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Abstract

This article is concerned with the existence of positive solutions of a fourth-

order p-Laplacian boundary value problem. Based on a priori estimates achieved

by utilizing Jensen’s integral inequalities for convex and concave functions, we

use fixed point index theory to establish the existence of positive solutions for the

above problem.

1 Introduction

This article is concerned with the existence of positive solutions for the p-Laplacian
boundary value problem











(|u′′|
p−1

u′′)′′ = f(t, u,−u′′),

a1u(0) − b1u
′(0) = c1u(1) + d1u

′(1) = 0,

a2 (−u′′)
p
(0) − b2((−u′′)

p
)′(0) = c2 (−u′′)

p
(1) + d2((−u′′)

p
)′(1) = 0,

(1)

where p > 0, f ∈ C([0, 1]×R
2, R+), ai, bi, ci, di > 0, and δi = aidi + bici + aici > 0 for

i = 1, 2.
Fourth order boundary value problems, including those with the p-Laplacian oper-

ator, have their origin in beam theory, ice formation, fluids on lungs, brain warping,
designing special curves on surfaces, etc. In our problem (1), the nonlinearity f in-
volves the second-order derivative u′′. Such nonlinearity may be encountered in some
physical models. For example, the equation

∂u

∂t
=

∂4u

∂x4
− p

∂2u

∂x2
− a(x)u + b(x)u3

is known in the studies of phase transitions near a Lifschitz point [16].
The p-Laplacian boundary value problems arise in non-Newtonian mechanics, non-

linear elasticity, glaciology, population biology, combustion theory, and nonlinear flow
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58 Existence of Positive Solutions for p-Laplacian Equation

laws; see [5, 6]. That explains why many authors have extensively studied the exis-
tence of positive solutions for p-Laplacian boundary value problems, by using topolog-
ical degree theory, monotone iterative techniques, coincidence degree theory, and the
Leggett-Williams fixed point theorem or its variants; see [1,2,3,4,8,10,11,12,13,14,15]
and the references therein.

In [14], by using the method of upper and lower solutions, Zhang and Liu obtained
the existence of positive solutions for the fourth-order singular p-Laplacian boundary
value problem

(|u′′|
p−1

u′′)′′ = f(t, u(t)) for 0 < t < 1, (2)

subject to the boundary conditions

u(0) = u(1) − au(ξ) = u′′(0) = u′′(1) − bu′′(η) = 0, (3)

where p > 1, 0 < ξ, η < 1, and f ∈ C((0, 1)× (0,∞), (0,∞)) may be singular at t = 0
and/or at t = 1 and u = 0.

In [15], Zhang and Liu obtained the existence of positive solutions for (2) with the
boundary conditions

u(0) −

m−2
∑

i=1

aiu(ξi) = u(1) = u′′(0) −

m−2
∑

i=1

biu(ηi) = u′′(1) = 0, (4)

where m > 3, ai, bi, ξi, ηi ∈ (0, 1)(i = 1, 2, . . . , m − 2) are nonnegative constants and
∑m−2

i=1 ai < 1,
∑m−2

i=1 bi < 1, and f ∈ C((0, 1)×R+, R+) may be singular at t = 0 and/or
at t = 1. By using the monotone iterative method, they established the existence of
positive solutions of pseudo-C3[0, 1] for the above problem.

In [8], Guo et al. investigated the existence and multiplicity of positive solutions
for the fourth-order p-Laplacian boundary value problem

(|u′′|
p−2

u′′)′′ = λg(t)f(u) for 0 < t < 1, (5)

where λ is a positive parameter. By using fixed point index theory and the method
of upper and lower solutions, they obtained the following result: there exists λ∗ < ∞
such that (5) has at least two positive solutions for λ ∈ (0, λ∗), (5) has at least one
positive solution for λ = λ∗, and (5) have no positive solution at all for λ > λ∗.

The presence of the second-order derivative u′′ contributes to the difficulty to obtain
a priori estimates of positive solutions for some problems associated with (1). To
facilitate the establishment of such estimates, by using the reduction of order, we
transform (1) into a boundary value problem for an equivalent second-order integro-
differential equation (see the next section for more details). More importantly, we
observe that if p = 1, then (1) reduces to the semilinear fourth-order boundary value
problem











u(4) = f(t, u,−u′′),

a1u(0) − b1u
′(0) = c1u(1) + d1u

′(1) = 0,

a2u
′′(0) − b2u

′′′(0) = c2u
′′(1) + d2u

′′′(1) = 0.

(6)

Motivated by [11, 12, 13], we regard (6) as a perturbation of (1). In fact, we make
repeated use of the Jensen integral inequalities for convex and concave functions in
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order to derive a priori estimates of positive solutions for some operator equations
associated with (1), these estimates based on which we use fixed point index theory to
establish the existence of positive solutions for the above problem. Our main results
extend the corresponding ones in [11, 12, 13]. Also, some relations between (1) and (6)
may be seen from the Jensen inequalities for convex and concave functions.

This article is organized as follows. In Section 2, we provide some preliminary re-
sults. Our main results, namely Theorem 3.1 and 3.2, followed by two simple examples,
are stated and proved in Section 3.

2 Preliminaries

Let

E := C[0, 1], ‖u‖ := max
06t61

|u(t)|, P := {u ∈ E : u(t) > 0 for t ∈ [0, 1]}. (7)

Clearly (E, ‖ · ‖) is a real Banach space and P is a cone in E. Define Bρ := {u ∈ E :
‖u‖ < ρ} for all ρ > 0. Substituting v := −u′′ into (1), we have











−(|v|p−1v)′′(t) = f(t,
∫ 1

0
k1(t, s)v(s)ds, v(t)),

a2v
p(0) − b2(v

p)′(0) = 0,

c2v
p(1) + d2(v

p)′(1) = 0,

(8)

where

k1(t, s) :=
1

δ1

{

(b1 + a1s)(c1(1 − t) + d1), 0 6 s 6 t 6 1,

(b1 + a1t)(c1(1 − s) + d1), 0 6 t 6 s 6 1.

Moreover, (8) is equivalent to the nonlinear integral equation

v(t) =

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

1

p

, (9)

where

k2(t, s) :=
1

δ2

{

(b2 + a2s)(c2(1 − t) + d2), 0 6 s 6 t 6 1,

(b2 + a2t)(c2(1 − s) + d2), 0 6 t 6 s 6 1.

Define the operator A : P −→ P by

(Av)(t) :=

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

1

p

. (10)

Now the condition f ∈ C([0, 1] × R
2
+, R+) implies that A : P → P is a completely

continuous operator, and the existence of positive solutions for (1) is equivalent to that
of positive fixed points of A. Let

k3(t, τ ) :=

∫ 1

0

k2(t, s)k1(s, τ)ds.
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For any given nonnegative constants α, β, let

Gα,β(t, s) := αk3(t, s) + βk2(t, s) (11)

and

(Lα,βv)(t) :=

∫ 1

0

Gα,β(t, s)v(s)ds. (12)

Clearly Lα,β : E → E is a completely continuous positive linear operator. If α+β > 0,
then the spectral radius r(Lα,β) is positive. The Krein-Rutmann theorem then implies
that there exists ϕα,β ∈ P \ {0} such that r(Lα,β)ϕα,β = L∗

α,βϕα,β, i.e.

r(Lα,β)ϕα,β(s) =

∫ 1

0

Gα,β(t, s)ϕα,β(t)dt, (13)

where L∗

α,β : E → E is the dual operator of A. Note that we may normalize ϕα,β so
that

∫ 1

0

ϕα,β(t)dt = 1. (14)

LEMMA 2.1. For any given nonnegative constants α,β with α + β > 0, let

κα,β :=

∫ 1

2

0

tϕα,β(t)dt +

∫ 1

1

2

(1 − t)ϕα,β(t)dt,

where ϕα,β is given in (13) and (14). Then for every concave function φ ∈ P , we have

∫ 1

0

φ(t)ϕα,β(t)dt > κα,β‖φ‖.

The proof can be carried out as that of Lemma 2.4 in [11]. Thus we omit it.

LEMMA 2.2 (see [9]). Let a ∈ R+, b ∈ R+. If σ ∈ (0, 1], then

(a + b)σ
> 2σ−1(aσ + bσ).

If σ ∈ [1, +∞), then
(a + b)σ

6 2σ−1(aσ + bσ).

LEMMA 2.3 (see [9]). Suppose g ∈ C[a, b] with I := g([a, b]) and h ∈ C(I). If h is
convex on I, then

h

(

1

b − a

∫ b

a

g(t)dt

)

6
1

b − a

∫ b

a

h(g(t))dt.

If h is concave on I, then

h

(

1

b − a

∫ b

a

g(t)dt

)

>
1

b − a

∫ b

a

h(g(t))dt.
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LEMMA 2.4. Let E and P be defined in (7). Suppose that Ω ⊂ E is a bounded
open set and that T : Ω ∩K −→ K is a completely continuous operator. If there exist
u0 ∈ K\{0} and µ > 0 such that

uµ − (Tu)µ 6= λu0 for all λ > 0 and u ∈ ∂Ω ∩ K,

then i(T, Ω ∩ K, K) = 0 where i indicates the fixed point index on K.

PROOF. Note the operator Sλu := ((Tu)µ + λu0)
1/µ : P → P is a completely

continuous operator for all λ > 0. If i(T, Ω ∩ K, K) = i(S0 , Ω ∩ K, K) 6= 0, then the
homotopy invariance implies

i(Sλ, Ω∩ K, K) = i(S0 , Ω∩ K, K) 6= 0

for all λ > 0, and, in turn, the fixed point equation u = Sλu have at least one solution
on K∩P for all λ > 0, contradicting the complete continuity of T and the boundedness
of K. Thus we have i(T, Ω ∩ K, K) = 0, as desired. This completes the proof.

LEMMA 2.5 (see [7]). Let E be a real Banach space and K be a cone in E. Suppose
that Ω ⊂ E is a bounded open set, 0 ∈ Ω, and T : Ω ∩ K −→ K is a completely
continuous operator. If

u − λTu 6= 0 for all λ ∈ [0, 1] and u ∈ ∂Ω ∩ K,

then i(T, Ω ∩ K, K) = 1.

3 Main Results

Let p∗ := min{1, p}, p∗ := min{1, p}, and mi := maxt,s∈[0,1] ki(t, s) for i = 1, 2, 3. Now
we list our hypotheses on f and ai, bi, ci, di for i = 1, 2:

(H1) f ∈ C([0, 1]× R
2, R+).

(H2) ai, bi, ci, di > 0 and δi := aidi + bici + aici > 0 for i = 1, 2.

(H3) There are α1, β1 > 0 and c > 0, such that r(Ln1,n2
) > 1 and

f(t, x, y) > α1x
p + β1y

p − c for all t ∈ [0, 1] and x, y > 0,

where Ln1,n2
is defined as in (11) and (12),

n1 := 2
p∗

p
−1α

p∗

p

1 mp∗−1
1 m

p∗

p
−1

2 and n2 := 2
p∗

p
−1β

p∗

p

1 m
p∗

p
−1

2 .

(H4) There are α2, β2 > 0 and r1 > 0 such that r(Ln3,n4
) < 1 and

f(t, x, y) 6 α2x
p + β2y

p for all t ∈ [0, 1] and x, y ∈ [0, r1],

where Ln3,n4
is defined as in (11) and (12),

n3 := 2
p
∗

p
−1α

p
∗

p

2 mp∗−1
1 m

p
∗

p
−1

2 and n4 := 2
p
∗

p
−1β

p
∗

p

2 m
p
∗

p
−1

2 .
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(H5) There are α3, β3 > 0 and r2 > 0 such that r(Ln5,n6
) > 1 and

f(t, x, y) > α3x
p + β3y

p for all t ∈ [0, 1] and x, y ∈ [0, r2],

where Ln5,n6
is defined as in (11) and (12),

n5 := 2
p∗

p
−1α

p∗

p

3 mp∗−1
1 m

p∗

p
−1

2 and n6 := 2
p∗

p
−1β

p∗

p

3 m
p∗

p
−1

2 .

(H6) There are α4, β4 > 0 and c > 0 such that r(Ln7,n8
) < 1 and

f(t, x, y) 6 α4x
p + β4y

p + c for all t ∈ [0, 1] and x, y > 0,

where Ln7,n8
is defined as in (11) and (12),

n7 := 4
p
∗

p
−1α

p
∗

p

4 mp∗−1
1 m

p
∗

p
−1

2 and n8 := 4
p
∗

p
−1β

p
∗

p

4 m
p
∗

p
−1

2 .

REMARK 3.1. Notice that the expression (10) implies that if v ∈ P \ {0} is a fixed
point of the operator, then v(t) > 0 holds for all t ∈ (0, 1) with vp ∈ P ∩C2[0, 1]. This,
together with the substitution v := −u′′, in turn, implies that if u is a positive solution
of (1), then (−u′′)

p
∈ (P \ {0})∩ C2[0, 1] and hence u ∈ (P \ {0})∩ C4(0, 1).

THEOREM 3.1. If (H1)-(H4) hold, then (1) has at least one positive solution u ∈
(P \{0})∩ C4(0, 1).

PROOF. It suffices to prove that A has at least one fixed point v ∈ P \ {0}. To
this end, let

M1 := {v ∈ P : vp∗ = (Av)p∗ + λ, λ > 0}.

We show that M1 is bounded. Indeed, if v ∈ M1, then vp∗ is concave on [0, 1] and
there exists λ > 0 such that vp∗ = (Av)p∗ + λ. Thus vp∗(t) > (Av)p∗ (t). Note
p∗, p∗/p ∈ (0, 1]. By (H3) and the Jensen integral inequality for concave functions
(Lemma 2.3 ), we have that, for all v ∈ M1,

vp∗(t) >

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p∗

p

>

∫ 1

0

k
p∗

p

2 (t, s)f
p∗

p (s,

∫ 1

0

k1(s, τ)v(τ )dτ ), v(s))ds

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

{

[α1

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β1v

p(s)]
p∗

p − c
p∗

p

}

ds

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

{

2
p∗

p
−1[α

p∗

p

1

∫ 1

0

kp∗
1 (s, τ)vp∗(τ )dτ + β

p∗

p

1 vp∗(s)]

−c
p∗

p

}

ds

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

{

2
p∗

p
−1[α

p∗

p

1 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗(τ )dτ + β
p∗

p

1 vp∗(s)]
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−c
p∗

p

}

ds

= 2
p∗

p
−1α

p∗

p

1 mp∗−1
1 m

p∗

p
−1

2

∫ 1

0

∫ 1

0

k2(t, s)k1(s, τ)vp∗(τ )dτds

+2
p∗

p
−1β

p∗

p

1 m
p∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds − c

p∗

p m
p∗

p
−1

2

∫ 1

0

k2(t, s)ds

= 2
p∗

p
−1α

p∗

p

1 mp∗−1
1 m

p∗

p
−1

2

∫ 1

0

k3(t, s)v
p∗ (s)ds

+2
p∗

p
−1β

p∗

p

1 m
p∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds − c

p∗

p m
p∗

p
−1

2

∫ 1

0

k2(t, s)ds

=

∫ 1

0

Gn1,n2
(t, s)vp∗(s)ds − c

p∗

p m
p∗

p
−1

2 m3.

Multiply the above inequality by ϕn
1
,n

2
(t) and integrate over [0, 1] and use (13) and

(14) to obtain

∫ 1

0

vp∗(t)ϕn1,n2
(t)dt > r(Ln1,n2

)

∫ 1

0

vp∗(t)ϕn1,n2
(t)dt − c

p∗

p m
p∗

p
−1

2 m3,

so that
∫ 1

0

vp∗(t)ϕn1,n2
(t)dt 6

c
p∗

p m
p∗

p
−1

2 m3

r(Ln1,n2
) − 1

:= N1 for all v ∈ M1.

Recall that vp∗ is concave on [0, 1]. By Lemma 2.1, we have

‖vp∗‖ 6

∫ 1

0 vp∗(t)ϕn1,n2
(t)dt

κn1,n2

6
N1

κn1,n2

for all v ∈ M1. This proves the boundedness of M1. Taking R > sup{‖v‖ : v ∈ M1},
we have

vp∗ 6= (Av)p∗ + λ for v ∈ ∂BR ∩ P and λ > 0.

Now Lemma 2.4 yields
i(A, BR ∩ P, P ) = 0. (15)

Let
M2 := {v ∈ Br1

∩ P : v = λAv, 0 6 λ 6 1}.

We claim that M2 = {0}. Indeed, if v ∈ M2, then there exists λ ∈ [0, 1] such that
v(t) = λAv(t). Thus we have

v(t) 6 (Av)(t) =

[
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

]

1

p

for all v ∈ Br1
∩ P.

Note p∗, p∗/p > 1. By (H4) and the Jensen integral inequality for convex functions
(Lemma 2.3), we have that, for all v ∈ M2,

vp∗(t) 6

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p
∗

p
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6

∫ 1

0

k
p
∗

p

2 (t, s)f
p
∗

p (s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

(

α2

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β2v

p(s)

)

p
∗

p

ds

6

∫ 1

0

2
p
∗

p
−1k2(t, s)m

p
∗

p
−1

2

(

α
p
∗

p

2

∫ 1

0

kp∗

1 (s, τ)vp∗ (τ )dτ + β
p
∗

p

2 vp∗ (s)

)

ds

6

∫ 1

0

2
p
∗

p
−1k2(t, s)m

p
∗

p
−1

2

[

[α
p
∗

p

2 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗ (τ )dτ

+β
p
∗

p

2 vp∗(s)
]

ds

6

∫ 1

0

2
p
∗

p
−1k2(t, s)m

p
∗

p
−1

2

[

α
p
∗

p

2 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗(τ )dτ

+β
p
∗

p

2 vp∗(s)]
]

ds

= 2
p
∗

p
−1α

p
∗

p

2 mp∗−1
1 m

p
∗

p
−1

2

∫ 1

0

∫ 1

0

k2(t, s)k1(s, τ)vp∗(τ )dτds

+2
p
∗

p
−1β

p
∗

p

2 m
p
∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds

= 2
p
∗

p
−1α

p
∗

p

2 mp∗−1
1 m

p
∗

p
−1

2

∫ 1

0

k3(t, s)v
p∗(s)ds

+2
p
∗

p
−1β

p
∗

p

2 m
p
∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗(s)ds

=

∫ 1

0

Gn3,n4
(t, s)vp∗(s)ds.

Multiply the above inequality by ϕn
3
,n

4
(t) and integrate over [0, 1] and use (13) and

(14) to obtain

∫ 1

0

vp∗ (t)ϕn3,n4
(t)dt 6 r(Ln3,n4

)

∫ 1

0

vp∗(t)ϕn3,n4
(t)dt,

so that
∫ 1

0
vp∗(t)ϕn3,n4

(t)dt = 0, whence vp∗ (t) ≡ 0 and M2 = {0}, as claimed. A
consequence of that is

v 6= λAv for all v ∈ Br1
∩ P and λ ∈ [0, 1].

Now Lemma 2.5 yields
i(A, Br1

∩ P, P ) = 1. (16)

Note that we may assume R > r1. Combining (15) and (16) gives

i(A, (BR \ Br1
) ∩ P, P ) = 0 − 1 = −1.

Therefore A has at least one fixed point on (BR \ Br1
) ∩ P , and thus (1) has at least

one positive solution. This completes the proof.
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THEOREM 3.2. If (H1), (H2), (H5) and (H6) hold, then (1) has at least one positive
solution u ∈ (P \{0})∩ C4(0, 1).

PROOF. It suffices to prove that A has at least one fixed point v ∈ P \ {0}. To
this end, let

M3 := {v ∈ Br2
∩ P : vp∗ = (Av)p∗ + λ, λ > 0}.

We shall now prove that M3 ⊂ {0}. Indeed, if v ∈ M3, then there exists λ > 0 such
that vp∗ = (Av)p∗ + λ. Thus we have

vp∗(t) > (Av)p∗(t) =

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p∗

p

for all v ∈ Br2
∩P.

Note p∗, p∗/p ∈ (0, 1]. By (H5) and the Jensen integral inequality for concave functions
(Lemma 2.3), we obtain that, for all v ∈ Br2

∩ P,

vp∗(t) >

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p∗

p

>

∫ 1

0

k
p∗

p

2 (t, s)f
p∗

p (s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

>

∫ 1

0

k2(t, s)m
p∗

p
−1

2

(

α3

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β3v

p(s)

)

p∗

p

ds

>

∫ 1

0

2
p∗

p
−1k2(t, s)m

p∗

p
−1

2

(

α
p∗

p

3

∫ 1

0

kp∗
1 (s, τ)vp∗ (τ )dτ + β

p∗

p

3 vp∗(s)

)

ds

>

∫ 1

0

2
p∗

p
−1k2(t, s)m

p∗

p
−1

2

(

α
p∗

p

3 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗(τ )dτ + β
p∗

p

3 vp∗ (s)

)

ds

= 2
p∗

p
−1α

p∗

p

3 mp∗−1
1 m

p∗

p
−1

2

∫ 1

0

∫ 1

0

k2(t, s)k1(s, τ)vp∗(τ )dτds

+2
p∗

p
−1β

p∗

p

3 m
p∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗ (s)ds

= 2
p∗

p
−1m

p∗

p
−1

2

(

α
p∗

p

3 mp∗−1
1

∫ 1

0

k3(t, s)v
p∗(s)ds + β

p∗

p

3

∫ 1

0

k2(t, s)v
p∗(s)ds

)

=

∫ 1

0

Gn5,n6
(t, s)vp∗(s)ds.

Multiply the above inequality by ϕn5,n6
(t) and integrate over [0, 1] and use (13) and

(14) to obtain

∫ 1

0

vp∗ (t)ϕn
5
,n

6
(t)dt > r(Ln

5
,n

6
)

∫ 1

0

vp∗(t)ϕn
5
,n

6
(t)dt,

so that
∫ 1

0 vp∗(t)ϕn5,n6
(t)dt = 0, whence vp∗ (t) ≡ 0 and M3 ⊂ {0}, as required. As a

result of that, we have

vp∗ 6= (Av)p∗ + λ for all v ∈ ∂Br2
∩ P and λ > 0.
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Now Lemma 2.4 yields

i(A, Br2
∩ P, P ) = 0. (17)

Let
M4 := {v ∈ P : v = λAv, 0 6 λ 6 1}.

We are going to prove that M4 is bounded. Indeed, if v ∈ M4,then vp is concave and

v(t) 6 (Av)(t) =

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

1

p

for all v ∈ M4.

Note p∗, p∗

p > 1. By (H6) and the Jensen integral inequality for convex functions

(Lemma 2.3), we have

vp∗(t) 6

(
∫ 1

0

k2(t, s)f(s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s))ds

)

p
∗

p

6

∫ 1

0

k
p
∗

p

2 (t, s)f
p
∗

p

(

s,

∫ 1

0

k1(s, τ)v(τ )dτ, v(s)

)

ds

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

(

α4

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β4v

p(s) + c

)

p
∗

p

ds

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

{

2
p
∗

p
−1[(α4

∫ 1

0

kp
1(s, τ)vp(τ )dτ + β4v

p(s))
p
∗

p + c
p
∗

p ]

}

ds

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

{

2
p
∗

p
−1[2

p
∗

p
−1α

p
∗

p

4

∫ 1

0

k1(s, τ)vp∗(τ )dτ

+2
p
∗

p
−1β

p
∗

p

4 vp∗ (s) + c
p
∗

p ]

)

ds

6

∫ 1

0

k2(t, s)m
p
∗

p
−1

2

(

4
p
∗

p
−1α

p
∗

p

4 mp∗−1
1

∫ 1

0

k1(s, τ)vp∗ (τ )dτ + 4
p
∗

p
−1β

p
∗

p

4 vp∗ (s)

+2
p
∗

p
−1c

p
∗

p

)

ds

= 4
p
∗

p
−1α

p
∗

p

4 mp∗−1
1 m

p
∗

p
−1

2

∫ 1

0

∫ 1

0

k3(t, s)v
p∗(τ )dτds

+4
p
∗

p
−1β

p
∗

p

4 m
p
∗

p
−1

2

∫ 1

0

k2(t, s)v
p∗ (s)ds + 2

p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2

∫ 1

0

k2(t, s)ds

=

∫ 1

0

Gn
7
,n

8
(t, s)vp∗(s)ds + 2

p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2 m3.

Multiply the above inequality by ϕn7,n8
(t) and integrate over [0, 1] and use (13) and

(14) to obtain

∫ 1

0

vp∗(t)ϕn
7
,n

8
(t) 6 r(Ln

7
,n

8
)

∫ 1

0

vp∗(t)ϕn
7
,n

8
(t) + 2

p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2 m3,
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so that
∫ 1

0

vp∗(t)ϕn7,n8
(t) 6

2
p
∗

p
−1c

p
∗

p m
p
∗

p
−1

2 m3

1 − r(Ln7,n8
)

:= N2.

Now p∗/p > 1 and the Jensen integral inequality for convex functions (Lemma 2.3)
imply

(
∫ 1

0

vp(t)ϕn7,n8
(t)dt

)

p
∗

p

6

∫ 1

0

vp(t)ϕ
p
∗

p

n7,n8
(t)dt

6 ‖ϕn7,n8
‖

p
∗

p
−1

∫ 1

0

vp∗(t)ϕn7,n8
(t)dt

6 N2‖ϕn7,n8
‖

p
∗

p
−1, (18)

so that
∫ 1

0

vp(t)ϕn7,n8
(t)dt 6 Np∗

2 ‖ϕn7,n8
‖1−p∗.

Note vp is concave. By Lemma 2.1, we have

‖vp‖ 6
Np∗

2 ‖ϕn7,n8
‖1−p∗

κn7,n8

.

This proves the boundedness of M4. Taking R >sup{‖v‖ : v ∈ M4}, we have

v 6= λAv for all v ∈ ∂BR ∩ P and λ ∈ [0, 1].

Now Lemma 2.5 implies
i(A, BR ∩ P, P ) = 1. (19)

Note that we may assume R > r2. Combining (17) and (19) gives

i(A, (BR \ Br2
) ∩ P, P ) = 1 − 0 = 1.

Therefore the operator A has at least one fixed point on (BR \Br2
)∩ P . Thus (1) has

at least one positive solution. This completes the proof.

REMARK 3.2. (H3) and (H4) describe the p-superlinear growth of f , as exemplified
by f(t, x, y) := xq1 + yq2 with q1 > p and q2 > p.

REMARK 3.3. (H5) and (H6) describe the p-sublinear growth of f , as exemplified
by f(t, x, y) := xq3 + yq4 with 0 < q3 < p, 0 < q4 < p.
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