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Abstract

In this paper, we prove Eldestein-Suzuki type fixed point results in cone metric
spaces by using implicit relation. Our results generalize, extend, unify, enrich and
complement many existing results in the literature. Examples are given showing
the validity of our results.

1 Introduction

In 1962, M. Edelstein [6] proved another version of Banach Contraction Principle.
He assumed a compact metric space (X, d) and a self-mapping T on X such that
d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y, and he proved T has a unique fixed
point. In 2009, T. Suzuki [20] improved the results of Banach and Edelstein. Suzuki
replaced the condition d(Tx, Ty) < d(x, y) by

1

2
d(x, Tx) < d(x, y)⇒ d(Tx, Ty) < d(x, y)

for all x, y ∈ X. By this assumption he established T has a unique fixed point. Recently
D. Doríc et al. in [5] proved the following theorem and extended the results of Edelstein
and Suzuki on compact cone metric spaces.

THEOREM 1. Let (X, d) be a compact cone metric space over a normal and solid
cone P and let T : X → X be given. Assume that

d(Tx, Ty)� Ad(x, y) +Bd(x, Tx) + Cd(y, Ty) +Dd(x, Ty) + Ed(y, Tx),

for all x, y ∈ X, x 6= y and

1

2
d(x, Tx)− d(x, y) /∈ intP .
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2 Implicit Relation and Eldestein-Suzuki Type Fixed Point Results

where A,B,C,D,E ≥ 0, A + B + C + 2D = 1 and C 6= 1. Then T has a fixed point
in X. If E ≤ B + C +D, then the fixed point of T is unique.

In 2007, Huang and Zhang [8] introduced cone metric spaces and defined some
properties of convergence of sequences and completeness in cone metric spaces, also
they proved a fixed point theorem of cone metric spaces. A number of authors were
attracted to these results of Huang and Zhang and stimulated to investigate the fixed
point theorems in cone metric spaces. During the recent years, cone metric spaces
and properties of these spaces have been studied by a number of authors. Also many
mathematicians have been extensively investigated fixed point theorems in cone metric
spaces (see [16—21]).
Furthermore, many authors considered implicit relation technique to investigation

of fixed point theorems in metric spaces (see [2—4, 9, 11—14, 18]).
In this paper, we introduce an implicit relation. This helps us to extend result of

D. Doríc et. al. (Theorem 3.8 of [5]).

2 Preliminaries

We begin with the following:

DEFINITION 1. Let E be a real Banach space with norm ‖.‖ and P be a subset
of E. P is called a cone if and only if the following conditions are satisfied:

(i) P is closed, nonempty and P 6= {θ},

(ii) a, b ≥ 0 and x, y ∈ P implies ax+ by ∈ P ,

(iii) x ∈ P and −x ∈ P implies x = θ.

Let P ⊂ E be a cone, we define a partial ordering � on E with respect to P by
x � y if and only if y−x ∈ P . We write x ≺ y whenever x � y and x 6= y, while x� y
will stand for y − x ∈ intP (interior of P ). The cone P ⊂ E is called normal if there
exists a positive real number K such that for all x, y ∈ E, θ � x � y ⇒ ‖x‖ ≤ K‖y‖.
The least positive number satisfying the above inequality is called the normal constant
of P . If K = 1, then the cone P is called monotone.

DEFINITION 2. A cone metric space is an ordered pair (X, d), where X is any set
and d : X ×X −→ E is a mapping satisfying:

(d1) θ � d(x, y) for all x, y ∈ X, and d(x, y) = θ if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,

(d3) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
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Let (X, d) be a cone metric space, P be a normal cone in X with normal constant
K, x ∈ X and {xn} a sequence in X. The sequence {xn} is converges to x if and only
if d(xn, x) −→ θ. Limit point of every sequence is unique.

It is well known that, there exists a norm ‖.‖1 on E, equivalent with the given ‖.‖,
such that the cone P is monotone w.r.t. ‖.‖1 (see [1], [22]). By using this fact, from
now on, we assume that the cone P is solid and monotone. In this case, we can define
a metric on X by D(x, y) = ‖d(x, y)‖. Furthermore, it is proved that D and d give
same topology on X (see [15]).
We will use the following Lemma in the proof of the next theorem.

LEMMA 1. Let (X, d) be a cone metric space. Then

θ � x� y ⇒ ‖x‖ < ‖y‖.

PROOF. According ([22], Proposition (2.2), page 20) [−(y − x), y − x] is neighbor-
hood of θ. Hence, for suffi ciently large n, we have 1

ny ∈ [−(y−x), y−x], i.e.,
y
n � y−x.

From this it follows that x �
(
1− 1

n

)
y, that is ‖x‖ ≤

(
1− 1

n

)
‖y‖ < ‖y‖.

3 Implicit Relation

In this section, we prove a theorem in the context of compact cone metric spaces over a
monotone and solid cone by using implicit relation technique. Our result extends [20,
Theorem 8] and [5, Theorem 3.8].
Let F : P 6 −→ R be a function satisfies the following conditions:

(M1) u � v implies F (., ., ., v, ., .) ≤ F (., ., ., u, ., .),

(M2) F (u, v, v, u+ v, u, θ) ≤ 0 implies ‖u‖ ≤ ‖v‖,

(M3) F (u, v, v, u+ v, u, θ) < 0 implies ‖u‖ < ‖v‖, where u � θ and v � θ,

(M4) F (u, v, θ, v, θ, v) < 0 implies ‖u‖ < ‖v‖, where u � θ and v � θ.

EXAMPLE 1.

(A) F (p1, p2, p3, p4, p5, p6) = ‖p1‖ − ‖p2‖;

(B) F (p1, p2, p3, p4, p5, p6) = 2‖p1‖ − ‖p4‖;

(C) F (p1, p2, p3, p4, p5, p6) = 2‖p1‖ − (‖p2‖+ ‖p5‖);

(D) F (p1, p2, p3, p4, p5, p6) = 5‖p1‖ − (‖p2‖+ ‖p3‖+ ‖p4‖+ ‖p5‖+ ‖p6‖);

(E) F (p1, p2, p3, p4, p5, p6) = 2‖p1‖ −max{‖p2‖, ‖p3‖, ‖p4‖, ‖p5‖, ‖p6‖};

(F) F (p1, p2, p3, p4, p5, p6) = 2‖p1‖2 − (‖p2‖2 + ‖p5‖2).
It is easy to see that, (M1)− (M4) are satisfied for F in (A), (B), (C), (D), (E)
and (F ).
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(G) F (p1, p2, p3, p4, p5, p6) = ‖p1‖ − (a‖p2‖+ b‖p3‖+ c‖p4‖+ d‖p5‖+ e‖p6‖), where
a, b, c, d and e are nonnegative numbers, a+b+2c+d = 1, d 6= 1 and e ≤ b+c+d.

Clearly (M1) holds. Now, let

(1− d)‖u‖ −
(
(a+ b)‖v‖+ c‖u+ v‖

)
= F (u, v, v, u+ v, u, θ) ≤ 0.

Then we see that

(1− c− d)‖u‖ − (a+ b+ c)‖v‖ ≤ F (u, v, v, u+ v, u, θ) ≤ 0.

So by the assumption 1 − c − d = a + b + c, we observe that 1 − c − d ≤ 0 implies
a = b = c = 0. Therefore, d = 1, which is a contradiction. Hence 1 − c − d > 0.
Thus ‖u‖ ≤ ‖v‖. So (M2) is satisfied. Similar argument shows that (M3) is satisfied.
Moreover, if

F (u, v, θ, v, θ, v) = ‖u‖ − (a+ c+ e)‖v‖ < 0,
then ‖u‖ < (a+ c+ e)‖v‖. So by the hypothesis, we can write

‖u‖ < (a+ c+ e)‖v‖ ≤ (a+ b+ 2c+ d)‖v‖ = ‖v‖.

Therefore, (M4) is satisfied.

(H)

F (p1, p2, p3, p4, p5, p6) = ‖p1‖ −
(
amin{‖p2‖, ‖p3‖}+ bmin{‖p3‖, ‖p4‖}

+cmin{‖p4‖, ‖p5‖}+ ‖p6‖
)
,

where a, b and c are nonnegative numbers, a+ b+ c = 1 and c 6= 1.

Clearly (M1) holds. If F (u, v, v, u+ v, u, θ) ≤ 0, then

‖u‖ ≤
(
a‖v‖+ bmin{‖v‖, ‖u+ v‖}+ cmin{‖u+ v‖, ‖u‖}

)
≤

(
a‖v‖+ bmin{‖v‖, ‖u‖+ ‖v‖}+ cmin{‖u‖+ ‖v‖, ‖u‖}

)
,

which implies
(1− c)‖u‖ ≤ (a+ b)‖v‖.

So, by using a + b + c = 1 and c 6= 1, we conclude that ‖u‖ ≤ ‖v‖. This means (M2)
is satisfied. Similarly, we can show that (M3) is satisfied. Also, it is easy to see that
(M4) is satisfied.

THEOREM 2. Let (X, d) be a compact cone metric space and T be a self-mapping
on X. Suppose that F : P 6 −→ R is a continuous function such that (M1)-(M3) are
satisfied. Assume that

F
(
d(Tx, Ty), d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)

)
< 0, (1)



Moradlou et al. 5

for x, y ∈ X and
1

2
D(x, Tx) < D(x, y).

Then T has at least one fixed point. Moreover, if F satisfies (M4), then T has a unique
fixed point.

PROOF. Let α = inf{D(x, Tx) : x ∈ X}. There exists a sequence {xn} in X such
that limn→∞D(xn, Txn) = α. By compactness of X, there exist w1, w2 ∈ X such that
limn→∞ xn = w1 and limn→∞ Txn = w2. Hence

lim
n→∞

D(xn, w2) = lim
n→∞

D(xn, Txn) = D(w1, w2) = α.

Now, we show that α must be equal to 0. If α > 0, then there exists N ∈ N such
that for all n ≥ N , 23α < D(xn, w2) and D(xn, Txn) < 4

3α. Therefore for all n ≥ N ,
1
2D(xn, Txn) <

2
3α < D(xn, w2). Now, by (1), we have that

F
(
d(Txn, Tw2), d(xn, w2), d(xn, Txn), d(xn, Tw2), d(w2, Tw2), d(w2, Txn)

)
< 0. (2)

By taking the limit as n→∞ in (2), we get

F
(
d(w2, Tw2), d(w1, w2), d(w1, w2), d(w1, Tw2), d(w2, Tw2), θ

)
≤ 0.

By triangle inequality and (M1), we get

F
(
d(w2, Tw2), d(w1, w2), d(w1, w2), d(w1, w2) + d(w2, Tw2), d(w2, Tw2), θ

)
≤ 0,

so by (M2), we have that D(w2, Tw2) ≤ α. Therefore, D(w2, Tw2) = α > 0. It follows
that 12D(w2, Tw2) < D(w2, Tw2). Now by (1), we can obtain that

F
(
d(Tw2, T

2w2), d(w2, Tw2), d(w2, Tw2), d(w2, T
2w2), d(Tw2, T

2w2), θ
)
< 0,

which implies that

F
(
d(Tw2, T

2w2), d(w2, Tw2), d(w2, Tw2),

d(Tw2, T
2w2) + d(w2, Tw2), d(Tw2, T

2w2), θ
)
< 0.

By (M3), we get D(Tw2, T 2w2) < D(w2, Tw2) = α, which is a contradiction of the
definition of α. So α = 0, that is, w1 = w2.
Now, we must show that T has at least one fixed point. Assume towards a contra-

diction that T does not have a fixed point. Hence,

0 <
1

2
D(xn, Txn) < D(xn, Txn).

Then by (1), we have that

F
(
d(Txn, T

2xn), d(xn, Txn), d(xn, Txn), d(xn, T
2xn), d(Txn, T

2xn), d(Txn, Txn)
)
< 0.
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By taking the limit as n→∞ in above inequality, we get

F
(
lim
n→∞

d(w1, T
2xn), θ, θ, lim

n→∞
d(w1, T

2xn), lim
n→∞

d(w1, T
2xn), θ

)
≤ 0.

It follows from (M2) that limn→∞D(w1, T
2xn) ≤ 0, so limn→∞ T 2xn = w1. Further-

more, by using (1) and (M1), we obtain that

F
(
d(Txn, T

2xn), d(xn, Txn), d(xn, Txn),

d(Txn, T
2xn) + d(xn, Txn), d(Txn, T

2xn), θ
)
< 0.

Then by (M3) we have that D(Txn, T 2xn) < D(xn, Txn).
Now, suppose that both of the following inequalities hold for some n ∈ N,

1

2
D(xn, Txn) ≥ D(xn, w1) and

1

2
D(Txn, T

2xn) ≥ D(Txn, w1),

then, we have that

D(xn, Txn) ≤ D(xn, w1) + d(w1, Txn)

≤ 1

2
D(xn, Txn) +

1

2
D(Txn, T

2xn)

<
1

2
D(xn, Txn) +

1

2
D(xn, Txn) = D(xn, Txn),

which is a contradiction. Thus, for each n ∈ N, either

1

2
D(xn, Txn) < D(xn, w1),

or
1

2
D(Txn, T

2xn) < D(Txn, w1),

holds. So by hypotheses, we conclude that one of the following inequalities holds for
all n in an infinite subset of N:

F
(
d(Txn, Tw1), d(xn, w1), d(xn, Txn), d(xn, Tw1), d(w1, Tw1), d(w1, Txn)

)
< 0,

or

F
(
d(T 2xn, Tw1), d(Txn, w1), d(Txn, T

2xn), d(Txn, Tw1), d(w1, Tw1), d(w1, T
2xn)

)
< 0.

If we take the limit as n→∞ in each of these inequalities, then we have that

F
(
d(w1, Tw1), θ, θ, d(w1, Tw1), d(w1, Tw1), θ

)
≤ 0.

So (M2) implies that D(w1, Tw1) ≤ 0, i.e., w1 = Tw1. Hence, we conclude that w1 is
a fixed point of T .
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To prove the uniqueness of w1, suppose that w0 is another fixed point of T such
that w1 6= w0. Hence, 0 = 1

2D(w1, Tw1) < D(w1, w0). By (1), we have that

F
(
d(Tw1, Tw0), d(w1, w0), d(w1, Tw1), d(w1, Tw0), d(w0, Tw0), d(w0, Tw1)

)
< 0.

So
F
(
d(w1, w0), d(w1, w0), θ, d(w1, w0), θ, d(w0, w1)

)
< 0.

Considering (M4), we have that D(w1, w0) < D(w1, w0), which is a contradiction.
Therefore w1 = w0. Then w1 is the unique fixed point of T .

THEOREM 3. Let (X, d) be a cone metric space and let G and T be two self-
mappings on X such that TX ⊆ GX and GX is compact. Suppose that F : P 6 −→ R
is a continuous function such that (M1)− (M3) are satisfied. Assume that

F
(
d(Tx, Ty), d(Gx,Gy), d(Gx, Tx), d(Gx, Ty), d(Gy, Ty), d(Gy, Tx)

)
< 0, (3)

for all x, y ∈ X and
1

2
D(Gx, Tx) < D(Gx,Gy).

Then G and T have at least one point of coincidence. Moreover, if F satisfies (M4)
and G and T are weakly compatible, then G and T have a unique common fixed point.

PROOF. Define H : GX −→ GX by H(G(w)) = Tw. Replacing Tx and Ty by
H(Gx) and H(Gy), respectively, in (3), we have that, for Gx,Gy ∈ GX,

1

2
d(Gx,H(Gx)) < d(Gx,Gy),

which implies that, for Gx,Gy ∈ GX,

F
(
d(H(Gx), H(Gy)), d(Gx,Gy), d(Gx,H(Gx)),

d(Gx,H(Gy)), d(Gy,H(Gy)), d(Gy,H(Gx))
)
< 0.

Since GX is compact, by Theorem 2, H has a fixed point, i.e., there exists z ∈ X
such that Gz = H(Gz) = Tz := u. Moreover, if F satisfies (M4), then H has a
unique fixed point. So we conclude that z is a unique point of coincidence of G and
T . Furthermore, if G and T are weakly compatible mappings, we get GTz = TGz, so
Gu = Tu. Therefore z = u and Gz = Tz = z. This yields z as the unique common
fixed point of G and T .

COROLLARY 1. Let (X, d) be a cone metric space and let G and T be two self-
mappings on X such that TX ⊆ GX and GX is compact. Assume that

D(Tx, Ty) < aD(Gx,Gy) + bD(Gx, Tx) + cD(Gx, Ty) + dD(Gy, Ty) + eD(Gy, Tx),

for all x, y ∈ X and
1

2
D(Gx, Tx) < D(Gx,Gy),
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where a, b, c, d, e ≥ 0, a + b + 2c + d = 1 and d 6= 1. Then G and T have at least one
point of coincidence. Moreover, if e ≤ b + c + d and G and T are weakly compatible,
then G and T have a unique common fixed point.

PROOF. The proof follows from Theorem 3 and part (G) of Example 1.

COROLLARY 2. Let (X, d) be a cone metric space and let G and T be two weakly
compatible self-mappings on X such that TX ⊆ GX and GX is compact. Assume
that

D(Tx, Ty) < amin {D(Gx,Gy), D(Gx, Tx)}+ bmin{D(Gx, Tx), D(Gx, Ty)}
+cmin{D(Gx, Ty), D(Gy, Ty)}+D(Gy, Tx),

for all x, y ∈ X and
1

2
D(Gx, Tx) < D(Gx,Gy)

where a+ b+ c = 1 and c 6= 1. Then G and T have a unique common fixed point.

PROOF. The proof follows from Theorem 3 and part (H) of Example 1.

COROLLARY 3. Let (X, d) be a cone metric space and let G and T be two weakly
compatible self-mappings on X such that TX ⊆ GX and GX is compact. Assume
that D(Tx, Ty) < D(Gx,Gy) for all x, y ∈ X, x 6= y, and

1

2
D(Gx, Tx) < D(Gx,Gy).

Then G and T have a unique common fixed point.

PROOF. The proof follows from Theorem 3 and part (A) of Example 1.

REMARK 1. We can obtain some new results by using Theorem 3 and other
examples of F .

In the rest of this section, we assume that ψp : P −→ P and ϕp : P
5 −→ P are two

mappings satisfying the following conditions:

(P1) u � v implies ϕp(., ., v, ., .)− ϕp(., ., u, ., .) ∈ P ,

(P2) ‖ψp(u)‖ ≤ ‖ϕp(v, v, u+ v, u, θ)‖ implies ‖u‖ ≤ ‖v‖,

(P3) ‖ψp(u)‖ < ‖ϕp(v, v, u+ v, u, θ)‖ implies ‖u‖ < ‖v‖, where v 6= θ,

(P4) ‖ψp(u)‖ < ‖ϕp(v, θ, v, θ, v)‖ implies ‖u‖ < ‖v‖, where v 6= θ.

We define Fp : P 6 −→ R by

Fp(p1, p2, p3, p4, p5, p6) = ‖ψp(p1)‖ − ‖ϕp(p2, p3, p4, p5, p6)‖.

Clearly Fp satisfies (M1)− (M4).

EXAMPLE 2. Suppose that p, p1, p2, p3, p4, p5 ∈ P . Let
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(A) ψp(p) = p and ϕp(p1, p2, p3, p4, p5) = p1;

(B) ψp(p) = 2p and ϕp(p1, p2, p3, p4, p5) = p3;

(C) ψp(p) = 2p and ϕp(p1, p2, p3, p4, p5) = p1 + p4;

(D) ψp(p) = 5p and ϕp(p1, p2, p3, p4, p5) = p1 + p2 + p3 + p4 + p5.
It is easy to show that (P1)− (P4) are satisfied for ψp and ϕp in (A), (B), (C)
and (D).

(E) ψp(p) = p and ϕp(p1, p2, p3, p4, p5) = ap1 + bp2 + cp3 + dp4 + ep5, where a, b, c, d
and e are nonnegative numbers, a + b + 2c + d = 1 and d 6= 1. So, (P1) − (P3)
are satisfied. Moreover, if e ≤ b+ c+ d, then (P4) is satisfied.

THEOREM 4. Let (X, d) be a compact cone metric space and T be a self-mapping
on X. Suppose that ψp : P −→ P and ϕp : P

5 −→ P are two continuous mappings
such that (P1)− (P3) are satisfied. Assume that

ψp(d(Tx, Ty))� ϕp

(
d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), (y, Tx)

)
, (4)

for all x, y ∈ X, x 6= y, and

1

2
d(x, Tx)− d(x, y) /∈ intP.

Then T has at least one fixed point. Moreover, if ψp and ϕp satisfy (P4), then T has
a unique fixed point.

PROOF. Let 1
2D(x, Tx) < D(x, y). So 1

2d(x, Tx) − d(x, y) /∈ intP . Therefore by
(4), we have that

ψp(d(Tx, Ty))� ϕp

(
d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)

)
.

Thus, by Lemma 1, we get

‖ψp(d(Tx, Ty))‖ < ‖ϕp
(
d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)

)
‖.

That is,

Fp

(
d(Tx, Ty), d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)

)
< 0.

Clearly, Fp is continuous. Also, Fp satisfies the conditions (M1) − (M3). Therefore,
Theorem 2 implies that T has at least one fixed point. Furthermore, if ψp and ϕp
satisfy (P4), then Fp satisfies (M4) and so T has a unique fixed point.

THEOREM 5. Let (X, d) be a cone metric space and let G and T be two self-
mappings on X such that TX ⊆ GX and GX is compact. Suppose that ψp : P −→ P
and ϕp : P

5 −→ P are two continuous mappings satisfying (P1)—(P3). Assume that

ψp(d(Tx, Ty))� ϕp

(
d(Gx,Gy), d(Gx, Tx), d(Gx, Ty), d(Gy, Ty), d(Gy, Tx)

)
,
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for all x, y ∈ X, x 6= y, and

1

2
d(Gx, Tx)− d(Gx,Gy) /∈ intP.

Then G and T have at least one point of coincidence. Moreover, if ψp and ϕp satisfy
(P4) and G and T are weakly compatible, then G and T have a unique common fixed
point.

COROLLARY 4. Let (X, d) be a cone metric space and let G and T be two weakly
compatible self-mappings on X such that TX ⊆ GX and GX is compact. Assume
that d(Tx, Ty)� d(Gx,Gy) for all x, y ∈ X, x 6= y, and

1

2
d(Gx, Tx)− d(Gx,Gy) /∈ intP.

Then G and T have a unique common fixed point.

COROLLARY 5. Let (X, d) be a cone metric space and let G and T be two weakly
compatible self-mappings on X such that TX ⊆ GX and GX is compact. Assume
that d(Tx, Ty)� 1

2d(Gx,Gy) for all x, y ∈ X, x 6= y, and

1

2
d(Gx, Tx)− d(Gx,Gy) /∈ intP.

Then G and T have a unique common fixed point.

COROLLARY 6. Let (X, d) be a cone metric space and let G and T be two weakly
compatible self-mappings on X such that TX ⊆ GX and GX is compact. Assume
that

d(Tx, Ty)� 1

2
[d(Gx,Gy) + d(Gx, Tx)]

for all x, y ∈ X, x 6= y, and

1

2
d(Gx, Tx)− d(Gx,Gy) /∈ intP .

Then G and T have a unique common fixed point.

COROLLARY 7. Let (X, d) be a cone metric space and let G and T be two weakly
compatible self-mappings on X such that TX ⊆ GX and GX is compact. Assume
that

d(Tx, Ty)� 1

5
[d(Gx,Gy) + d(Gx, Tx) + d(Gx, Ty) + d(Gy, Ty) + d(Gy, Tx)],

for all x, y ∈ X, x 6= y, and

1

2
d(Gx, Tx)− d(Gx,Gy) /∈ intP .
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Then G and T have a unique common fixed point.

COROLLARY 8. Let (X, d) be a cone metric space and let G and T be two self-
mappings on X such that TX ⊆ GX and GX is compact. Assume that d(Tx, Ty)�
M(x, y) for all x, y ∈ X, x 6= y, and

1

2
d(Gx, Tx)− d(Gx,Gy) /∈ intP,

where

M(x, y) = Ad(Gx,Gy) +Bd(Gx, Tx) + Cd(Gx, Ty) +Dd(Gy, Ty) + Ed(Gy, Tx),

and A,B,C,D,E ≥ 0, A + B + 2C + D = 1 and D 6= 1. Then G and T have at
least one point of coincidence. Moreover, if E ≤ B + C +D and G and T are weakly
compatible, then F and T have a unique common fixed point.
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