Coincidence Points And Common Fixed Points For Expansive Type Mappings In Cone b-Metric Spaces*

Sushanta Kumar Mohanta ${ }^{\dagger}$, Rima Maitra ${ }^{\ddagger}$

Received 22 January 2014

Abstract

In this paper we prove coincidence point and common fixed point results for mappings satisfying some expansive type contractions in the setting of a cone b-metric space. Our results improve and supplement some recent results in the literature. Some examples are also provided to illustrate our results.

1 Introduction and Preliminaries

Metric fixed point theory is playing an increasing role in mathematics because of its wide range of applications in applied mathematics and sciences. There has been a number of generalizations of the usual notion of a metric space. One such generalization is a b-metric space introduced and studied by Bakhtin [3] and Czerwik [4]. In [6], Huang and Zhang introduced the concept of cone metric spaces as a generalization of metric spaces and proved some fixed point theorems for contractive mappings that extend certain results of fixed points in metric spaces. Recently, Hussain and Shah [7] introduced the concept of cone b-metric spaces as a generalization of b-metric spaces and cone metric spaces. There are many related works about the fixed point of contractive mappings (see, for example $[1,5,10]$). The aim of this work is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in cone b-metric spaces.

We need to recall some basic notations, definitions, and necessary results from existing literature. Let E be a real Banach space and θ denote the zero vector of E. A cone P is a subset of E such that
(i) P is closed, nonempty and $P \neq\{\theta\}$,
(ii) $a x+b y \in P$ for $a, b \in \mathbb{R}, a, b \geq 0, x, y \in P$,
(iii) $P \cap(-P)=\{\theta\}$.

[^0]For any cone $P \subseteq E$, we can define a partial ordering \preceq on E with respect to P by $x \preceq y$ (equivalently, $y \succeq x$) if and only if $y-x \in P$. We shall write $x \prec y$ (equivalently, $y \succ x$) if $x \preceq y$ and $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int}(P)$, where $\operatorname{int}(P)$ denotes the interior of P. The cone P is called normal if there is a number $k>0$ such that for all $x, y \in E$,

$$
\theta \preceq x \preceq y \text { implies }\|x\| \leq k\|y\| .
$$

The least positive number satisfying the above inequality is called the normal constant of P. Throughout this paper, we suppose that E is a real Banach space, P is a cone in E with $\operatorname{int}(P) \neq \emptyset$ and \preceq is a partial ordering on E with respect to P.

DEFINITION 1.1 ([6]). Let E be a real Banach space with cone P and let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies
(i) $\theta \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=\theta$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(iii) $d(x, y) \preceq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

DEFINITION $1.2([7])$. Let X be a nonempty set and E a real Banach space with cone P. A vector valued function $d: X \times X \rightarrow E$ is said to be a cone b-metric function on X with the constant $s \geq 1$ if the following conditions are satisfied:
(i) $\theta \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=\theta$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(iii) $d(x, y) \preceq s(d(x, z)+d(z, y))$ for all $x, y, z \in X$.

The pair (X, d) is called a cone b-metric space.

Observe that if $s=1$, then the ordinary triangle inequality in a cone metric space is satisfied, however it does not hold true when $s>1$. Thus the class of cone b-metric spaces is effectively larger than that of the ordinary cone metric spaces. That is, every cone metric space is a cone b-metric space, but its converse need not be true. The following examples illustrate these facts.

EXAMPLE $1.3([7])$. Let $X=\{-1,0,1\}, E=\mathbb{R}^{2}, P=\{(x, y): x \geq 0, y \geq 0\}$. Define $d: X \times X \rightarrow P$ by $d(x, y)=d(y, x)$ for all $x, y \in X, d(x, x)=\theta, x \in X$ and $d(-1,0)=(3,3), d(-1,1)=d(0,1)=(1,1)$. Then (X, d) is a cone b-metric space, but not a cone metric space since the triangle inequality is not satisfied. Indeed, we have

$$
d(-1,1)+d(1,0)=(1,1)+(1,1)=(2,2) \prec(3,3)=d(-1,0) .
$$

It is easy to verify that $s=\frac{3}{2}$.

EXAMPLE $1.4([8])$. Let $E=\mathbb{R}^{2}, P=\{(x, y): x \geq 0, y \geq 0\} \subseteq E, X=\mathbb{R}$ and $d: X \times X \rightarrow E$ such that $d(x, y)=\left(|x-y|^{p}, \alpha|x-y|^{p}\right)$ where $\alpha \geq 0$ and $p>1$ are two constants. Then (X, d) is a cone b-metric space with $s=2^{p-1}$, but not a cone metric space.

DEFINITION $1.5([7])$. Let (X, d) be a cone b-metric space, $x \in X$ and $\left(x_{n}\right)$ be a sequence in X. Then
(i) $\left(x_{n}\right)$ converges to x whenever, for every $c \in E$ with $\theta \ll c$, there is a natural number n_{0} such that for all $n>n_{0}, d\left(x_{n}, x\right) \ll c$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=$ x or $x_{n} \rightarrow x(n \rightarrow \infty)$;
(ii) $\left(x_{n}\right)$ is a Cauchy sequence whenever, for every $c \in E$ with $\theta \ll c$, there is a natural number n_{0} such that $d\left(x_{n}, x_{m}\right) \ll c$ for all $n, m>n_{0}$;
(iii) (X, d) is a complete cone b-metric space if every Cauchy sequence is convergent.

REMARK $1.6([7])$. Let (X, d) be a cone b-metric space over the ordered real Banach space E with a cone P. Then the following properties are often used:
(i) If $a \preceq b$ and $b \ll c$, then $a \ll c$.
(ii) If $a \ll b$ and $b \ll c$, then $a \ll c$.
(iii) If $\theta \preceq u \ll c$ for each $c \in \operatorname{int}(P)$, then $u=\theta$.
(iv) If $c \in \operatorname{int}(P), \theta \preceq a_{n}$ and $a_{n} \rightarrow \theta$, then there exists n_{0} such that for all $n>n_{0}$ we have $a_{n} \ll c$.
(v) Let $\theta \ll c$. If $\theta \preceq d\left(x_{n}, x\right) \preceq b_{n}$ and $b_{n} \rightarrow \theta$, then eventually $d\left(x_{n}, x\right) \ll c$, where $\left(x_{n}\right), x$ are a sequence and a given point in X.
(vi) If $\theta \preceq a_{n} \preceq b_{n}$ and $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a \preceq b$, for each cone P.
(vii) If E is a real Banach space with cone P and if $a \preceq \lambda a$ where $a \in P$ and $0 \leq \lambda<1$, then $a=\theta$.
(viii) $\alpha \operatorname{int}(P) \subseteq \operatorname{int}(P)$ for $\alpha>0$.
(ix) For each $\delta>0$ and $x \in \operatorname{int}(P)$ there is $0<\gamma<1$ such that $\|\gamma x\|<\delta$.
(x) For each $\theta \ll c_{1}$ and $c_{2} \in P$, there is an element $\theta \ll d$ such that $c_{1} \ll d$ and $c_{2} \ll d$.
(xi) For each $\theta \ll c_{1}$ and $\theta \ll c_{2}$, there is an element $\theta \ll e$ such that $e \ll c_{1}$ and $e \ll c_{2}$.

DEFINITION 1.7. Let (X, d) be a cone b-metric space and let $T: X \rightarrow X$ be a given mapping. We say that T is continuous at $x_{0} \in X$ if $T x_{n} \rightarrow T x_{0}$ as $n \rightarrow \infty$ for every sequences $\left(x_{n}\right)$ in X satisfying $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. If T is continuous at each point $x_{0} \in X$, then we say that T is continuous on X.

DEFINITION 1.8. Let (X, d) be a cone b-metric space with the constant $s \geq 1$. A mapping $T: X \rightarrow X$ is called expansive if there exists a real constant $k>s$ such that

$$
d(T x, T y) \succeq k d(x, y) \text { for all } x, y \in X
$$

DEFINITION 1.9 ([2]). Let T and S be self mappings of a set X. If $y=T x=S x$ for some x in X, then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

DEFINITION 1.10 ([9]). The mappings $T, S: X \rightarrow X$ are weakly compatible, if for every $x \in X$, the following holds:

$$
T(S x)=S(T x) \text { whenever } S x=T x
$$

PROPOSITION 1.11 ([2]). Let S and T be weakly compatible selfmaps of a nonempty set X. If S and T have a unique point of coincidence $y=S x=T x$, then y is the unique common fixed point of S and T.

2 Main Results

In this section, we prove point of coincidence and common fixed point results in cone b-metric spaces.

THEOREM 2.1. Let (X, d) be a cone b-metric space with the constant $s \geq 1$. Suppose the mappings $f, g: X \rightarrow X$ satisfy $g(X) \subseteq f(X)$, either $f(X)$ or $g(X)$ is complete, and

$$
\begin{equation*}
d(f x, f y) \succeq \alpha d(g x, g y)+\beta d(f x, g x)+\gamma d(f y, g y) \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

where α, β, γ are nonnegative real numbers with $\alpha+\beta+\gamma>s, \beta<1$ and $\alpha \neq 0$. Then f and g have a point of coincidence in X. Moreover, if $\alpha>1$, then the point of coincidence is unique. If f and g are weakly compatible and $\alpha>1$, then f and g have a unique common fixed point in X.

PROOF. Let $x_{0} \in X$ and choose $x_{1} \in X$ such that $g x_{0}=f x_{1}$. This is possible since $g(X) \subseteq f(X)$. Continuing this process, we can construct a sequence $\left(x_{n}\right)$ in X such that $f x_{n}=g x_{n-1}$, for all $n \geq 1$. By (1), we have

$$
\begin{aligned}
d\left(g x_{n-1}, g x_{n}\right) & =d\left(f x_{n}, f x_{n+1}\right) \\
& \succeq \alpha d\left(g x_{n}, g x_{n+1}\right)+\beta d\left(f x_{n}, g x_{n}\right)+\gamma d\left(f x_{n+1}, g x_{n+1}\right) \\
& =\alpha d\left(g x_{n}, g x_{n+1}\right)+\beta d\left(g x_{n-1}, g x_{n}\right)+\gamma d\left(g x_{n}, g x_{n+1}\right)
\end{aligned}
$$

which gives that

$$
d\left(g x_{n}, g x_{n+1}\right) \preceq \lambda d\left(g x_{n-1}, g x_{n}\right)
$$

where $\lambda=\frac{1-\beta}{\alpha+\gamma}$. It is easy to see that $\lambda \in\left(0, \frac{1}{s}\right)$. By induction, we get that

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \preceq \lambda^{n} d\left(g x_{0}, g x_{1}\right) \tag{2}
\end{equation*}
$$

for all $n \geq 0$. Let $m, n \in \mathbb{N}$ with $m>n$. Then, by using condition (2) we have

$$
\begin{align*}
d\left(g x_{n}, g x_{m}\right) \preceq & s\left[d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{m}\right)\right] \\
\preceq & s d\left(g x_{n}, g x_{n+1}\right)+s^{2} d\left(g x_{n+1}, g x_{n+2}\right)+\cdots \\
& +s^{m-n-1}\left[d\left(g x_{m-2}, g x_{m-1}\right)+d\left(g x_{m-1}, g x_{m}\right)\right] \\
\preceq & {\left[s \lambda^{n}+s^{2} \lambda^{n+1}+\cdots+s^{m-n-1} \lambda^{m-2}+s^{m-n-1} \lambda^{m-1}\right] d\left(g x_{0}, g x_{1}\right) } \\
\preceq & {\left[s \lambda^{n}+s^{2} \lambda^{n+1}+\cdots+s^{m-n-1} \lambda^{m-2}+s^{m-n} \lambda^{m-1}\right] d\left(g x_{0}, g x_{1}\right) } \\
= & s \lambda^{n}\left[1+s \lambda+(s \lambda)^{2}+\cdots+(s \lambda)^{m-n-2}+(s \lambda)^{m-n-1}\right] d\left(g x_{0}, g x_{1}\right) \\
\preceq & \frac{s \lambda^{n}}{1-s \lambda} d\left(g x_{0}, g x_{1}\right) . \tag{3}
\end{align*}
$$

It is to be noted that $\frac{s \lambda^{n}}{1-s \lambda} d\left(g x_{0}, g x_{1}\right) \rightarrow \theta$ as $n \rightarrow \infty$. Let $\theta \ll c$ be given. Then we can find $m_{0} \in \mathbb{N}$ such that

$$
\frac{s \lambda^{n}}{1-s \lambda} d\left(g x_{0}, g x_{1}\right) \ll c \text { for each } n>m_{0}
$$

Therefore, it follows from (3) that

$$
d\left(g x_{n}, g x_{m}\right) \preceq \frac{s \lambda^{n}}{1-s \lambda} d\left(g x_{0}, g x_{1}\right) \ll c \text { for all } m>n>m_{0}
$$

So $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$. Suppose that $g(X)$ is a complete subspace of X. Then there exists $y \in g(X) \subseteq f(X)$ such that $g x_{n} \rightarrow y$ and also $f x_{n} \rightarrow y$. In case, $f(X)$ is complete, this holds also with $y \in f(X)$. Let $u \in X$ be such that $f u=y$. For $\theta \ll c$, one can choose a natural number $n_{0} \in \mathbb{N}$ such that $d\left(y, g x_{n}\right) \ll \frac{c}{2 s}$ and $d\left(f x_{n}, f u\right) \ll \frac{\alpha c}{2 s}$ for all $n>n_{0}$. By (1), we have

$$
\begin{aligned}
d\left(g x_{n-1}, f u\right) & =d\left(f x_{n}, f u\right) \\
& \succeq \alpha d\left(g x_{n}, g u\right)+\beta d\left(f x_{n}, g x_{n}\right)+\gamma d(f u, g u) \\
& \succeq \alpha d\left(g x_{n}, g u\right) .
\end{aligned}
$$

If $\alpha \neq 0$, then

$$
d\left(g x_{n}, g u\right) \preceq \frac{1}{\alpha} d\left(g x_{n-1}, f u\right) .
$$

Therefore,

$$
\begin{aligned}
d(y, g u) & \preceq s\left[d\left(y, g x_{n}\right)+d\left(g x_{n}, g u\right)\right] \\
& \preceq s\left[d\left(y, g x_{n}\right)+\frac{1}{\alpha} d\left(g x_{n-1}, f u\right)\right] \\
& =s\left[d\left(y, g x_{n}\right)+\frac{1}{\alpha} d\left(f x_{n}, f u\right)\right] \\
& \ll c, \text { for all } n>n_{0}
\end{aligned}
$$

This gives that $d(y, g u)=\theta$, i.e., $g u=y$ and hence $f u=g u=y$. Therefore, y is a point of coincidence of f and g.

Now we suppose that $\alpha>1$. Let v be another point of coincidence of f and g. So $f x=g x=v$ for some $x \in X$. Then

$$
d(y, v)=d(f u, f x) \succeq \alpha d(g u, g x)+\beta d(f u, g u)+\gamma d(f x, g x)=\alpha d(y, v)
$$

which implies that

$$
d(y, v) \preceq \frac{1}{\alpha} d(y, v)
$$

By Remark 1.6(vii), we have $d(v, y)=\theta$ i.e., $v=y$. Therefore, f and g have a unique point of coincidence in X. If f and g are weakly compatible, then by Proposition 1.11, f and g have a unique common fixed point in X. The proof is complete.

COROLLARY 2.2. Let (X, d) be a cone b-metric space with the constant $s \geq 1$. Suppose the mappings $f, g: X \rightarrow X$ satisfy the condition

$$
d(f x, f y) \succeq \alpha d(g x, g y) \text { for all } x, y \in X
$$

where $\alpha>s$ is a constant. If $g(X) \subseteq f(X)$ and $f(X)$ or $g(X)$ is complete, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

PROOF. It follows by taking $\beta=\gamma=0$ in Theorem 2.1.
The following corollary is the Theorem 2.1 [8].
COROLLARY 2.3. Let (X, d) be a complete cone b-metric space with the constant $s \geq 1$. Suppose the mapping $g: X \rightarrow X$ satisfies the contractive condition

$$
d(g x, g y) \preceq \lambda d(x, y) \text { for all } x, y \in X
$$

where $\lambda \in\left[0, \frac{1}{s}\right)$ is a constant. Then g has a unique fixed point in X. Furthermore, the iterative sequence $\left(g^{n} x\right)$ converges to the fixed point.

PROOF. It follows by taking $\beta=\gamma=0$ and $f=I$, the identity mapping on X, in Theorem 2.1.

COROLLARY 2.4. Let (X, d) be a complete cone b-metric space with the constant $s \geq 1$. Suppose the mapping $f: X \rightarrow X$ is onto and satisfies

$$
d(f x, f y) \succeq \alpha d(x, y) \text { for all } x, y \in X
$$

where $\alpha>s$ is a constant. Then f has a unique fixed point in X.
PROOF. Taking $g=I$ and $\beta=\gamma=0$ in Theorem 2.1, we obtain the desired result.
REMARK 2.5. Corollary 2.4 gives a sufficient condition for the existence of unique fixed point of an expansive mapping in cone b-metric spaces.

COROLLARY 2.6. Let (X, d) be a complete cone b-metric space with the constant $s \geq 1$. Suppose the mapping $f: X \rightarrow X$ is onto and satisfies the condition

$$
d(f x, f y) \succeq \alpha d(x, y)+\beta d(f x, x)+\gamma d(f y, y) \text { for } x, y \in X
$$

where α, β, γ are nonnegative real numbers with $\alpha \neq 0, \beta<1, \alpha+\beta+\gamma>s$. Then f has a fixed point in X. Moreover, if $\alpha>1$, then the fixed point of f is unique.

PROOF. It follows by taking $g=I$ in Theorem 2.1.
THEOREM 2.7. Let (X, d) be a complete cone b-metric space with the constant $s \geq 1$. Suppose the mappings $S, T: X \rightarrow X$ satisfy the following conditions:

$$
\begin{equation*}
d(T(S x), S x)+\frac{k}{s} d(T(S x), x) \succeq \alpha d(S x, x) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
d(S(T x), T x)+\frac{k}{s} d(S(T x), x) \succeq \beta d(T x, x) \tag{5}
\end{equation*}
$$

for all $x \in X$, where α, β, k are nonnegative real numbers with $\alpha>s+(1+s) k$ and $\beta>s+(1+s) k$. If S and T are continuous and surjective, then S and T have a common fixed point in X.

PROOF. Let $x_{0} \in X$ be arbitrary and choose $x_{1} \in X$ such that $x_{0}=T x_{1}$. This is possible since T is surjective. Since S is also surjective, there exists $x_{2} \in X$ such that $x_{1}=S x_{2}$. Continuing this process, we can construct a sequence $\left(x_{n}\right)$ in X such that $x_{2 n}=T x_{2 n+1}$ and $x_{2 n-1}=S x_{2 n}$ for all $n \in \mathbb{N}$. Using (4), we have for $n \in \mathbb{N} \cup\{0\}$

$$
d\left(T\left(S x_{2 n+2}\right), S x_{2 n+2}\right)+\frac{k}{s} d\left(T\left(S x_{2 n+2}\right), x_{2 n+2}\right) \succeq \alpha d\left(S x_{2 n+2}, x_{2 n+2}\right)
$$

which implies that

$$
d\left(x_{2 n}, x_{2 n+1}\right)+\frac{k}{s} d\left(x_{2 n}, x_{2 n+2}\right) \succeq \alpha d\left(x_{2 n+1}, x_{2 n+2}\right)
$$

Hence, we have

$$
\alpha d\left(x_{2 n+1}, x_{2 n+2}\right) \preceq d\left(x_{2 n}, x_{2 n+1}\right)+k d\left(x_{2 n}, x_{2 n+1}\right)+k d\left(x_{2 n+1}, x_{2 n+2}\right) .
$$

Therefore,

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \preceq \frac{1+k}{\alpha-k} d\left(x_{2 n}, x_{2 n+1}\right) \tag{6}
\end{equation*}
$$

Using (5) and by an argument similar to that used above, we obtain that

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \preceq \frac{1+k}{\beta-k} d\left(x_{2 n-1}, x_{2 n}\right) \tag{7}
\end{equation*}
$$

Let $\lambda=\max \left(\frac{1+k}{\alpha-k}, \frac{1+k}{\beta-k}\right)$. It is easy to see that $\lambda \in\left(0, \frac{1}{s}\right)$. Then, by combining (6) and (7), we get

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \preceq \lambda d\left(x_{n-1}, x_{n}\right) \tag{8}
\end{equation*}
$$

for all $n \geq 1$. By repeated application of (8), we obtain

$$
d\left(x_{n}, x_{n+1}\right) \preceq \lambda^{n} d\left(x_{0}, x_{1}\right)
$$

By an argument similar to that used in Theorem 2.1, it follows that $\left(x_{n}\right)$ is a Cauchy sequence in X. Since X is complete, there exists $u \in X$ such that $x_{n} \rightarrow u$ as $n \rightarrow \infty$. Now, $x_{2 n+1} \rightarrow u$ and $x_{2 n} \rightarrow u$ as $n \rightarrow \infty$. The continuity of S and T imply that $T x_{2 n+1} \rightarrow T u$ and $S x_{2 n} \rightarrow S u$ as $n \rightarrow \infty$ i.e., $x_{2 n} \rightarrow T u$ and $x_{2 n-1} \rightarrow S u$ as $n \rightarrow \infty$. The uniqueness of limit yields that $u=S u=T u$. Hence, u is a common fixed point of S and T. The proof is complete.

COROLLARY 2.8. Let (X, d) be a complete cone b-metric space with the constant $s \geq 1$. Let $T: X \rightarrow X$ be a continuous surjective mapping such that

$$
d\left(T^{2} x, T x\right)+\frac{k}{s} d\left(T^{2} x, x\right) \succeq \alpha d(T x, x) \text { for all } x \in X
$$

where α, k are nonnegative real numbers with $\alpha>s+(1+s) k$. Then T has a fixed point in X.

PROOF. It follows from Theorem 2.7 by taking $S=T$ and $\beta=\alpha$.
We conclude this paper with the following two examples.
EXAMPLE 2.9. Let $E=\mathbb{R}^{2}$, the Euclidean plane and $P=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0\right\}$ a cone in E. Let $X=[0,1]$ and $p>1$ be a constant. We define $d: X \times X \rightarrow E$ as

$$
d(x, y)=\left(|x-y|^{p},|x-y|^{p}\right) \text { for all } x, y \in X
$$

Then (X, d) is a cone b-metric space with the constant $s=2^{p-1}$. Let us define f, g : $X \rightarrow X$ as $f x=\frac{x}{3}$ and $g x=\frac{x}{9}-\frac{x^{2}}{27}$ for all $x \in X$. Then, for every $x, y \in X$ one has $d(f x, f y) \succeq 3^{p} d(g x, g y)$ i.e., the condition (1) holds for $\alpha=3^{p}, \beta=\gamma=0$. Thus, we have all the conditions of Theorem 2.1 and $0 \in X$ is the unique common fixed point of f and g.

EXAMPLE 2.10. Let $E=\mathbb{R}^{2}$ and $P=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0\right\}$ a cone in E. Let $X=[0, \infty)$. We define $d: X \times X \rightarrow E$ as

$$
d(x, y)=\left(|x-y|^{2},|x-y|^{2}\right) \text { for all } x, y \in X
$$

Then (X, d) is a complete cone b-metric space with the constant $s=2$. Let us define $S, T: X \rightarrow X$ as $S x=3 x$ and $T x=4 x$ for all $x \in X$. Then, the conditions (4) and (5) hold for $\alpha=\beta=3+3 k>s+(1+s) k$, where k is a nonnegative real number. We see that all hypotheses of Theorem 2.7 are satisfied and $0 \in X$ is a common fixed point of S and T.

Acknowledgment. The authors would like to express their thanks to the referees for their valuable comments and useful suggestions.

References

[1] M. A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013, 2013:402, 25 pp.
[2] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008), 416420.
[3] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal.,Gos. Ped. Inst. Unianowsk, 30(1989), 26-37.
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1(1993), 5-11.
[5] Z. M. Fadail and A. G. B. Ahmad, Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory Appl., 2013, 2013:177, 14 pp.
[6] L.-G.Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
[7] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, comput. Math. Appl., 62(2011), 1677-1684.
[8] H. Huang and S. Xu, Fixed point theorems of contractive mappings in cone b metric spaces and applications, Fixed Point Theory Appl. 2013, 2013:112, 10 pp.
[9] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4(1996), 199-215.
[10] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2013, 2013:159, 23 pp.

[^0]: *Mathematics Subject Classifications: $54 \mathrm{H} 25,47 \mathrm{H} 10$.
 ${ }^{\dagger}$ Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India
 \ddagger Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India

