Unicity Of Meromorphic Function That Share A Small Function With Its Derivative*

Sujoy Majumder ${ }^{\dagger}$

Received 8 December 2013

Abstract

In this paper, we deal with the problem of uniqueness of a meromorphic function as well as its power which share a small function with its derivative. Basically in the paper we pay our attention to the uniqueness of more generalised form of a function sharing a small function and we obtain two results which improve and generalize the recent results of Zhang and Yang [11].

1 Introduction, Definitions and Results

In this paper, by a meromorphic function we will always mean meromorphic function in the complex plane \mathbb{C}. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [2]. It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For a non-constant meromorphic function h, we denote by $T(r, h)$ the Nevanlinna characteristic of h and by $S(r, h)$ any quantity satisfying $S(r, h)=$ $o\{T(r, h)\}$, as $r \longrightarrow \infty$ and $r \notin E$.

Let f and g be two non-constant meromorphic functions and let a be a complex number. We say that f and g share a CM, provided that $f-a$ and $g-a$ have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that $f-a$ and $g-a$ have the same zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM, if $1 / f$ and $1 / g$ share 0 CM , and we say that f and g share ∞ IM, if $1 / f$ and $1 / g$ share 0 IM.

A meromorphic function a is said to be a small function of f provided that $T(r, a)=$ $S(r, f)$, that is $T(r, a)=o(T(r, f))$ as $r \longrightarrow \infty, r \notin E$.

During the last four decades the uniqueness theory of entire and meromorphic functions has become a prominent branch of the value distribution theory (see [9]). In the direction of the shared value problems concerning the uniqueness of a meromorphic function and its derivative a considerable amount of research work has been obtained by many authors such as Rubel and Yang [4], Gundersen [1], Mues and Steinmetz [3] and Yang [6].

To the knowledge of the author perhaps Yang and Zhang [7] (see also [10]) were the first authors to consider the uniqueness of a power of a meromorphic(entire) function $F=f^{n}$ and its derivative F^{\prime}.

[^0]Improving all the results obtained in [7], Zhang [10] proved the following theorems.
THEOREM A ([10]). Let f be a non-constant entire function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 CM and

$$
n>k+4
$$

Then $f^{n} \equiv\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
THEOREM B ([10]). Let f be a non-constant meromorphic function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 CM and

$$
(n-k-1)(n-k-4)>3 k+6
$$

Then $f^{n} \equiv\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
In 2009 Zhang and Yang [11] further improved the above results in the following manner.

THEOREM C ([11]). Let f be a non-constant entire function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 CM and

$$
n>k+1
$$

Then $f^{n} \equiv\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
THEOREM D ([11]). Let f be a non-constant entire function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 IM and

$$
n>2 k+3
$$

Then $f^{n} \equiv\left(f^{n}\right)^{(k)}$ and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
THEOREM E ([11]). Let f be a non-constant meromorphic function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Suppose $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 IM and

$$
n>2 k+3+\sqrt{(2 k+3)(k+3)}
$$

Then $f^{n} \equiv\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
We now explain the following definitions and notations which will be used in the paper.

DEFINITION 1 ([4]). Let p be a positive integer and $a \in \mathbb{C} \cup\{\infty\} . N(r, a ; f \mid \geq p)$ $(\bar{N}(r, a ; f \mid \geq p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than p.

DEFINITION $2([8])$. For $a \in \mathbb{C} \cup\{\infty\}$ and a positive integer p, we denote by $N_{p}(r, a ; f)$ the sum

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\cdots+\bar{N}(r, a ; f \mid \geq p)
$$

Clearly, $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.
It is quite natural to ask the following question:
QUESTION 1. Can the lower bound of n be further reduced in the THEOREMS D and E ?

In this paper, taking the possible answer of the above question into background we obtain the following results which improve and generalize the THEOREMS D and E.

THEOREM 1. Let f be a non-constant meromorphic function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Let $P(w)=$ $a_{m} w^{m}+a_{m-1} w^{m-1}+\ldots+a_{1} w+a_{0}$ be a nonzero polynomial. Suppose $f^{n} P(f)-a$ and $\left[f^{n} P(f)\right]^{(k)}-a$ share the value 0 IM and

$$
n>2 k+m+2
$$

Then $P(w)$ reduces to a nonzero monomial, namely $P(w)=a_{i} w^{i} \not \equiv 0$ for some $i \in$ $\{0,1, \ldots, m\}$; and $f^{n+i} \equiv\left(f^{n+i}\right)^{(k)}$, where f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n+i} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.

THEOREM 2. Let f be a non-constant entire function, n, k be positive integers and $a(z)(\not \equiv 0, \infty)$ be a meromorphic small function of f. Let $P(w)=a_{m} w^{m}+a_{m-1} w^{m-1}+$ $\ldots+a_{1} w+a_{0}$ be a nonzero polynomial. Suppose $f^{n} P(f)-a$ and $\left[f^{n} P(f)\right]^{(k)}-a$ share the value 0 IM and

$$
n>k+m+1
$$

Then $P(w)$ reduces to a nonzero monomial, namely $P(w)=a_{i} w^{i} \not \equiv 0$ for some $i \in$ $\{0,1, \ldots, m\}$; and $f^{n+i} \equiv\left(f^{n+i}\right)^{(k)}$, where f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n+i} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.

2 Lemma

In this section we present the lemma which will be needed in the sequel.

LEMMA 1 ([5]). Let f be a non-constant meromorphic function and let $a_{n}(z)(\not \equiv$ $0), a_{n-1}(z), \ldots, a_{0}(z)$ be meromorphic functions such that $T\left(r, a_{i}(z)\right)=S(r, f)$ for $i=0,1, \ldots, n$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\cdots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

3 Proofs of the Theorems

In this section, we prove THEOREMS 1 and 2
PROOF OF THEOREM 1. Let

$$
F=\frac{f^{n} P(f)}{a} \text { and } G=\frac{\left[f^{n} P(f)\right]^{(k)}}{a}
$$

where $P(w)$ is defined as in THEOREM 1. Clearly, F and G share 1 IM and so

$$
\bar{N}(r, 1 ; F)=\bar{N}(r, 1 ; G)+S(r, f)
$$

We divide two cases: Case 1. $F \not \equiv G$ and Case 2. $F \equiv G$.

Case 1. Assume that $F \not \equiv G$. Note that

$$
\begin{align*}
\bar{N}(r, 1 ; F) & \leq \bar{N}\left(r, 1 ; \frac{G}{F}\right)+S(r, f) \tag{1}\\
& \leq T\left(r, \frac{G}{F}\right)+S(r, f) \\
& \leq N\left(r, \infty ; \frac{G}{F}\right)+m\left(r, \infty ; \frac{G}{F}\right)+S(r, f) \\
& =N\left(r, \infty ; \frac{\left[f^{n} P(f)\right]^{(k)}}{f^{n} P(f)}\right)+m\left(r, \infty ; \frac{\left[f^{n} P(f)\right]^{(k)}}{f^{n} P(f)}\right)+S(r, f) \\
& \leq k \bar{N}(r, \infty ; f)+N_{k}\left(r, 0 ; f^{n} P(f)\right)+S(r, f) \\
& \leq k \bar{N}(r, \infty ; f)+k \bar{N}(r, 0 ; f)+m T(r, f)+S(r, f) .
\end{align*}
$$

Now using (1) and LEMMA 1 we get from the second fundamental theorem that

$$
\begin{align*}
(n+m) T(r, f) & =T(r, F)+S(r, f) \tag{2}\\
& \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, 1 ; F)+S(r, F) \\
& \leq \bar{N}(r, \infty ; f)+\bar{N}\left(r, 0 ; f^{n} P(f)\right)+\bar{N}(r, 1 ; F)+S(r, f) \\
& \leq(k+1) \bar{N}(r, \infty ; f)+(k+1) \bar{N}(r, 0 ; f)+2 m T(r, f)+S(r, f) \\
& \leq(2 k+2 m+2) T(r, f)+S(r, f)
\end{align*}
$$

Since $n>m+2 k+2$, (2) leads to a contradiction.
Case 2. Assume that $F \equiv G$. Then

$$
\begin{equation*}
f^{n} P(f) \equiv\left[f^{n} P(f)\right]^{(k)} \tag{3}
\end{equation*}
$$

We now prove that $P(w)=a_{i} w^{i} \not \equiv 0$ for some $i \in\{0,1, \ldots, m\}$. If not we may assume that $P(w)=a_{m} w^{m}+a_{m-1} w^{m-1}+\cdots+a_{1} w+a_{0}$ where at least two of $a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}$ are nonzero. Without loss of generality, we assume that $a_{s}, a_{t} \neq 0$, where $s \neq t, s, t=0,1, \ldots, m$. From (3) it is clear that f is an entire function. Also since $n>2 k+m+2$, it follows from (3) that 0 is an e.v.P of f. So we can take $f=e^{\alpha}$ where α is a non-constant entire function. Then by induction we get

$$
\begin{equation*}
a_{i}\left[f^{n+i}-\left(f^{n+i}\right)^{(k)}\right]=t_{i}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right) e^{(n+i) \alpha} \tag{4}
\end{equation*}
$$

where $t_{i}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right)$ for $i=0,1, \ldots, m$ are differential polynomials in $\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}$.
From (3) and (4) we obtain

$$
\begin{equation*}
t_{m}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right) e^{m \alpha}+\cdots+t_{1}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right) e^{\alpha}+t_{0}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right) \equiv 0 \tag{5}
\end{equation*}
$$

Since $T\left(r, t_{i}\right)=S(r, f)$ for $i=0,1, \ldots, m$, and by the Borel unicity theorem (see, e.g. [9, Theorem 1.52]), (5) gives $t_{i} \equiv 0$ for $i=0,1, \ldots, m$. As $a_{s}, a_{t} \neq 0$, from (4) we have

$$
f^{n+s} \equiv\left(f^{n+s}\right)^{(k)} \text { and } f^{n+t} \equiv\left(f^{n+t}\right)^{(k)}
$$

which is a contradiction. Actually in this case we get two different forms of $f(z)$ simultaneously. Hence $P(w)=a_{i} w^{i} \not \equiv 0$ for some $i \in\{0,1, \ldots, m\}$. So from (3) we get

$$
f^{n+i} \equiv\left[f^{n+i}\right]^{(k)},
$$

where $i \in\{0,1, \ldots, m\}$. Clearly, f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n+i} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
PROOF OF THEOREM 2. Let

$$
F=\frac{f^{n} P(f)}{a} \text { and } G=\frac{\left[f^{n} P(f)\right]^{(k)}}{a}
$$

Note that $N(r, \infty ; F)=N(r, \infty ; G)=S(r, f)$. We omit the proof of THEOREM 2 since the proof of the theorem can be carried out in the line of proof of THEOREM 1.

Acknowledgment. The author would like to thank the referee for his/her valuable suggestions.

References

[1] G. G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl., 75(1980), 441-446.
[2] W. K. Hayman, Meromorphic Functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[3] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen, Complex Var. Theory Appl., $6(1986), 51-71$.
[4] L. A. Rubel and C. C. Yang, Values Shared By An Entire Function and Its Derivative. Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), pp. 101-103. Lecture Notes in Math., Vol. 599, Springer, Berlin, 1977.
[5] C. C. Yang, On Deficiencies of Differential Polynomials, II, Math. Z. Vol., 125(1972), 107-112.
[6] L. Z. Yang, Entire functions that share finite values with their derivatives, Bull. Austral. Math. Soc., 41(1990), 337-342.
[7] L. Z. Yang and J. L. Zhang, Non-existance of meromorphic solutions of Fermat type functional equation, Aequations Math., 76(2008), 140-150.
[8] H. X. Yi, On characteristic function of a meromorphic function and its derivative, Indian J. Math., 33(1991), 119-133.
[9] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[10] J. L. Zhang, Meromorphic functions sharing a small function with their derivatives, Kyungpook Math. J., 49(2009), 143-154.
[11] J. L. Zhang and L. Z. Yang, A power of a meromorphic function sharing a small function with its derivative, Ann. Acad. Sci. Fenn. Math., 34(2009), 249-260.

[^0]: *Mathematics Subject Classifications: 35C20, 35D10.
 ${ }^{\dagger}$ Department of Mathematics, Katwa College, Burdwan, 713130, India.

