}).$$

Hence, we have

$$\alpha d(x_{2n+1}, x_{2n+2}) \leq d(x_{2n}, x_{2n+1}) + k d(x_{2n}, x_{2n+1}) + k d(x_{2n+1}, x_{2n+2}).$$

Therefore,

$$d(x_{2n+1}, x_{2n+2}) \le \frac{1+k}{\alpha - k} d(x_{2n}, x_{2n+1}). \tag{6}$$

Using (5) and by an argument similar to that used above, we obtain that

$$d(x_{2n}, x_{2n+1}) \le \frac{1+k}{\beta-k} d(x_{2n-1}, x_{2n}). \tag{7}$$

Let $\lambda = \max\left(\frac{1+k}{\alpha-k}, \frac{1+k}{\beta-k}\right)$. It is easy to see that $\lambda \in (0, \frac{1}{s})$. Then, by combining (6) and (7), we get

$$d(x_n, x_{n+1}) \le \lambda d(x_{n-1}, x_n) \tag{8}$$

for all $n \geq 1$. By repeated application of (8), we obtain

$$d(x_n, x_{n+1}) \leq \lambda^n d(x_0, x_1).$$

By an argument similar to that used in Theorem 2.1, it follows that (x_n) is a Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that $x_n \to u$ as $n \to \infty$. Now, $x_{2n+1} \to u$ and $x_{2n} \to u$ as $n \to \infty$. The continuity of S and T imply that $Tx_{2n+1} \to Tu$ and $Sx_{2n} \to Su$ as $n \to \infty$ i.e., $x_{2n} \to Tu$ and $x_{2n-1} \to Su$ as $n \to \infty$. The uniqueness of limit yields that u = Su = Tu. Hence, u is a common fixed point of S and T. The proof is complete.

COROLLARY 2.8. Let (X, d) be a complete cone b-metric space with the constant $s \ge 1$. Let $T: X \to X$ be a continuous surjective mapping such that

$$d(T^2x, Tx) + \frac{k}{s}d(T^2x, x) \succeq \alpha d(Tx, x)$$
 for all $x \in X$,

where α, k are nonnegative real numbers with $\alpha > s + (1+s)k$. Then T has a fixed point in X.

PROOF. It follows from Theorem 2.7 by taking S = T and $\beta = \alpha$.

We conclude this paper with the following two examples.

EXAMPLE 2.9. Let $E = \mathbb{R}^2$, the Euclidean plane and $P = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0\}$ a cone in E. Let X = [0, 1] and p > 1 be a constant. We define $d : X \times X \to E$ as

$$d(x,y) = (|x-y|^p, |x-y|^p)$$
 for all $x, y \in X$.

Then (X,d) is a cone b-metric space with the constant $s=2^{p-1}$. Let us define $f,g:X\to X$ as $fx=\frac{x}{3}$ and $gx=\frac{x}{9}-\frac{x^2}{27}$ for all $x\in X$. Then, for every $x,y\in X$ one has $d(fx,fy)\succeq 3^pd(gx,gy)$ i.e., the condition (1) holds for $\alpha=3^p,\beta=\gamma=0$. Thus, we have all the conditions of Theorem 2.1 and $0\in X$ is the unique common fixed point of f and g.

EXAMPLE 2.10. Let $E = \mathbb{R}^2$ and $P = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0\}$ a cone in E. Let $X = [0, \infty)$. We define $d: X \times X \to E$ as

$$d(x,y) = (|x-y|^2, |x-y|^2)$$
 for all $x, y \in X$.

Then (X,d) is a complete cone b-metric space with the constant s=2. Let us define $S,T:X\to X$ as Sx=3x and Tx=4x for all $x\in X$. Then, the conditions (4) and (5) hold for $\alpha=\beta=3+3k>s+(1+s)k$, where k is a nonnegative real number. We see that all hypotheses of Theorem 2.7 are satisfied and $0\in X$ is a common fixed point of S and T.

Acknowledgment. The authors would like to express their thanks to the referees for their valuable comments and useful suggestions.

References

- [1] M. A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013, 2013:402, 25 pp.
- [2] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008), 416– 420.
- [3] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30(1989), 26–37.
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1(1993), 5–11.
- [5] Z. M. Fadail and A. G. B. Ahmad, Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory Appl., 2013, 2013:177, 14 pp.
- [6] L.-G.Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468–1476.
- [7] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, comput. Math. Appl., 62(2011), 1677–1684.
- [8] H. Huang and S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl. 2013, 2013:112, 10 pp.
- [9] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4(1996), 199–215.
- [10] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_s$ -contractive mappings in ordered *b*-metric spaces, Fixed Point Theory Appl. 2013, 2013:159, 23 pp.