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Abstract
In this article we study the existence of positive periodic solutions for two

types of third-order nonlinear neutral differential equation with variable delay.
The main tool employed here is the Krasnoselskii’s fixed point theorem dealing
with a sum of two mappings, one is a contraction and the other is completely
continuous. The results obtained here generalize the work of Ren, Siegmund and
Chen [14].

1 Introduction

In recent years, there have been a few papers written on the existence of periodic solu-
tions, nontrivial periodic solutions and positive periodic solutions for several classes of
functional differential equations with delays, which arise from a number of mathemat-
ical ecological models, economical and control models, physiological and population
models and other models, see [1—14], [16—18] and the references therein.
In this paper, we are interested in the analysis of qualitative theory of positive

periodic solutions of delay differential equations. Motivated by the papers [2, 7, 8, 9,
10, 11, 12, 13, 14, 16, 17] and the references therein, we concentrate on the existence of
positive periodic solutions for the two types of third-order nonlinear neutral differential
equation with variable delay

d3

dt3
(x (t)− g (t, x (t− τ (t)))) = a (t)x (t)− f (t, x (t− τ (t))) , (1)

and
d3

dt3
(x (t)− g (t, x (t− τ (t)))) = −a (t)x (t) + f (t, x (t− τ (t))) , (2)
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where a, τ ∈ C (R, (0,∞)) , g ∈ C (R× [0,∞) ,R) , f ∈ C (R× [0,∞) , [0,∞)), and a,
τ , g (t, x) , f (t, x) are T -periodic in t where T is a positive constant. To reach our
desired end we have to transform (1) and (2) into integral equations and then use
Krasnoselskii’s fixed point theorem to show the existence of positive periodic solutions.
The obtained equation splits into a sum of two mappings, one is a contraction and the
other is compact. In the special case g (t, x) = cx with |c| < 1, Ren et al. in [14] show
that (1) and (2) have a positive periodic solutions by using Krasnoselskii’s fixed point
theorem.
The organization of this paper is as follows. In Section 2, we introduce some nota-

tions and lemmas, and state some preliminary results needed in later sections, then we
give the Green’s function of (1) and (2), which plays an important role in this paper.
Also, we present the inversions of (1) and (2), and Krasnoselskii’s fixed point theorem.
For details on Krasnoselskii’s theorem we refer the reader to [15]. In Section 3 and
Section 4, we present our main results on existence of positive periodic solutions of (1)
and (2), respectively. The results presented in this paper generalize the main results
in [14].

2 Preliminaries

For T > 0, let CT be the set of all continuous scalar functions x, periodic in t of period
T . Then (CT , ‖·‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x (t)| = sup

t∈[0,T ]
|x (t)| .

Define

C+T = {x ∈ CT : x > 0} , C
−
T = {x ∈ CT : x < 0} .

Denote

M = sup {a (t) : t ∈ [0, T ]} , m = inf {a (t) : t ∈ [0, T ]} , β = 3
√
M,

and

F (t, x) = f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t))) .

LEMMA 2.1 ([14]). The equation

d3

dt3
y (t)−My (t) = h (t) , h ∈ C−T ,

has a unique T -periodic solution

y (t) =

∫ T

0

G1 (t, s) (−h (s)) ds,
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where if 0 ≤ s ≤ t ≤ T,

G1 (t, s) =
2 exp

(
β(s−t)
2

)
3β2

[
1 + exp(−βT )− 2 exp

(
−βT2

)
cos
(√

3βT
2

)][ sin(√3
2
β(t− s) + π

6

)

− exp
(
−1
2
βT

)
sin

(√
3

2
β(t− s− T ) + π

6

)]
+

exp(β(t− s))
3β2(exp(βT )− 1)

,

and if 0 ≤ t ≤ s ≤ T,

G1 (t, s) =
2 exp

(
β(s−t−T )

2

)
3β2

[
1 + exp(−βT )− 2 exp

(
−βT2

)
cos
(√

3βT
2

)]
×
[
sin

(√
3

2
β(t− s+ T ) + π

6

)
− exp

(
−1
2
βT

)
sin

(√
3

2
β(t− s) + π

6

)]

+
exp(β(t+ T − s))
3β2(exp(βT )− 1)

.

LEMMA 2.2 ([14]).
∫ ω
0
G1(t, s)ds = 1/M and if

√
3βT < 4π/3 holds, thenG1(t, s) >

0 for all t ∈ [0, T ] and s ∈ [0, T ].

LEMMA 2.3 ([14]). The equation

d3

dt3
y (t)− a (t) y (t) = h (t) , h ∈ C−T ,

has a unique positive T -periodic solution

(P1h) (t) = (I − T1B1)−1 T1h (t) ,

where

(T1h) (t) =

∫ T

0

G1 (t, s) (−h (s)) ds and (B1y) (t) = [−M + a (t)] y (t) .

LEMMA 2.4 ([14]). If
√
3βT < 4π/3 holds, then P1 is completely continuous and

0 < (T1h) (t) ≤ (P1h) (t) ≤
M

m
‖T1h‖ , h ∈ C−T .

The following lemma is essential for our results on existence of positive periodic
solution of (1). The proof is similar to that of Section 6 of [14] and hence, we omit it.

LEMMA 2.5. If x ∈ CT then x is a solution of equation (1) if and only if

x (t) = g (t, x (t− τ (t))) + P1 (−f (t, x (t− τ (t))) + a (t) g (t, x (t− τ (t)))) . (3)
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LEMMA 2.6 ([14]). The equation

d3

dt3
y (t) +My (t) = h (t) , h ∈ C+T ,

has a unique T -periodic solution

y (t) =

∫ T

0

G2 (t, s)h (s) ds,

where if 0 ≤ s ≤ t ≤ T,

G2(t, s) =
2 exp

(
β(t−s)
2

)
3β2

[
1 + exp(βT )− 2 exp

(
βT
2

)
cos
(√

3βT
2

)][ sin(√3
2
β(t− s)− π

6

)

− exp
(
1

2
βT

)
sin

(√
3

2
β(t− s− T )− π

6

)]
+

exp(β(s− t))
3β2(1− exp(−βT ))

,

and if 0 ≤ t ≤ s ≤ T,

G2(t, s) =
2 exp

(
β(t+T−s)

2

)
3β2

[
1 + exp(βT )− 2 exp

(
βT
2

)
cos
(√

3βT
2

)]
×
[
sin

(√
3

2
β(t+ T − s)− π

6

)
− exp

(
1

2
βT

)
sin

(√
3

2
β(t− s)− π

6

)]

+
exp(β(s− t− T ))
3β2(1− exp(−βT ))

.

LEMMA 2.7 ([14]).
∫ T
0
G2 (t, s) ds = 1/M and if

√
3βT < 4π/3 holds, then

G2 (t, s) > 0 for all t ∈ [0, T ] and s ∈ [0, T ].

LEMMA 2.8 ([14]). The equation

d3

dt3
y (t) + a (t) y (t) = h (t) , h ∈ C+T ,

has a unique positive T -periodic solution

(P2h) (t) = (I − T2B2)−1 T2h (t) ,

where

(T2h) (t) =

∫ T

0

G2 (t, s)h (s) ds, (B2y) (t) = [M − a (t)] y (t) .

LEMMA 2.9 ([14]). If
√
3βT < 4π/3 holds, then P2 is completely continuous and

0 < (T2h) (t) ≤ (P2h) (t) ≤
M

m
‖T2h‖ , h ∈ C+T .
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The following lemma is essential for our results on existence of positive periodic
solution of (2).

LEMMA 2.10. If x ∈ CT then x is a solution of equation (2) if and only if

x (t) = g (t, x (t− τ (t))) + P2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) . (4)

PROOF. Let x ∈ PT be a solution of (2). Rewrite (2) as

d3

dt3
[x (t)− g (t, x (t− τ (t)))] +M [x (t)− g (t, x (t− τ (t)))]

= [M − a (t)] [x (t)− g (t, x (t− τ (t)))] + f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))
= B2 [x (t)− g (t, x (t− τ (t)))] + f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t))) .

From Lemma 2.6, we have

x (t)− g (t, x (t− τ (t))) = T2B2 [x (t)− g (t, x (t− τ (t)))]
+ T2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .

This yields

(I − T2B2) (x (t)− g (t, x (t− τ (t)))) = T2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .

Therefore,

x (t)− g (t, x (t− τ (t))) = (I − T2B2)−1 T2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t))))
= P2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .

Obviously,

x (t) = g (t, x (t− τ (t))) + P2 (f (t, x (t− τ (t)))− a (t) g (t, x (t− τ (t)))) .

This completes the proof.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of positive periodic solutions to (1) and (2). For its proof we
refer the reader to ([15], p. 31).

THEOREM 2.1 (Krasnoselskii). Let D be a closed convex nonempty subset of a
Banach space (B, ‖.‖) . Suppose that A and B map D into B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,

(ii) A is completely continuous,

(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.
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3 Positive Periodic Solutions for (1)

To apply Theorem 2.1, we need to define a Banach space B, a closed convex subset D
of B and construct two mappings, one is a contraction and the other is a completely
continuous. So, we let (B, ‖.‖) = (CT , ‖.‖) and D = {ϕ ∈ B : L ≤ ϕ ≤ K}, where L is
non-negative constant and K is positive constant. We express equation (3) as

ϕ (t) = (B1ϕ) (t) + (A1ϕ) (t) := (H1ϕ) (t) ,

where A1,B1 : D→ B are defined by

(A1ϕ) (t) = P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t)))) , (5)

and
(B1ϕ) (t) = g (t, ϕ (t− τ (t))) . (6)

In this section we obtain the existence of a positive periodic solution of (1) by
considering the three cases; g (t, x) > 0, g (t, x) = 0 and g (t, x) < 0 for all t ∈ R, x ∈ D.
We assume that function g (t, x) is locally Lipschitz continuous in x. That is, there
exists a positive constant k such that

|g (t, x)− g (t, y)| ≤ k ‖x− y‖ , for all t ∈ [0, T ] , x, y ∈ D. (7)

In the case g (t, x) > 0, we assume that there exist positive constants k1 and k2
such that

k1x ≤ g (t, x) ≤ k2x, for all t ∈ [0, T ] , x ∈ D, (8)

k2 < 1, (9)

and for all t ∈ [0, T ] , x ∈ D,
k1m ≤ F (t, x) ≤M. (10)

LEMMA 3.1. Suppose that (7) holds. If B1 is given by (6) with

k < 1, (11)

then B1 : D→ B is a contraction.

PROOF. Let B1 be defined by (6). Obviously, B1ϕ is continuous and it is easy to
show that (B1ϕ) (t+ T ) = (B1ϕ) (t). So, for any ϕ,ψ ∈ D, we have

|(B1ϕ) (t)− (B1ψ) (t)| ≤ |g (t, ϕ (t− τ (t)))− g (t, ψ (t− τ (t)))| ≤ k ‖ϕ− ψ‖ .

Then ‖B1ϕ− B1ψ‖ ≤ k ‖ϕ− ψ‖. Thus B1 : D→ B is a contraction by (11).

Besides, by the complete continuity of P1, it is easy to verify the following lemma.

LEMMA 3.2. Suppose that
√
3βT < 4π/3 and the conditions (8)-(10) hold. Then

A1 : D→ B is completely continuous.
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THEOREM 3.1. Suppose that
√
3βT < 4π/3 and the conditions (7)-(11) hold with

L =
k1m

(1− k1)M
and K =

M

(1− k2)m
. Then equation (1) has a positive T -periodic

solution x in the subset

D =
{
ϕ ∈ B : k1m

(1− k1)M
≤ ϕ ≤ M

(1− k2)m

}
.

PROOF. By Lemma 3.1, the operator B1 : D → B is a contraction. Also, from
Lemma 3.2, the operator A1 : D → B is completely continuous. Moreover, we claim
that B1ψ + A1ϕ ∈ D for all ϕ,ψ ∈ D. Since F (t, x) ≥ k1m > 0 which implies
−f (t, x) + a (t) g (t, x) < 0, then for any ϕ,ψ ∈ D, by Lemma 2.2 and Lemma 2.4, we
have

(B1ψ) (t) + (A1ϕ) (t)
= g (t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≤ k2ψ (t− τ (t)) +
M

m
‖T1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))‖

≤ k2M
(1−k2)m +

M

m
max
t∈[0,T ]

∣∣∣∣∣
∫ T

0

G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds
∣∣∣∣∣

≤ k2M
(1−k2)m +

M

m
max
t∈[0,T ]

∫ T

0

G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≤ k2M

(1− k2)m
+
M

m

∫ T

0

G1 (t, s)Mds

=
k2M

(1− k2)m
+
M

m
M
1

M
=

M

(1− k2)m
.

On the other hand, by Lemma 2.2 and Lemma 2.4,

(B1ψ) (t) + (A1ϕ) (t)
= g (t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≥ k1ψ (t− τ (t)) +
∫ T

0

G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≥ k21m

(1− k1)M
+

∫ T

0

G1 (t, s) k1mds

=
k21m

(1− k1)M
+ k1m

1

M
=

k1m

(1− k1)M
.

Then B1ψ +A1ϕ ∈ D for all ϕ,ψ ∈ D. Clearly, all the hypotheses of the Krasnoselskii
theorem are satisfied. Thus there exists a fixed point x ∈ D such that x = A1x+ B1x.
By Lemma 2.5 this fixed point is a solution of (1) and the proof is complete.

EXAMPLE 3.1. Consider the following third-order nonlinear neutral differential
equation with variable delay

d3

dt3
[x (t)− g (t, x (t− τ (t)))] = a (t)x (t)− f (t, x (t− τ (t))) , (12)
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where T = π, τ (t) = sin2 (t) , a (t) = 1
5 sin

2 (t) + 0.8, g (t, x) = 0.6 sin
(
x
2

)
, and

f (t, x) =
sin2 (t)

x2 + 1.6
+ 0.12 sin2 (t) sin

(x
2

)
+ 0.48 sin2

(x
2

)
+ 0.2.

Then Equation (12) has a positive π-periodic solution x satisfying 0.2 ≤ x ≤ 2.5. To
see this, a simple calculation yields

k = 0.3, m = 0.8, M = 1, k1 = 0.2, k2 = 0.5, L = 0.2, K = 2.5.

Define the set D = {ϕ ∈ B : 0.2 ≤ ϕ ≤ 2.5}. Then for x ∈ [0.2, 2.5] we have

F (t, x) =
sin2 (t)

x2 + 1.6
+ 0.2 ≤ 0.81 < 1 =M.

On the other hand,

F (t, x) =
sin2 (t)

x2 + 1.6
+ 0.2 ≥ 0.2 > 0.16 = k1m.

By Theorem 3.1, Equation (12) has a positive π-periodic solution x such that 0.2 ≤
x ≤ 2.5.

REMARK 3.1. When g (t, x) = cx, Theorem 3.1 reduces to Theorem 6.2 of [14].

In the case g (t, x) = 0, we have the following theorem.

THEOREM 3.2 ([14]). If
√
3βT < 4π/3 holds, k2 = 0 and 0 < F (t, x) ≤ M , then

equation (1) has a positive T -periodic solution x in the subset

D1 =
{
ϕ ∈ B : 0 < ϕ ≤ M

m

}
.

In the case g (t, x) < 0, we substitute conditions (8)-(10) with the following con-
ditions respectively. We assume that there exist negative constants k3 and k4 such
that

k3x ≤ g (t, x) ≤ k4x, for all t ∈ [0, T ] , x ∈ D, (13)

−k3 <
m

M
, (14)

and for all t ∈ [0, T ] , x ∈ D

−k3M < F (t, x) ≤ m. (15)

THEOREM 3.3. Suppose that
√
3βT < 4π/3, (7) and (11)-(15) hold with L = 0

and K = 1. Then equation (1) has a positive T -periodic solution x in the subset
D2 = {ϕ ∈ B : 0 < ϕ ≤ 1}.
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PROOF. By Lemma 3.1, the operator B1 : D → B is a contraction. Also, from
Lemma 3.2, the operator A1 : D → B is completely continuous. Moreover, we claim
that B1ψ + A1ϕ ∈ D for all ϕ,ψ ∈ D. In fact, for any ϕ,ψ ∈ D, by Lemma 2.2 and
Lemma 2.4, we have

(B1ψ) (t) + (A1ϕ) (t)
= g (t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≤ k4ψ (t− τ (t)) +
M

m
‖T1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))‖

≤ M

m
max
t∈[0,T ]

∣∣∣∣∣
∫ T

0

G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds
∣∣∣∣∣

≤ M

m
max
t∈[0,T ]

∫ T

0

G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≤ M

m

∫ T

0

G1 (t, s)mds =
M

m
m
1

M
= 1.

On the other hand, by Lemma 2.2 and Lemma 2.4,

(B1ψ) (t) + (A1ϕ) (t)
= g (t, ψ (t− τ (t))) + P1 (−f (t, ϕ (t− τ (t))) + a (t) g (t, ϕ (t− τ (t))))

≥ k3ψ (t− τ (t)) +
∫ T

0

G1 (t, s) (f (s, ϕ (s− τ (s)))− a (s) g (s, ϕ (s− τ (s)))) ds

≥ k3 +
∫ T

0

G1 (t, s) (−k3M) ds

= k3 + (−k3M)
1

M
= 0.

Then B1ψ +A1ϕ ∈ D for all ϕ,ψ ∈ D. Clearly, all the hypotheses of the Krasnoselskii
theorem are satisfied. Thus there exists a fixed point x ∈ D such that x = A1x+ B1x.
Since F (t, x) > −k3M , it is clear that x (t) > 0, hence x ∈ D2. By Lemma 2.5 this
fixed point is a solution of (1) and the proof is complete.

REMARK 3.2. When g (t, x) = cx, Theorem 3.3 reduces to Theorem 6.6 of [14].

4 Positive Periodic Solutions for (2)

We express equation (4) as

ϕ (t) = (B2ϕ) (t) + (A2ϕ) (t) := (H2ϕ) (t) ,

where A2,B2 : D→ B are defined by

(A2ϕ) (t) = P2 (f (t, ϕ (t− τ (t)))− a (t) g (t, ϕ (t− τ (t)))) , (16)
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and
(B2ϕ) (t) = g (t, ϕ (t− τ (t))) . (17)

Moreover, by the complete continuity of P2, it is easy to verify

LEMMA 4.1. Suppose that
√
3βT < 4π/3 and the conditions (8)-(10) hold. Then

A2 : D→ B is completely continuous.

REMARK 4.1. Notice that B2 in this section is defined exactly the same as that in
Section 3. Hence Lemma 3.1 still holds true.

Similar to the results in Section 3, we have

THEOREM 4.1. Assume that the hypotheses of Theorem 3.1 hold, then equation
(2) has a positive T -periodic solution x in the subset

D =
{
ϕ ∈ B : k2

M
≤ ϕ ≤ 1

m

}
.

THEOREM 4.2. Assume that the hypotheses of Theorem 3.2 hold, then equation
(2) has a positive T -periodic solution x in the subset

D1=
{
ϕ ∈ B : 0 < ϕ ≤ 1

m

}
.

THEOREM 4.3. Assume that the hypotheses of Theorem 3.3 hold, then equation
(2) has a positive T -periodic solution x in the subset

D2= {ϕ ∈ B : 0 < ϕ ≤ 1} .
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