Oscillatory Behavior Of A Higher-Order Nonlinear Neutral Type Functional Difference Equation With Oscillating Coefficients*

Emrah Karaman ${ }^{\dagger}$, Mustafa Kemal Yıldız ${ }^{\ddagger}$

Received 4 October 2014

Abstract

In this work, we shall consider oscillation of bounded solutions of higher-order nonlinear neutral delay difference equations of the following type $$
\Delta^{n}[y(t)+p(t) f(y(\tau(t)))]+q(t) h(y(\sigma(t)))=0, t \in \mathbb{N}
$$ where $n \in\{2,3, \ldots\}$ is fixed and can take both odd and even values, $\{p(t)\}_{t=1}^{\infty}$ is a sequence of reals such that $\lim _{t \rightarrow \infty} p(t)=0,\{q(t)\}_{t=1}^{\infty}$ is a nonnegative sequence of reals, and $\{\tau(t)\}_{t=1}^{\infty}$ and $\{\sigma(t)\}_{t=1}^{\infty}$ are sequences of integers tending to infinity asymptotically and bounded above by $\{t\}_{t=1}^{\infty}$, and $f, h \in C(\mathbb{R}, \mathbb{R})$.

1 Introduction

We consider the higher-order nonlinear difference equation of the form

$$
\begin{equation*}
\Delta^{n}[y(t)+p(t) f(y(\tau(t)))]+q(t) h(y(\sigma(t)))=0 \text { for } t \in \mathbb{N} \tag{1}
\end{equation*}
$$

where $n \in\{2,3, \ldots\}$ is fixed, $\mathbb{N}=\{0,1,2, \ldots\}, p: \mathbb{N} \rightarrow \mathbb{R}=(-\infty, \infty),\{p(t)\}_{t=1}^{\infty}$ is a sequence of real such that $\lim _{t \rightarrow \infty} p(t)=0$, and it is an oscillating function; $q: \mathbb{N} \rightarrow[0, \infty), \tau(t): \mathbb{N} \rightarrow \mathbb{Z}(\mathbb{Z}$ denotes the set of integers) with $\tau(t) \leq t$, and $\tau(t) \rightarrow \infty$ as $t \rightarrow \infty, \sigma(t): \mathbb{N} \rightarrow \mathbb{Z}(\mathbb{Z}$ denotes the set of integers) with $\sigma(t) \leq t$, for all $t \in \mathbb{N}$ and $\sigma(t) \rightarrow \infty$ as $t \rightarrow \infty, f(u), h(u) \in C(\mathbb{R}, \mathbb{R})$ are nondecreasing functions (1), $u f(u)>0$ and $u h(u)>0$, for all $u \neq 0$, we mean any function $y(t): \mathbb{Z} \rightarrow \mathbb{R}$, which is defined for all $t \geq \min _{i \geq 0}\{\tau(i), \sigma(i)\}$, and satisfies equation (1) for sufficiently large t. As it is customary, a solution $\{y(t)\}$ is said to be oscillatory if the terms $y(t)$ of the sequence are not eventually positive nor eventually negative. Otherwise, the solution is called nonoscillatory. A difference equation is called oscillatory if all of its solutions oscillate. Otherwise, it is nonoscillatory. In this paper, we restrict our attention to real valued solutions y.

Recently, much research has been done on the oscillatory and asymptotic behavior of solutions of higher-order delay and neutral type difference equations. The results

[^0]obtained here are an extension of work in [7]. Most of the known results are for special cases of equation (1) and related equations; see, for example, $[1,2,3,16]$.

The purpose of this paper is to study oscillatory behavior of bounded solutions of solutions of equation (1). For the general theory of difference equations, one can refer to $[1,2,3,10,11,12,15]$. Many references to applications of the difference equations can be found in $[10,11,12]$.

For the sake of convenience, we let $\mathbb{N}(a)=\{a, a+1, \ldots\}, \mathbb{N}(a, b)=\{a, a+1, \ldots, b\}$, and the function $z(t)$ is defined by

$$
\begin{equation*}
z(t)=y(t)+p(t) f(y(\tau(t))) \tag{2}
\end{equation*}
$$

2 Some Auxiliary Lemmas

In this section, we present the known results.

LEMMA 1 ([2]). Let $y(t)$ be defined for $t \geq t_{0} \in \mathbb{N}$, and $y(t)>0$ with $\Delta^{n} y(t)$ of constant sign for $t \geq t_{0}, n \in \mathbb{N}(1)$, and not identically zero. Then there exists an integer $m \in[0, n]$ satisfying either $(n+m)$ is even for $\Delta^{n} y(t) \geq 0$ or $(n+m)$ is odd for $\Delta^{n} y(t) \leq 0$ such that
(i) if $m \leq n-1$ implies $(-1)^{m+i} \Delta^{i} y(t)>0$ for all $t \geq t_{0}$ and $m \leq i \leq n-1$,
(ii) if $m \geq 1$ implies $\Delta^{i} y(t)>0$ for all large $t \geq t_{0}$ and $1 \leq i \leq m-1$.

LEMMA $2([2])$. Let $y(t)$ be defined for $t \geq t_{0}$, and $y(t)>0$ with $\Delta^{n} y(t) \leq 0$ for $t \geq t_{0}$ and not identically zero. Then there exists a large $t_{1} \geq t_{0}$, such that

$$
y(t) \geq \frac{1}{(n-1)!}\left(t-t_{1}\right)^{n-1} \Delta^{n-1} y\left(2^{n-m-1} t\right), \quad t \geq t_{1}
$$

where m is defined as in Lemma 2. Furthermore, if $y(t)$ is increasing, then

$$
y(t) \geq \frac{1}{(n-1)!}\left(\frac{t}{2^{n-1}}\right)^{n-1} \Delta^{n-1} y(t), \quad t \geq 2^{n-1} t_{1}
$$

3 Main Results

In this section, we present main results and give some examples.
THEOREM 1. Assume than n is odd and the following assertions $\left(C_{1}\right)-\left(C_{2}\right)$ hold:
$\left(C_{1}\right) \lim _{t \rightarrow \infty} p(t)=0$,
$\left(C_{2}\right) \sum_{s=t_{0}}^{\infty} s^{n-1} q(s)=\infty$.

Then every bounded solution of equation (1) either is oscillatory or tends to zero as $t \rightarrow \infty$.

PROOF. Assume that equation (1) has a bounded nonoscillatory solution y. Without loss of generality, assume that y is eventually positive (the proof is similar when y is eventually negative). That is, $y(t)>0, y(\tau(t))>0$, and $y(\sigma(t))>0$ for $t \geq t_{1} \geq t_{0}$. Furthermore, we assume that $y(t)$ does not to zero as $t \rightarrow \infty$. By (1) and (2), we have that

$$
\begin{equation*}
\Delta^{n} z(t)=-q(t) h(y(\sigma(t))) \leq 0 \text { for } t \geq t_{1} \tag{3}
\end{equation*}
$$

That is, $\Delta^{n} z(t) \leq 0$. It follows that $\Delta^{\alpha} z(t)$ for $\alpha=0,1,2, \ldots, n-1$ is strictly monotone and eventually of constant sign. Since $\lim _{t \rightarrow \infty} p(t)=0$, there exists $t_{2} \geq t_{1}$ such that $z(t)>0$ for $t \geq t_{2}$. Since y is bounded, and by virtue of $\left(C_{1}\right)$ and (2), there exists $t_{3} \geq t_{2}$ such that $z(t)$ is also bounded for $t \geq t_{3}$. Because n is odd, $z(t)$ is bounded and $m=0$ (otherwise, $z(t)$ is not bounded by Lemma 1), there exists $t_{4} \geq t_{3}$ such that for $t \geq t_{4}$, we have $(-1)^{i} \Delta^{i} z(t)>0$ for $i=0,1,2, \ldots, n-1$. In particular, since $\Delta z(t)<0$ for $t \geq t_{4}, z$ is decreasing. Since z is bounded, we obtain that $\lim _{t \rightarrow \infty} z(t)=L$ where $-\infty<L<\infty$. Assume that $0 \leq L<\infty$. Let $L>0$. Then there exist a constant $c>0$ and t_{5} with $t_{5} \geq t_{4}$ such that $z(t)>c>0$ for $t \geq t_{5}$. Since y is bounded, $\lim _{t \rightarrow \infty} p(t) f(y(\tau(t)))=0$ by $\left(C_{1}\right)$. Therefore, there exist a constant $c_{1}>0$ and t_{6} with $t_{6} \geq t_{5}$ such that

$$
y(t)=z(t)-p(t) f(y(\tau(t)))>c_{1}>0 \text { for } t \geq t_{6}
$$

So we may find t_{7} with $t_{7} \geq t_{6}$ such that $y(\sigma(t))>c_{1}>0$ for $t \geq t_{7}$. From (3), we have

$$
\begin{equation*}
\Delta^{n} z(t) \leq-q(t) h\left(c_{1}\right) \text { for } t \geq t_{7} \tag{4}
\end{equation*}
$$

If we multiply (4) by t^{n-1}, and summing it from t_{7} to $t-1$, we obtain

$$
\begin{equation*}
F(t)-F\left(t_{7}\right) \leq-h\left(c_{1}\right) \sum_{s=t_{7}}^{t-1} q(s) s^{n-1} \tag{5}
\end{equation*}
$$

where

$$
F(t)=\sum_{\gamma=2}^{n-1}(-1)^{\gamma} \Delta^{\gamma} t^{n-1} \Delta^{n-\gamma-1} z(t+\gamma)
$$

Since $(-1)^{i} \Delta^{i} z(t)>0$ for $i=0,1,2, \ldots, n-1$ and $t \geq t_{4}$, we have $F(t)>0$ for $t \geq t_{7}$. From (5), we have

$$
-F\left(t_{7}\right) \leq-h\left(c_{1}\right) \sum_{s=t_{7}}^{t-1} q(s) s^{n-1}
$$

By $\left(C_{2}\right)$, we obtain

$$
-F\left(t_{7}\right) \leq-h\left(c_{1}\right) \sum_{s=t_{7}}^{t-1} q(s) s^{n-1}=-\infty \text { as } t \rightarrow \infty
$$

This is a contradiction. So, $L>0$ is impossible. Therefore, $L=0$ is the only possible case. That is, $\lim _{t \rightarrow \infty} z(t)=0$. Since y is bounded, and by virtue of $\left(C_{1}\right)$ and (2), we obtain

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty} z(t)-\lim _{t \rightarrow \infty} p(t) f(y(\tau(t)))=0
$$

Now, let us consider the case of $y(t)<0$ for $t \geq t_{1}$. By (1) and (2),

$$
\Delta^{n} z(t)=-q(t) h(y(\sigma(t))) \geq 0 \text { for } t \geq t_{1}
$$

That is, $\Delta^{n} z(t) \geq 0$. It follow that $\Delta^{\alpha} z(t)$ for $\alpha=0,1,2, \ldots, n-1$ is strictly monotone and eventually constant sign. Since $\lim _{t \rightarrow \infty} p(t)=0$, there exists $t_{2} \geq t_{1}$, such that $z(t)<0$ for $t \geq t_{2}$. Since $y(t)$ is bounded, by virtue of $\left(C_{1}\right)$ and (2), there exists $t_{3} \geq t_{2}$ such that $z(t)$ is also bounded for $t \geq t_{3}$. Assume that $x(t)=-z(t)$. Then $\Delta^{n} x(t)=-\Delta^{n} z(t)$. Therefore, $x(t)>0$ and $\Delta^{n} x(t) \leq 0$ for $t \geq t_{3}$. From this, we observe that $x(t)$ is bounded. Because n is odd, $x(t)$ is bounded and $m=0$ (otherwise, $x(t)$ is not bounded by Lemma 1) there exists $t_{4} \geq t_{3}$ such that $(-1)^{i} \Delta^{i} x(t)>0$ for $i=0,1,2, \ldots, n-1$ and $t \geq t_{4}$. That is, $(-1)^{i} \Delta^{i} z(t)<0$ for $i=0,1,2, \ldots, n-1$ and $t \geq t_{4}$. In particular, we have $\Delta z(t)>0$ for $t \geq t_{4}$. Therefore, $z(t)$ is increasing. So, we can assume that $\lim _{t \rightarrow \infty} z(t)=L$ where $-\infty<L \leq 0$. As in the proof of $y(t)>0$, we may prove that $L=0$. As for the rest, it is similar to the case $y(t)>0$. That is, $\lim _{t \rightarrow \infty} y(t)=0$. This contradicts our assumption. Hence, the proof is completed.

THEOREM 2. Assume that n is even and the following condition $\left(C_{3}\right)$ holds:
$\left(C_{3}\right)$ there exists a function $H: \mathbb{R} \rightarrow \mathbb{R}$ such that H is continuous and nondecreasing, and satisfies the inequality

$$
-H(-u v) \geq H(u v) \geq K H(u) H(v) \quad \text { for } u, v>0
$$

where K is a positive constant, and

$$
|h(u)| \geq|H(u)|, \quad \frac{H(u)}{u} \geq \gamma>0 \quad \text { and } \quad H(u)>0 \quad \text { for } u \neq 0
$$

and every bounded solution of the first-order delay difference equation

$$
\begin{equation*}
\Delta w(t)+q(t) K \gamma H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1}\right) w(\sigma(t))=0 \tag{6}
\end{equation*}
$$

is oscillatory.
Then every bounded solution of equation (1) is either oscillatory or tends to zero as $t \rightarrow \infty$.

PROOF. Assume that equation (1) has a bounded nonoscillatory solution y. Without loss of generality, assume that y is eventually positive (the proof is similar when y is eventually negative). That is, $y(t)>0, y(\tau(t))>0$ and $y(\sigma(t))>0$ for $t \geq t_{1} \geq t_{0}$. Furthermore, suppose that y does not tend to zero as $t \rightarrow \infty$. By (1) and (2), we have

$$
\begin{equation*}
\Delta^{n} z(t)=-q(t) h(y(\sigma(t))) \leq 0 \text { for } t \geq t_{1} \tag{7}
\end{equation*}
$$

It follows that $\Delta^{\alpha} z(t)$ for $\alpha=0,1,2, \ldots, n-1$ is strictly monotone and eventually of constant sign. Since y is bounded and does not tend to zero as $t \rightarrow \infty$, and by virtue of $\left(C_{1}\right), \lim _{t \rightarrow \infty} p(t) f(y(\tau(t)))=0$. Then we can find a $t_{2} \geq t_{1}$ such that $z(t)=y(t)+p(t) f(y(\tau(t)))>0$ eventually and $z(t)$ is also bounded for sufficiently large $t \geq t_{2}$. Because n is even, $(n+m)$ odd for $\Delta^{n} z(t) \leq 0, z(t)>0$ is bounded and $m=1$ (otherwise, $z(t)$ is not bounded by Lemma 1) there exists $t_{3} \geq t_{2}$ such that

$$
\begin{equation*}
(-1)^{i+1} \Delta^{i} z(t)>0 \text { for } t \geq t_{3} \text { and } i=0,1,2, \ldots, n-1 \tag{8}
\end{equation*}
$$

In particular, since $\Delta z(t)>0$ for $t \geq t_{3}, z$ is increasing. Since y is bounded, $\lim _{t \rightarrow \infty} p(t) f(y(\tau(t)))=0$ by $\left(C_{1}\right)$. Then there exists $t_{4} \geq t_{3}$ by (2) such that

$$
y(t)=z(t)-p(t) f(y(\tau(t))) \geq \frac{1}{2} z(t)>0 \text { for } t \geq t_{4}
$$

We may find a $t_{5} \geq t_{4}$ such that

$$
\begin{equation*}
y(\sigma(t)) \geq \frac{1}{2} z(\sigma(t))>0 \text { for } t \geq t_{5} \tag{9}
\end{equation*}
$$

From (7) and (9), we can obtain the result of

$$
\begin{equation*}
\Delta^{n} z(t)+q(t) h\left(\frac{1}{2} z(\sigma(t))\right) \leq 0 \text { for } t \geq t_{5} \tag{10}
\end{equation*}
$$

Since $z(t)$ is defined for $t \geq t_{2}$, we apply directly Lemma 2 (second part, since z is positive and increasing) to obtain that $z(t)>0$ with $\Delta^{n} z(t) \leq 0$ for $t \geq t_{2}$ and not identically zero. It follows from Lemma 2 that

$$
\begin{equation*}
y(\sigma(t)) \geq \frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1} \Delta^{n-1} z(\sigma(t)) \text { for } t \geq 2^{n-1} t_{1} \tag{11}
\end{equation*}
$$

Using (C_{3}) and (9), we find that for $t \geq t_{6} \geq t_{5}$,

$$
\begin{aligned}
h(y(\sigma(t))) & \geq H(y(\sigma(t))) \\
& \geq H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1} \Delta^{n-1} z(\sigma(t))\right) \\
& \geq K H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1}\right) H\left(\Delta^{n-1} z(\sigma(t))\right) \\
& \geq K \gamma H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1}\right) \Delta^{n-1} z(\sigma(t))
\end{aligned}
$$

It follows from (7) and the above inequality, that $\left\{\Delta^{n-1} z(t)\right\}$ is an eventually positive solution of

$$
\Delta w(t)+q(t) K \gamma H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1}\right) w(\sigma(t)) \leq 0
$$

By a well-know result (see Theorem 3.1 in [5]), the difference equation

$$
\Delta w(t)+q(t) K \gamma H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(t)}{2^{n-1}}\right)^{n-1}\right) w(\sigma(t))=0 \text { for } t \geq t_{7} \geq t_{6}
$$

has an eventually positive solution. This contradicts the fact that (1) is oscillatory, and the proof is completed.

Thus, from Theorem 2 and Theorem 2.3 in [6] (see also Example 3.2 in [6]), we can obtain the following corollary.

COROLLARY 1. If

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \sum_{s=\sigma(t)}^{t-1} q(s) H\left(\frac{1}{2} \frac{1}{(n-1)!}\left(\frac{\sigma(s)}{2^{n-1}}\right)^{n-1}\right)>\frac{1}{\mathrm{e} K \gamma} \tag{12}
\end{equation*}
$$

then every bounded solution of equation (1.1) either is oscillatory or tends to zero as $t \rightarrow \infty$.

When $p(t) \equiv 0$ and $n=2$, Corollary 3 yields that if

$$
\liminf _{t \rightarrow \infty} \sum_{s=\sigma(t)}^{t-1} q(s) H\left(\frac{1}{4} \sigma(s)\right)>\frac{1}{\mathrm{e} K \gamma}
$$

then

$$
\begin{equation*}
\Delta^{2} y(t)+q(t) h(y(\sigma(t)))=0 \text { for } t \geq t_{0} \tag{13}
\end{equation*}
$$

is oscillatory. These results have been established in $[6,12,13]$ and the references cited therein.

EXAMPLE 1. We consider difference equation of the form

$$
\begin{equation*}
\Delta^{3}\left[y(t)+e^{-5 t^{2}} \sin t\left[y^{2}(t-5)+2 y(t-5)\right]\right]+t^{2} y^{2}(t-3)=0 \text { for } t \geq 2 \tag{14}
\end{equation*}
$$

where $n=3, q(t)=t^{2}, \sigma(t)=t-3, \tau(t)=t-5, p(t)=e^{-5 t^{2}} \sin t, f(y)=y^{2}-2 y$, and $h(y)=y^{2}$. Hence, we have

$$
\lim _{t \rightarrow \infty} p(t)=\lim _{t \rightarrow \infty} \frac{1}{\mathrm{e}^{5 t^{2}}} \sin t=0 \text { and } \sum_{s=t_{0}}^{\infty} s^{n-1} q(s)=\sum_{s=t_{0}}^{\infty} s^{4}=\infty
$$

Since Conditions ($C 1$) and ($C 2$) of the Theorem 1 are satisfied, every bounded solution of (14) oscillates or tends to zero at infinity.

EXAMPLE 2. We consider difference equation of the form

$$
\begin{equation*}
\Delta^{4}\left[y(t)+\left(-\frac{1}{2}\right)^{t} y(t-2)\right]+\frac{1}{t^{2}} y^{3}(t-3)=0 \tag{15}
\end{equation*}
$$

where $n=4, \tau(t)=t-2, p(t)=(-1 / 2)^{t}, q(t)=1 / t^{2}, \sigma(t)=t-3$, and $h(y)=y^{3}$. By taking $H(u)=u$,

$$
\liminf _{t \rightarrow \infty} \sum_{s=t-3}^{t-1} \frac{1}{s^{2}} \frac{1}{2} \frac{1}{3!}\left(\frac{s-3}{2^{3}}\right)^{3}>\frac{1}{\mathrm{e}}
$$

We check that all the conditions of Theorem 2 are satisfied, every bounded solution of (15) oscillates or tends to zero at infinity.

References

[1] R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000.
[2] R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications. Second edition. Monographs and Textbooks in Pure and Applied Mathematics, 228. Marcel Dekker, Inc., New York, 2000.
[3] R. P. Agarwal, Advanced Topics in Difference Equation, Mathematics and Its Applications, 404. Kluwer Academic Publishers Group, Dordrecht, 1997.
[4] R. P. Agarwal, E. Thandapani and P. J. Y. Wong, Oscillations of higher order neutral difference equations, Appl. Math. Lett., 10(1997), 71-78.
[5] L. Berezansky and E. Braverman, On existence of positive solutions for linear difference equations with several delays, Adv. Dyn. Syst. Appl., 1(2006), 29-47.
[6] M. Bohner, B. Karpuz and Ö. Öcalan, Iterated oscillation criteria for delay dynamic equations of first order, Adv. Difference Equ., 2008, Art. ID 458687, 12 pp.
[7] Y. Bolat and Ö. Akın, Oscillatory behaviour of a higher-order nonlinear neutral type functional difference equation with oscillating coefficients, Appl. Math. Lett., 17(2004), 1073-1078.
[8] Y. Bolat, Ö. Akin and H. Yildirim, Oscillation criteria for a certain even order neutral difference equation with an oscillating coefficient, Appl. Math. Lett., 22(2009), 590-594.
[9] X. Guan, J. Yang, S. T. Liu and S. S. Cheng, Oscillatory behavior of higher order nonlinear neutral difference equation, Hokkaido Mathematical J., 28(1999), 393-403.
[10] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991.
[11] W. G. Kelley and A. C. Peterson, Difference equations. An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991.
[12] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations. Numerical methods and applications. Mathematics in Science and Engineering, 181. Academic Press, Inc., Boston, MA, 1988.
[13] X. Li and J. Jiang, Oscillation of second-order linear difference equation, Math. Comput. Modelling, 35(2002), 983-990.
[14] B. Szmanda, Properties of solutions of higher order difference equations, Math. Comput. Modelling, 28(1998), 95-101.
[15] M. K. Yildiz and Ö. Öcalan, Oscillation results for higher order nonlinear neutral difference equations, Appl. Math. Lett., 20(2007), 243-247.
[16] F. Yuecai, Oscillatory behaviour of higher order nonlinear neutral functional differential equation with oscillating coefficients, J. South China Normal Univ., 3(1999), 6-11.

[^0]: *Mathematics Subject Classifications: 35C20, 35D10.
 \dagger Department of Mathematics, Karabük University, Karabük, 78050 Turkey
 \ddagger Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, 03200 Turkey

