Some Remarks On Block Group Circulant Matrices^{*}

Pamini Thangarajah[†], Petr Zizler [‡]

Received 29 November 2013

Abstract

Let C denote a block group circulant matrix over a finite non-Abelian group G. We prove results concerning the spectral properties of the matrix C. We give an example of the spectral decomposition of a block group circulant matrix over the symmetric group S_3 .

1 Introduction

Block circulant matrices over the cyclic group \mathbf{Z}_n have been well studied, see [11] for example. In our paper we will consider the setting where the cyclic group \mathbf{Z}_n is replaced by a non-Abelian finite group G. Some of the framework needed for the block group circulant case needs to be taken from the group circulant matrix case that was discussed in [13]. Let $l^2(G)$ denote the finite-dimensional Hilbert space of all complexvalued functions, with the usual inner product, for which the elements of G form the (standard) basis. We assume that this basis (G) is ordered and make the natural identification with \mathbf{C}^n , where |G| = n, as a linear space.

Let $\mathbf{C}[G]$ be the group algebra of complex-valued functions on G. Consider $\psi = (c_0, c_1, \ldots, c_{n-1}) \in \mathbf{C}^n$ and identify the function ψ with its symbol $\Psi = c_0 \mathbf{1} + c_1 g_1 + \cdots + c_{n-1} g_{n-1} \in \mathbf{C}[G]$.

DEFINITION. Let \widehat{G} be the set of all (equivalence classes) of irreducible representations of the group G and let r denote the cardinality of \widehat{G} . Let $\rho \in \widehat{G}$ denote an irreducible representation of G of degree j and let $\phi \in \mathbb{C}^n$. Then the Fourier transform of ϕ at ρ is the $j \times j$ matrix

$$\widehat{\phi}(\rho) = \sum_{s \in G} \phi(s) \rho(s^{-1}).$$

Let ψ and ϕ be two elements in \mathbb{C}^n . A *G*-convolution of ψ and ϕ is defined by the following action

$$(\psi * \phi)(\sigma) = \sum_{\tau \in G} \psi(\tau) \phi(\tau^{-1}\sigma) \text{ for } \sigma \in G.$$

^{*}Mathematics Subject Classifications: 15 A57, 42C99, 43A40.

[†]Department of Math/Phys/Eng, Mount Royal University, Calgary, Alberta, Canada

[‡]Department of Math/Phys/Eng, Mount Royal University, Calgary, Alberta, Canada

We have a natural identification $\psi * \phi \mapsto \Psi \Phi$ understood with respect to the induced group algebra multiplication. Moreover, the Fourier transform turns convolution into (matrix) multiplication $\widehat{\psi * \phi} = \widehat{\psi}\widehat{\phi}$. Thus we have a non-Abelian version of the classical z transform. For further references on this subject we refer the reader to [1, 2, 3, 4, 5, 6, 7, 9, 10, 12].

The Fourier transform gives us a natural isomorphism $\mathbf{C}[G] \Rightarrow M(\widehat{G})$ where

$$M(\widehat{G}) = M_{d_1 \times d_1}(\mathbf{C}) \oplus M_{d_2 \times d_2}(\mathbf{C}) \oplus \cdots \oplus M_{d_r \times d_r}(\mathbf{C})$$

with $d_1^2 + d_2^2 + \cdots + d_r^2 = n$. A typical element of \mathbf{C}^n is a complex-valued function $\psi = (c_0, c_1, \ldots, c_{n-1})$ and the typical element of $M(\widehat{G})$ is the direct sum of Fourier transforms

$$\widehat{\phi}(\rho_1) \oplus \widehat{\phi}(\rho_2) \oplus \cdots \oplus \widehat{\phi}(\rho_r).$$

Cyclic circulant matrices are normal (hence diagonalizable) and the Fourier basis of eigenvectors, the complex exponentials, are fixed and independent of the function ψ . In the Abelian setting the Fourier transform is a unitary linear transformation (proper scaling required). In the non-Abelian setting we recapture this property if we define the right inner product on the space $M(\hat{G})$. Let $\phi \in \mathbb{C}^n$ and define a function ϕ_j by the following action

$$\phi_j(s) = \frac{d_j}{|G|} \operatorname{tr}\left(\rho_j(s)\widehat{\phi}(\rho_j)\right) \text{ for } s \in G.$$

Note $\phi = \sum_{j=1}^{r} \phi_j$ which constitutes the inverse Fourier transform. We are able to decompose a function ϕ into a sum of r functions which is the number of conjugacy classes of G.

DEFINITION. Let $A = (a_{i,j})$ be a $m \times n$ matrix. The Frobenius norm of A is given by

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2.$$

If we let ϕ_j be given as above, then we have

$$\langle \phi_i, \phi_j \rangle = rac{d_j}{|G|} ||\widehat{\phi}(\rho_j)||_F^2 \delta_{ij}.$$

and if we let $\phi \in \mathbf{C}^n$ then

$$||\phi||^2 = \frac{1}{|G|} \sum_{j=1}^r d_j ||\widehat{\phi}(\rho_j)||_F^2.$$

Thus, with proper scaling, the Fourier transform is a unitary transformation from \mathbf{C}^n onto $(M(\widehat{G}), \bullet_F)$.

In the case of a group circulant matrix $C = C_G(\psi)$ over a non-Abelian group G its eigenvectors need not be orthogonal nor are ψ independent in general. Moreover, the matrix $C_G(\psi)$ need not be diagonalizable, an example was given in [13] with $G = D_4$, the dihedral group of order 4. The group D_4 is a semi-direct product of the cyclic group \mathbf{Z}_4 and the cyclic group \mathbf{Z}_2 . Let $\mathbf{Z}_n = \langle r \rangle$ and $\mathbf{Z}_2 = \langle s \rangle$. We have $r^n = s^2 = \mathbf{1}$ and $r^j s = sr^{-j}$ for all $j \in \{0, 1, \ldots, n-1\}$. The matrix C corresponding to the convolution operator induced by the symbol $\Psi = r + rs$ is not diagonalizable.

Eigenvalue analysis for group circulant matrices was studied in [8] and the eigenvector decomposition in [13]. In the Fourier domain the eigenvalue problem for a group circulant matrix translates to $AB = \lambda B$ where λ is an eigenvalue of $A = \hat{\psi}(\rho_j)$ and the columns of B are the corresponding eigenvectors (any collection including the zero vector).

Assume the matrix $\widehat{\psi}(\rho_j)$ is diagonalizable for each j with d_j eigenvalues (possibly counting multiplicities). Let $\sigma\left(\widehat{\psi}(\rho_j)\right) = \{\lambda_{1,j}, \ldots, \lambda_{d_j,j}\}$. Consider an (unital) eigenvector $\mathbf{v}_{\lambda_{s,j}}$ of $\widehat{\psi}(\rho_j)$ corresponding to the eigenvalue $\lambda_{s,j}$ with $s \in \{1, \ldots, d_j\}$. In the case of a multiple eigenvalue we choose linearly-independent (preferably orthogonal) unital eigenvectors. To obtain the eigenvector decomposition of C we review some of the developments in [13].

Define a sequence of Fourier (orthogonal) eigenvectors in $M(\widehat{G})$

where the unital eigenvector $\mathbf{v}_{\lambda_{s,j}}$ is located in the *p*-th column with $p \in \{1, \ldots, d_j\}$.

The orthogonality properties are respected in the space $l^2(\mathbf{C}^n)$ upon taking the inverse Fourier Transform which is unitary. Namely, upon taking the inverse Fourier transform of the vectors $\{\hat{\mathbf{v}}_p(\lambda_{s,j})\}$ we obtain eigenvectors

$$\{\mathbf{v}_p(\lambda_{s,j})\}\$$
 for $p, s \in \{1, 2, \dots, d_j\}$ and $j \in \{1, 2, \dots, r\}$.

For a given $\lambda_{s,j}$ the eigenvectors $\{\mathbf{v}_p(\lambda_{s,j}) | p \in \{1, 2, \dots, d_j\}\}$ are pairwise mutuallyorthogonal. Moreover $\mathbf{v}_p(\lambda_{s,i}) \perp \mathbf{v}_q(\lambda_{t,j})$ for $i \neq j$ and any choice of p, q and s, t.

The group circulant matrix $C_G(\psi)$ admits pairwise mutually-orthogonal, ψ independent, d_i^2 -dimensional, *C*-invariant subspaces

$$V_{j} = \operatorname{span}\{\mathbf{v}_{p}(\lambda_{s,j}) \mid p \in \{1, \dots, d_{j}\}, s \in \{1, \dots, d_{j}\}\}\$$

= span{ $\rho_{i}(k, l) \mid k, l \in \{1, \dots, d_{j}\}\}$

where $j \in \{1, 2, ..., r\}$ and the action of the function $\rho_j(k, l)$ is seen as $\rho_j(k, l)(s) = \rho_j(s)(k, l)$ for $s \in G$. This decomposition could be sufficient as far as the response of *G*-convolution by ψ on functions in \mathbb{C}^n is concerned. The functions $\{\rho_j(k, l)\}$ are the generalizations of the complex exponentials (cyclic case) as they are mutually-orthogonal though not necessarily eigenvectors. The values $\{||\hat{\psi}(\rho_j)||\}$ could act as frequency responses.

2 Main Results: Block Group Circulant Matrices

Define a vector space $\mathbf{C}^{k}[G]$ consisting of elements

$$\mathbf{v} = v_0 \mathbf{1} + v_1 g_1 + \cdots + v_{n-1} g_{n-1}$$

where $v_i = (v_{1i}, v_{1i}, \dots, v_{ki})^T \in \mathbf{C}^k$. Note that $\mathbf{C}^k[G]$ is not an algebra as we do not have multiplication defined. We can identify the element \mathbf{v} with

$$(v_{10}g_1 + \dots + v_{1n-1}g_{n-1}) \oplus \dots \oplus (v_{k0}g_1 + \dots + v_{kn-1}g_{n-1})$$

so that $\mathbf{v} = \mathbf{v}_1 \oplus \cdots \oplus \mathbf{v}_k$ with $\mathbf{v}_s \in \mathbf{C}[G]$. Each \mathbf{v}_s results from collecting the same entries in \mathbf{v} , ranging from 1 to k. Thus $\mathbf{C}^k[G]$ can be identified with k copies of $\mathbf{C}[G]$. We refer to this as the block stacking (with respect to entry position). Undoing this operation is referred to as block merging. To give an example we let $G = \mathbf{Z}_2$ with the elements $\{g_0, g_1\}$ where g_0 is the identity element and $g_1^2 = g_0$. Consider

$$\mathbf{v} = \left(egin{array}{c} 1 \ 2 \end{array}
ight) g_0 + \left(egin{array}{c} 3 \ 4 \end{array}
ight) g_1 = (1\,,2\,,3\,,4)^T.$$

Then $\mathbf{v}_0 = g_0 + 3g_1$ and $\mathbf{v}_1 = 2g_0 + 4g_1$. Now define a group algebra $\mathbf{C}^{k \times k}[G]$ over the group G with coefficients $k \times k$ matrices over the complex numbers. The group algebra $\mathbf{C}^{k \times k}[G]$ consists of elements

$$\Psi = \mathbf{c}_0 \mathbf{1} + \mathbf{c}_1 g_1 + \cdots + \mathbf{c}_{n-1} g_{n-1}$$

where \mathbf{c}_i are $k \times k$ matrices over the complex numbers. The element Ψ can be identified with a $k \times k$ matrix $[\psi_{ts}]_{t,s=1}^k$ where the entry ψ_{ts} is an element of the group algebra $\mathbf{C}[G]$. The matrix Ψ is obtained by collecting likewise entries in the symbol Ψ similar to the vector block stacking.

Let $\Psi \in \mathbf{C}^{k \times k}[G]$ and $\mathbf{v} \in \mathbf{C}^{k}[G]$. The $kn \times kn$ block group circulant matrix C is induced by the following action

$$\mathbf{w} = \Psi \mathbf{v}$$

where $\mathbf{v} \in \mathbf{C}^{k}[G]$, $\mathbf{w} \in \mathbf{C}^{k}[G]$ and $\Psi \in \mathbf{C}^{k \times k}[G]$. To give an example let $G = \mathbf{Z}_{2}$ as before. Consider

$$\Psi = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ & & \end{pmatrix} g_0 + \begin{pmatrix} 5 & 6 \\ 7 & 8 \\ & & \end{pmatrix} g_1.$$

Then $\psi_{1,1} = g_0 + 5g_1$, $\psi_{1,2} = 2g_0 + 6g_1$, $\psi_{2,1} = 3g_0 + 7g_1$ and $\psi_{2,2} = 4g_0 + 8g_1$. Recall $\{\rho_j\}_{j=1}^r$ denote the irreducible representations of G. Let $\hat{\psi}_{ts}(j)$ be the Fourier transform $(d_j \times d_j \text{ matrix})$ of ψ_{ts} evaluated at ρ_j , where ρ_j is the irreducible representation of the group G. Similarly, $\hat{\mathbf{v}}_i(j)$ is the Fourier transform $(d_j \times d_j \text{ matrix})$ of \mathbf{v}_i evaluated at ρ_j .

The action of the block group circulant matrix C can now be lifted to the Fourier domain and can be seen as the following action

$$\oplus_{j=1}^{r} \begin{pmatrix} \widehat{\psi}_{11}(j) & \widehat{\psi}_{12}(j) & \cdots & \widehat{\psi}_{1k}(j) \\ \widehat{\psi}_{21}(j) & \widehat{\psi}_{22}(j) & \cdots & \widehat{\psi}_{2k}(j) \\ \vdots & \vdots & \vdots & \vdots \\ \widehat{\psi}_{k1}(j) & \widehat{\psi}_{k2}(j) & \cdots & \widehat{\psi}_{kk}(j) \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{v}}_{1}(j) \\ \widehat{\mathbf{v}}_{2}(j) \\ \vdots \\ \widehat{\mathbf{v}}_{k}(j) \end{pmatrix} = \oplus_{j=1}^{r} \widehat{\Psi}_{j} \widehat{\mathbf{v}}.$$

We will assume the matrix C is diagonalizable. This assumption is made for simplicity reasons namely a notational one, as an extension to non-diagonalizable case can be readily accomplished.

THEOREM 1. Let C be a diagonalizable block group circulant matrix over a finite non-Abelian group G. Then the eigenvalues of C are the eigenvalues $\{\lambda_{m,j}\}$, each with multiplicity d_j , with $m \in \{1, 2, \ldots, kd_j\}$ and $j \in \{1, 2, \ldots, r\}$, of the matrices $\{\Psi_j\}$. Let $\lambda_{m,j}$ be given. Then we have d_j corresponding (linearly-independent though not necessarily orthogonal) eigenvectors $\mathbf{u}_p(\lambda_{m,j})$ for $p \in \{1, 2, \ldots, d_j\}$. These eigenvectors have the following properties. Let p be given. Perform the block stacking of $\mathbf{u}_p(\lambda_{m,j})$. Then the Fourier transform of each block $\mathbf{u}_p^s(\lambda_{m,j})$, $s \in \{1, 2, \ldots, k\}$ is given by

$$\widehat{\mathbf{u}^{s}}_{p}(\lambda_{m,j}) = (\mathbf{0})_{d_{1} \times d_{1}} \oplus \cdots \oplus \begin{pmatrix} \mathbf{0} & \cdots & \mathbf{0} & \mathbf{u}_{\lambda_{m,j}}^{s} & \mathbf{0} & \cdots & \mathbf{0} \\ & & & & & \end{pmatrix} \oplus \cdots \oplus (\mathbf{0})_{d_{r} \times d_{r}}$$

where $\mathbf{u}_{\lambda_{m,j}}^s$ is the s^{th} block (top to bottom) of the eigenvector $\mathbf{u}_{\lambda_{m,j}}$ of the matrix Ψ_j with eigenvalue $\lambda_{m,j}$. The vector $\mathbf{u}_{\lambda_{m,j}}^s$ is in the p^{th} column of the $d_j \times d_j$ matrix above.

PROOF. It is clear from the preceding discussion that the eigenvalues of the matrix C are the eigenvalues of the matrices $\{\Psi_j\}_{j=1}^r$ counting multiplicities. We list these as $\{\lambda_{m,j}\}$ with $m \in \{1, 2, ..., kd_j\}$ and $j \in \{1, 2, ..., r\}$. The eigenvectors of the matrix C can be obtained as follows. Let j be fixed. Let $\mathbf{u}_{\lambda_{m,j}}$ be an unital eigenvector of the matrix $\widehat{\Psi}_j$. Split the vector $\mathbf{u}_{\lambda_{m,j}}$ into k parts (top to bottom) and consider a block $\mathbf{u}_{\lambda_{m,j}}^s$, a $d_j \times 1$ vector. Define a vector

where $\mathbf{u}_{\lambda_{m,j}}^s$ is located in the *p*th column with some fixed choice of $p \in \{1, \ldots, d_j\}$ the same for all the *k* blocks. Let $\{\mathbf{u}_p^s(\lambda_{m,j})\}$ be the vectors in \mathbf{C}^n whose Fourier transform is the given Fourier sequence $\{\widehat{\mathbf{u}}_p^s(\lambda_{s,j})\}$ for each $s \in \{1, 2, \ldots, k\}$. We form the eigenvector $\mathbf{u}_p(\lambda_{m,j})$ of *C* for the eigenvalue $\lambda_{m,j}$ via block merging using the blocks $\{\mathbf{u}_p^s(\lambda_{m,j})\}$.

For $i \neq j$ we have

$$\mathbf{u}_p(\lambda_{m,j}) \perp \mathbf{u}_q(\lambda_{t,i})$$
 for all p, q, m, t .

However, unlike the group circulant case, the eigenvector $\mathbf{u}_p(\lambda_{m,j})$ need not be orthogonal to $\mathbf{u}_q(\lambda_{m,j})$ for $p \neq q$. The group circulant matrix $C_G(\psi)$ admits mutuallyorthogonal, ψ independent, kd_j^2 -dimensional, *C*-invariant subspaces

$$U_{j} = \operatorname{span}\{\mathbf{u}_{p}(\lambda_{m,j}) \mid p \in \{1, \dots, d_{j}\}, m \in \{1, \dots, kd_{j}\}\}\$$

$$= \operatorname{span}\{\rho_{j}^{i}(k, l) \mid k, l \in \{1, \dots, d_{j}\}, i \in \{1, 2, \dots, k\}\}\$$

for $j \in \{1, 2, ..., r\}$. The function $\rho_j^i(k, l)$ is created as follows. Consider a function $\rho_j(k, l)$ acting as $\rho_j(k, l)(g) = \rho_j(g)(k, l)$ for $g \in G$. Then choose a block location

 $i \in \{1, 2, ..., k\}$ and merge $\rho_j(k, l)$ from the location i with the k - 1 blocks of zeros of size $n \times 1$ to create a vector of size $kn \times 1$. Note that the functions $\rho_j^i(k, l)$ are mutually-orthogonal though not necessarily eigenvectors.

3 Example

We now consider an example of a block group circulant matrix C over the symmetric group S_3 . The group S_3 consists of elements

$$g_0 = (1)$$
; $g_1 = (12)$; $g_2 = (13)$; $g_3 = (23)$; $g_4 = (123)$; $g_5 = (132)$.

We have three irreducible representations, two of which are one-dimensional, ρ_1 is the identity map, ρ_2 is the map that assigns the value of 1 if the permutation is even and the value of -1 if the permutation is odd. Finally, we have ρ_3 defined by the following assignment

$$g_{0} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ; g_{1} \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} ; g_{2} \mapsto \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} ; g_{3} \mapsto \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
$$g_{4} \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} ; g_{5} \mapsto \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}.$$

Consider the block group circulant matrix induced by the symbol

$$\Psi = \mathbf{c}_0 g_0 + \mathbf{c}_1 g_1 \text{ with } \mathbf{c}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ & & \end{pmatrix} \text{ and } \mathbf{c}_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ & & \end{pmatrix}.$$

The induced block circulant matrix is given by (respecting the order of elements)

$$\left(\begin{array}{cccccccccc} \mathbf{c}_0 & \mathbf{c}_1 & 0 & 0 & 0 & 0 \\ \mathbf{c}_1 & \mathbf{c}_0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{c}_0 & 0 & \mathbf{c}_1 & 0 \\ 0 & 0 & \mathbf{c}_1 & 0 & \mathbf{c}_0 & 0 \\ 0 & 0 & \mathbf{c}_1 & 0 & \mathbf{c}_0 & 0 \\ 0 & 0 & \mathbf{c}_1 & 0 & \mathbf{c}_0 \end{array}\right).$$

The matrices $\widehat{\Psi}(j)$ are given by

$$\widehat{\Psi}(1) = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ & & \end{pmatrix} ; \widehat{\Psi}(2) = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ & & \end{pmatrix} ; \widehat{\Psi}(3) = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \\ & & & & & \end{pmatrix}.$$

The eigenvalues of $\widehat{\Psi}(1)$ are $\lambda_{1,1} = 1$ and $\lambda_{2,1} = 2$ with $u_{\lambda_{1,1}} = (1,0)^T$ and $u_{\lambda_{2,1}} = (1,1)^T$. We collect 2 corresponding eigenvectors of C (non-normalized)

$$\mathbf{u}_1(\lambda_{1,1}) = (1,0,1,0,1,0,1,0,1,0,1,0)^T \mathbf{u}_1(\lambda_{2,1}) = (1,1,1,1,1,1,1,1,1,1,1,1)^T$$

Note that the above eigenvectors span the *C*-invariant subspace U_1 . The eigenvalues of $\widehat{\Psi}(2)$ are $\lambda_{1,2} = 1$ and $\lambda_{2,2} = 2$ with $u_{\lambda_{1,2}} = (1,0)^T$ and $u_{\lambda_{2,2}} = (1,-1)^T$. We collect 2 corresponding eigenvectors of *C* (non-normalized)

$$\begin{aligned} \mathbf{u}_1(\lambda_{1,2}) &= (1,0,-1,0,-1,0,-1,0,1,0,1,0)^T \\ \mathbf{u}_1(\lambda_{2,2}) &= (1,-1,-1,1,-1,1,-1,1,1,-1,1,-1)^T. \end{aligned}$$

Note that the above eigenvectors span the *C*-invariant subspace U_2 . The eigenvalues of $\widehat{\Psi}(3)$ are $\lambda_{1,3} = \lambda_{2,3} = 1$ with multiplicity 2, and $\lambda_{3,3} = \lambda_{4,3} = 2$ with multiplicity 2 as well. We have $u_{\lambda_{1,3}} = (1,0,0,0)^T$, $u_{\lambda_{2,3}} = (0,1,0,0)^T$, $u_{\lambda_{3,3}} = (1,0,-1,0)^T$ and $u_{\lambda_{4,3}} = (1,1,0,1)^T$. As a result we collect 8 eigenvectors (non-normalized) of *C* corresponding to these eigenvalues

$$\begin{aligned} \mathbf{u}_{1}(\lambda_{1,3}) &= (1, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0)^{T} \\ \mathbf{u}_{2}(\lambda_{1,3}) &= (0, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0)^{T} \\ \mathbf{u}_{1}(\lambda_{2,3}) &= (0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0)^{T} \\ \mathbf{u}_{2}(\lambda_{2,3}) &= (1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0)^{T} \\ \mathbf{u}_{1}(\lambda_{3,3}) &= (1, -1, -1, 1, 0, 0, 1, -1, 0, 0, 0, -1, 1)^{T} \\ \mathbf{u}_{2}(\lambda_{3,3}) &= (0, 0, 0, 0, -1, 1, 1, -1, 1, -1, -1, 1)^{T} \\ \mathbf{u}_{1}(\lambda_{4,3}) &= (1, 0, 0, 1, -1, -1, 1, 0, -1, -1, 0, 1)^{T} \\ \mathbf{u}_{2}(\lambda_{4,3}) &= (1, 1, 1, 1, -1, 0, 0, -1, 0, -1, -1, 0)^{T} \end{aligned}$$

Note that the above eigenvectors span the *C*-invariant subspace U_3 . We will explain how we obtained $u_2(\lambda_{4,3})$. Consider $\lambda_{4,3} = 2$ and $u_{\lambda_{4,3}} = (1,1,0,1)^T$, the corresponding eigenvector of $\widehat{\Psi}(3)$. Form $\widehat{\mathbf{u}}^1_2(\lambda_{4,3})$ by positioning $(1,1)^T$ in the second column and zero columns elsewhere. The inverse Fourier transform of $\widehat{\mathbf{u}}^1_2(\lambda_{4,3})$ is given by (1,1,-1,0,0,-1). Next, form $\widehat{\mathbf{u}}^2_2(\lambda_{4,3})$ by positioning $(0,1)^T$ in the second column and zeros elsewhere. The inverse Fourier transform of $\widehat{\mathbf{u}}^2_2(\lambda_{4,3})$ is given by (1,1,0,-1,-1,0). Now we merge and obtain

$$u_2(\lambda_{4,3}) = (1, 1, 1, 1, -1, 0, 0, -1, 0, -1, -1, 0)^T.$$

Observe that for $i \neq j$ we have $u_p(\lambda_{m,j}) \perp u_q(\lambda_{t,i})$ for all choices of p, q, m, t, but for $p \neq q \ u_p(\lambda_{m,j})$ need not be orthogonal to $u_q(\lambda_{m,j})$.

References

- M. An and R. Tolimieri, Group Filters and Image Processing, Computational noncommutative algebra and applications, 255–308, NATO Sci. Ser. II Math. Phys. Chem., 136, Kluwer Acad. Publ., Dordrecht, 2004.
- [2] P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication. Pure and Applied Mathematics. John Wiley & Sons, New York-Chichester-Brisbane, 1979.
- [3] P. Diaconis, Group Representations in Probability and Statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 11. Institute of Mathematical Statistics, Hayward, CA, 1988.
- [4] D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition, John Wiley & Sons, Inc., Hoboken, NJ, 2004.
- [5] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.
- [6] M. G. Karpovsky, Fast Fourier transforms on finite non-Abelian groups, IEEE Trans. Computers, Vol C-26(1977), 1028–1030.
- [7] D. Maslen and D. Rockmore, Generalized FFTs-A survey of some recent results, Proceedings of the DIMACS Workshop on Groups and Computation, June 7-10, 1995 eds. L. Finkelstein and W. Kantor, (1997), 183–237.
- [8] K. E. Morrison, A Generalization of Circulant Matrices for Non-Abelian Groups, research report (1998).
- [9] J. P. Serre, Linear Representations of Finite Groups, Translated from the second French edition by Leonard L. Scott. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977.
- [10] R. S. Stankovic, C. Moraga and J. T. Astola, Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design, IEEE Press, John Wiley and Sons, (2005).
- [11] G. J. Tee, Eigenvectors of block circulant and alternating circulant matrices, Res. Lett. Inf. Math. Sci., 8(2005), 123–142.
- [12] A. Terras, Fourier Analysis on Finite Groups and Applications, London Mathematical Society Student Texts, 43. Cambridge University Press, Cambridge, 1999.
- [13] P. Zizler, On spectral properties of group circulant matrices, PanAmer. Math. J., 23(2013), 1–23.