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Abstract

In this work, we shall consider oscillation of bounded solutions of higher-order
nonlinear neutral delay difference equations of the following type

∆n [y (t) + p (t) f (y (τ (t)))] + q (t)h (y (σ (t))) = 0, t ∈ N,

where n ∈ {2, 3, . . .} is fixed and can take both odd and even values, {p(t)}∞t=1 is a
sequence of reals such that limt→∞ p(t) = 0, {q(t)}∞t=1 is a nonnegative sequence
of reals, and {τ(t)}∞t=1 and {σ(t)}∞t=1 are sequences of integers tending to infinity
asymptotically and bounded above by {t}∞t=1, and f, h ∈ C(R,R).

1 Introduction

We consider the higher-order nonlinear difference equation of the form

∆n [y (t) + p (t) f (y (τ (t)))] + q (t)h (y (σ (t))) = 0 for t ∈ N, (1)

where n ∈ {2, 3, . . .} is fixed, N = {0, 1, 2, . . .}, p : N → R = (−∞,∞), {p(t)}∞t=1
is a sequence of real such that limt→∞ p(t) = 0, and it is an oscillating function;
q : N → [0,∞), τ(t) : N → Z (Z denotes the set of integers) with τ(t) ≤ t, and
τ (t)→∞ as t→∞, σ(t) : N→ Z(Z denotes the set of integers) with σ(t) ≤ t, for all
t ∈ N and σ(t)→∞ as t→∞, f(u), h(u) ∈ C(R,R) are nondecreasing functions (1),
uf(u) > 0 and uh(u) > 0, for all u 6= 0, we mean any function y(t) : Z → R, which is
defined for all t ≥ mini≥0{τ (i) , σ(i)}, and satisfies equation (1) for suffi ciently large
t. As it is customary, a solution {y (t)} is said to be oscillatory if the terms y(t) of the
sequence are not eventually positive nor eventually negative. Otherwise, the solution
is called nonoscillatory. A difference equation is called oscillatory if all of its solutions
oscillate. Otherwise, it is nonoscillatory. In this paper, we restrict our attention to real
valued solutions y.

Recently, much research has been done on the oscillatory and asymptotic behavior
of solutions of higher-order delay and neutral type difference equations. The results
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obtained here are an extension of work in [7]. Most of the known results are for special
cases of equation (1) and related equations; see, for example, [1, 2, 3, 16].
The purpose of this paper is to study oscillatory behavior of bounded solutions of

solutions of equation (1). For the general theory of difference equations, one can refer
to [1, 2, 3, 10, 11, 12, 15]. Many references to applications of the difference equations
can be found in [10, 11, 12].
For the sake of convenience, we let N(a) = {a, a+1, . . .}, N (a, b) = {a, a+1, . . . , b},

and the function z (t) is defined by

z(t) = y(t) + p(t)f (y (τ (t))) . (2)

2 Some Auxiliary Lemmas

In this section, we present the known results.

LEMMA 1 ([2]). Let y(t) be defined for t ≥ t0 ∈ N, and y(t) > 0 with ∆ny(t)
of constant sign for t ≥ t0, n ∈ N(1), and not identically zero. Then there exists an
integer m ∈ [0, n] satisfying either (n+m) is even for ∆ny(t) ≥ 0 or (n+m) is odd
for ∆ny(t) ≤ 0 such that

(i) if m ≤ n− 1 implies (−1)m+i∆iy(t) > 0 for all t ≥ t0 and m ≤ i ≤ n− 1,

(ii) if m ≥ 1 implies ∆iy(t) > 0 for all large t ≥ t0 and 1 ≤ i ≤ m− 1.

LEMMA 2 ([2]). Let y(t) be defined for t ≥ t0, and y(t) > 0 with ∆ny(t) ≤ 0 for
t ≥ t0 and not identically zero. Then there exists a large t1 ≥ t0, such that

y (t) ≥ 1

(n− 1)!
(t− t1)n−1 ∆n−1y(2n−m−1t), t ≥ t1,

where m is defined as in Lemma 2. Furthermore, if y (t) is increasing, then

y (t) ≥ 1

(n− 1)!

(
t

2n−1

)n−1
∆n−1y(t), t ≥ 2n−1t1.

3 Main Results

In this section, we present main results and give some examples.

THEOREM 1. Assume than n is odd and the following assertions (C1)—(C2) hold:

(C1) limt→∞ p(t) = 0,

(C2)
∑∞
s=t0

sn−1q (s) =∞.
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Then every bounded solution of equation (1) either is oscillatory or tends to zero as
t→∞.

PROOF. Assume that equation (1) has a bounded nonoscillatory solution y. With-
out loss of generality, assume that y is eventually positive (the proof is similar when y
is eventually negative). That is, y(t) > 0, y (τ (t)) > 0, and y (σ (t)) > 0 for t ≥ t1 ≥ t0.
Furthermore, we assume that y(t) does not to zero as t→∞. By (1) and (2), we have
that

∆nz(t) = −q (t)h (y (σ (t))) ≤ 0 for t ≥ t1. (3)

That is, ∆nz(t) ≤ 0. It follows that ∆αz(t) for α = 0, 1, 2, . . . , n−1 is strictly monotone
and eventually of constant sign. Since limt→∞ p (t) = 0, there exists t2 ≥ t1 such that
z (t) > 0 for t ≥ t2. Since y is bounded, and by virtue of (C1) and (2), there exists
t3 ≥ t2 such that z(t) is also bounded for t ≥ t3. Because n is odd, z(t) is bounded and
m = 0 (otherwise, z (t) is not bounded by Lemma 1), there exists t4 ≥ t3 such that for
t ≥ t4, we have (−1)

i
∆iz(t) > 0 for i = 0, 1, 2, . . . , n−1. In particular, since ∆z(t) < 0

for t ≥ t4, z is decreasing. Since z is bounded, we obtain that limt→∞ z(t) = L where
−∞ < L < ∞. Assume that 0 ≤ L < ∞. Let L > 0. Then there exist a constant
c > 0 and t5 with t5 ≥ t4 such that z (t) > c > 0 for t ≥ t5. Since y is bounded,
limt→∞ p(t)f (y (τ (t))) = 0 by (C1). Therefore, there exist a constant c1 > 0 and t6
with t6 ≥ t5 such that

y(t) = z(t)− p(t)f (y (τ (t))) > c1 > 0 for t ≥ t6.

So we may find t7 with t7 ≥ t6 such that y (σ (t)) > c1 > 0 for t ≥ t7. From (3), we
have

∆nz(t) ≤ −q (t)h (c1) for t ≥ t7. (4)

If we multiply (4) by tn−1, and summing it from t7 to t− 1, we obtain

F (t)− F (t7) ≤ −h (c1)

t−1∑
s=t7

q (s) sn−1, (5)

where

F (t) =

n−1∑
γ=2

(−1)
γ

∆γtn−1∆n−γ−1z (t+ γ) .

Since (−1)
i
∆iz(t) > 0 for i = 0, 1, 2, . . . , n− 1 and t ≥ t4, we have F (t) > 0 for t ≥ t7.

From (5), we have

−F (t7) ≤ −h (c1)

t−1∑
s=t7

q (s) sn−1.

By (C2), we obtain

−F (t7) ≤ −h (c1)

t−1∑
s=t7

q (s) sn−1 = −∞ as t→∞.
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This is a contradiction. So, L > 0 is impossible. Therefore, L = 0 is the only possible
case. That is, limt→∞ z(t) = 0. Since y is bounded, and by virtue of (C1) and (2), we
obtain

lim
t→∞

y (t) = lim
t→∞

z (t)− lim
t→∞

p (t) f (y (τ (t))) = 0.

Now, let us consider the case of y (t) < 0 for t ≥ t1. By (1) and (2),

∆nz(t) = −q (t)h (y (σ (t))) ≥ 0 for t ≥ t1.

That is, ∆nz(t) ≥ 0. It follow that ∆αz(t) for α = 0, 1, 2, . . . , n−1 is strictly monotone
and eventually constant sign. Since limt→∞ p (t) = 0, there exists t2 ≥ t1, such that
z (t) < 0 for t ≥ t2. Since y(t) is bounded, by virtue of (C1) and (2), there exists
t3 ≥ t2 such that z (t) is also bounded for t ≥ t3. Assume that x (t) = −z (t). Then
∆nx (t) = −∆nz (t). Therefore, x (t) > 0 and ∆nx (t) ≤ 0 for t ≥ t3. From this, we
observe that x (t) is bounded. Because n is odd, x(t) is bounded and m = 0 (otherwise,
x(t) is not bounded by Lemma 1) there exists t4 ≥ t3 such that (−1)

i
∆ix(t) > 0 for

i = 0, 1, 2, . . . , n− 1 and t ≥ t4. That is, (−1)
i
∆iz(t) < 0 for i = 0, 1, 2, . . . , n− 1 and

t ≥ t4. In particular, we have ∆z(t) > 0 for t ≥ t4. Therefore, z (t) is increasing. So,
we can assume that limt→∞ z(t) = L where −∞ < L ≤ 0. As in the proof of y (t) > 0,
we may prove that L = 0. As for the rest, it is similar to the case y (t) > 0. That is,
limt→∞ y(t) = 0. This contradicts our assumption. Hence, the proof is completed.

THEOREM 2. Assume that n is even and the following condition (C3) holds:

(C3) there exists a function H : R→ R such that H is continuous and nondecreasing,
and satisfies the inequality

−H(−uv) ≥ H(uv) ≥ KH(u)H(v) for u, v > 0,

where K is a positive constant, and

|h(u)| ≥ |H(u)| , H(u)

u
≥ γ > 0 and H(u) > 0 for u 6= 0.

and every bounded solution of the first-order delay difference equation

∆w(t) + q(t)KγH

(
1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1)
w(σ (t)) = 0 (6)

is oscillatory.

Then every bounded solution of equation (1) is either oscillatory or tends to zero as
t→∞.

PROOF. Assume that equation (1) has a bounded nonoscillatory solution y. With-
out loss of generality, assume that y is eventually positive(the proof is similar when y
is eventually negative). That is, y (t) > 0, y (τ (t)) > 0 and y (σ (t)) > 0 for t ≥ t1 ≥ t0.
Furthermore, suppose that y does not tend to zero as t→∞. By (1) and (2), we have

∆nz(t) = −q (t)h (y (σ (t))) ≤ 0 for t ≥ t1. (7)
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It follows that ∆αz(t) for α = 0, 1, 2, . . . , n − 1 is strictly monotone and eventually
of constant sign. Since y is bounded and does not tend to zero as t → ∞, and by
virtue of (C1), limt→∞ p(t)f(y(τ (t))) = 0. Then we can find a t2 ≥ t1 such that
z(t) = y(t) + p(t)f (y (τ (t))) > 0 eventually and z(t) is also bounded for suffi ciently
large t ≥ t2. Because n is even, (n+m) odd for ∆nz(t) ≤ 0, z(t) > 0 is bounded and
m = 1 (otherwise, z(t) is not bounded by Lemma 1) there exists t3 ≥ t2 such that

(−1)
i+1

∆iz(t) > 0 for t ≥ t3 and i = 0, 1, 2, . . . , n− 1. (8)

In particular, since ∆z(t) > 0 for t ≥ t3, z is increasing. Since y is bounded,
limt→∞ p (t) f (y (τ (t))) = 0 by (C1). Then there exists t4 ≥ t3 by (2) such that

y (t) = z (t)− p (t) f (y (τ (t))) ≥ 1

2
z (t) > 0 for t ≥ t4.

We may find a t5 ≥ t4 such that

y (σ (t)) ≥ 1

2
z (σ (t)) > 0 for t ≥ t5. (9)

From (7) and (9), we can obtain the result of

∆nz(t) + q (t)h

(
1

2
z (σ (t))

)
≤ 0 for t ≥ t5. (10)

Since z(t) is defined for t ≥ t2, we apply directly Lemma 2 (second part, since z is
positive and increasing) to obtain that z(t) > 0 with ∆nz(t) ≤ 0 for t ≥ t2 and not
identically zero. It follows from Lemma 2 that

y(σ (t)) ≥ 1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1
∆n−1z(σ (t)) for t ≥ 2n−1t1. (11)

Using (C3) and (9), we find that for t ≥ t6 ≥ t5,

h(y (σ(t))) ≥ H(y(σ(t)))

≥ H

(
1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1
∆n−1z(σ (t))

)

≥ KH

(
1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1)
H(∆n−1z(σ (t)))

≥ KγH

(
1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1)
∆n−1z(σ (t)).

It follows from (7) and the above inequality, that {∆n−1z(t)} is an eventually positive
solution of

∆w(t) + q(t)KγH

(
1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1)
w(σ (t)) ≤ 0.
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By a well-know result (see Theorem 3.1 in [5]), the difference equation

∆w(t) + q(t)KγH

(
1

2

1

(n− 1)!

(
σ (t)

2n−1

)n−1)
w(σ (t)) = 0 for t ≥ t7 ≥ t6

has an eventually positive solution. This contradicts the fact that (1) is oscillatory,
and the proof is completed.

Thus, from Theorem 2 and Theorem 2.3 in [6] (see also Example 3.2 in [6]), we can
obtain the following corollary.

COROLLARY 1. If

lim inf
t→∞

t−1∑
s=σ(t)

q(s)H

(
1

2

1

(n− 1)!

(
σ (s)

2n−1

)n−1)
>

1

eKγ
, (12)

then every bounded solution of equation (1.1) either is oscillatory or tends to zero as
t→∞.

When p(t) ≡ 0 and n = 2, Corollary 3 yields that if

lim inf
t→∞

t−1∑
s=σ(t)

q(s)H

(
1

4
σ (s)

)
>

1

eKγ
,

then
∆2y(t) + q (t)h (y (σ (t))) = 0 for t ≥ t0 (13)

is oscillatory. These results have been established in [6, 12, 13] and the references cited
therein.

EXAMPLE 1. We consider difference equation of the form

∆3
[
y (t) + e−5t

2

sin t
[
y2 (t− 5) + 2y(t− 5)

]]
+ t2y2 (t− 3) = 0 for t ≥ 2, (14)

where n = 3, q (t) = t2, σ (t) = t−3, τ (t) = t−5, p (t) = e−5t
2

sin t, f (y) = y2−2y, and
h (y) = y2. Hence, we have

lim
t→∞

p (t) = lim
t→∞

1

e5t2
sin t = 0 and

∞∑
s=t0

sn−1q (s) =

∞∑
s=t0

s4 =∞.

Since Conditions (C1) and (C2) of the Theorem 1 are satisfied, every bounded solution
of (14) oscillates or tends to zero at infinity.

EXAMPLE 2. We consider difference equation of the form

∆4

[
y (t) +

(
−1

2

)t
y (t− 2)

]
+

1

t2
y3 (t− 3) = 0, (15)
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where n = 4, τ (t) = t − 2, p (t) = (−1/2)
t, q (t) = 1/t2, σ (t) = t − 3, and h(y) = y3.

By taking H(u) = u,

lim inf
t→∞

t−1∑
s=t−3

1

s2
1

2

1

3!

(
s− 3

23

)3
>

1

e
.

We check that all the conditions of Theorem 2 are satisfied, every bounded solution of
(15) oscillates or tends to zero at infinity.

References

[1] R. P. Agarwal, S. R. Grace and D. O’Regan, Oscillation Theory for Difference and
Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000.

[2] R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Ap-
plications. Second edition. Monographs and Textbooks in Pure and Applied Math-
ematics, 228. Marcel Dekker, Inc., New York, 2000.

[3] R. P. Agarwal, Advanced Topics in Difference Equation, Mathematics and Its
Applications, 404. Kluwer Academic Publishers Group, Dordrecht, 1997.

[4] R. P. Agarwal, E. Thandapani and P. J. Y. Wong, Oscillations of higher order
neutral difference equations, Appl. Math. Lett., 10(1997), 71—78.

[5] L. Berezansky and E. Braverman, On existence of positive solutions for linear
difference equations with several delays, Adv. Dyn. Syst. Appl., 1(2006), 29—47.

[6] M. Bohner, B. Karpuz and Ö. Öcalan, Iterated oscillation criteria for delay dy-
namic equations of first order, Adv. Difference Equ., 2008, Art. ID 458687, 12
pp.

[7] Y. Bolat and Ö. Akın, Oscillatory behaviour of a higher-order nonlinear neutral
type functional difference equation with oscillating coeffi cients, Appl. Math. Lett.,
17(2004), 1073—1078.

[8] Y. Bolat, Ö. Akin and H. Yildirim, Oscillation criteria for a certain even order neu-
tral difference equation with an oscillating coeffi cient, Appl. Math. Lett., 22(2009),
590—594.

[9] X. Guan, J. Yang, S. T. Liu and S. S. Cheng, Oscillatory behavior of higher
order nonlinear neutral difference equation, Hokkaido Mathematical J., 28(1999),
393—403.

[10] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap-
plications, Oxford Mathematical Monographs. Oxford Science Publications. The
Clarendon Press, Oxford University Press, New York, 1991.

[11] W. G. Kelley and A. C. Peterson, Difference equations. An Introduction with
Applications, Academic Press, Inc., Boston, MA, 1991.



E. Karaman and M. K. Yıldız 249

[12] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations. Numerical
methods and applications. Mathematics in Science and Engineering, 181. Acad-
emic Press, Inc., Boston, MA, 1988.

[13] X. Li and J. Jiang, Oscillation of second-order linear difference equation, Math.
Comput. Modelling, 35(2002), 983—990.

[14] B. Szmanda, Properties of solutions of higher order difference equations, Math.
Comput. Modelling, 28(1998), 95—101.

[15] M. K. Yildiz and Ö. Öcalan, Oscillation results for higher order nonlinear neutral
difference equations, Appl. Math. Lett., 20(2007), 243—247.

[16] F. Yuecai, Oscillatory behaviour of higher order nonlinear neutral functional differ-
ential equation with oscillating coeffi cients, J. South China Normal Univ., 3(1999),
6—11.


