# A Theorem On Characteristic Equations And Its Application To Oscillation Of Functional Differential Equations<sup>\*</sup>

Shao Yuan Huang<sup>†</sup>and Sui Sun Cheng<sup>‡</sup>

Received 6 October 2012

#### Abstract

We consider the oscillation of a class of second order delay functional differential equations. This relatively difficult problem is completely solved by applying the Cheng-Lin envelope method to find the exact conditions for the absence of real roots of the associated characteristic function. Several specific examples are also included to illustrate these conditions.

## 1 Introduction

In this paper, we intend to consider delay differential equations with constant coefficients of the form

$$N''(t) + aN'(t - \tau_1) + bN(t - \tau_2) = 0$$
(1)

where  $a, b \in \mathbf{R}$ ,  $\tau_1, \tau_2 \ge 0$  and a, b > 0, and to find the exact region containing these parameters such that all solutions of equation (1) are oscillatory.

One motivation for studying (1) is that linearization of nonlinear equations (e.g. [1] and [4])

$$N''(t) + f(N'(t - \tau_1), N(t - \tau_2)) = 0$$
<sup>(2)</sup>

where f is continuous on  $\mathbb{R}^2$ , leads us to equation (1). Many qualitative properties of the nonlinear equation (2) can then be inferred from the oscillatory properties of (1).

As another motivation, impulsive differential equations are mathematical apparatus for simulation of different dynamical processes and phenomena observed in nature (e.g. [7]). For this reason, many impulsive differential equations are studied and their qualitative properties investigated (e.g. [2, 5, 8, 9, 10]). In particular, consider

$$N''(t) + aN'(t - \tau_1) + bN(t - \tau_2) = 0, t \in [0, \infty) \backslash \Gamma,$$
(3)

$$N(t_k^+) = a_k N(t_k), \, k \in \mathbf{N},\tag{4}$$

$$N'(t_k^+) = a_k N'(t_k), \, k \in \mathbf{N},\tag{5}$$

<sup>\*</sup>Mathematics Subject Classifications: 34C10.

 $<sup>^{\</sup>dagger}\textsc{Department}$  of Matheamtics, Tsing Hu<br/>a University, Hsinchu, Taiwan 30043, R. O. China

<sup>&</sup>lt;sup>‡</sup>Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, R. O. China

where  $a, b \in \mathbf{R}$ ,  $\tau_1, \tau_2 \ge 0$ ,  $a_k > 0$  for  $k \in \mathbf{N}$ , and  $\Gamma$  is a set of positive numbers  $t_0, t_1, t_2, \cdots$  satisfying  $t_0 < t_1 < t_2 < \cdots$ . The basic concepts relevant to system (3)-(5) can be found in the appendix. Furthermore, we have the following

LEMMA 1.1. Let  $a, b \in \mathbf{R}$ ,  $\tau_1, \tau_2 \ge 0$ ,  $a_k > 0$  for  $k \in \mathbf{N}$ , and  $\Gamma = \{t_0, t_1, t_2, ...\}$ , and let the function

$$A(s,t) = \begin{cases} \prod_{\substack{s \le t_k < t \\ 1 & \text{if } [s,t) \cap \Upsilon = \emptyset} \end{cases} & \text{for } t \ge s \ge 0. \end{cases}$$

Assume that there exist positive numbers  $\alpha_1$  and  $\alpha_2$  such that  $A(t - \tau_i, t) = \alpha_i$  for i = 1, 2. Then the system (3)-(5) has a nonoscillatory solution if, and only if, the equation

$$\lambda^2 + \frac{a}{\alpha_1} \lambda e^{-\lambda \tau_1} + \frac{b}{\alpha_2} e^{-\lambda \tau_2} = 0 \tag{6}$$

has a real root.

The proof of Lemma 1.1 is presented in the Appendix. Here we note that equation (6) is exactly of the form (7).

It is well-known that all solutions of equation (1) are oscillatory if, and only if, the characteristic equation

$$\lambda^2 + a\lambda e^{-\lambda\tau_1} + be^{-\lambda\tau_2} = 0 \tag{7}$$

has no real roots. Clearly, (6) can be 'absorbed' into (7). Therefore, studying the problem of absence of real roots of (7) becomes the main issue.

We rewrite equation (7) as

$$\lambda^2 + x\lambda e^{-\lambda\tau_1} + ye^{-\lambda\tau_2} = 0 \tag{8}$$

where  $\lambda, x, y \in \mathbf{R}$  and  $\tau_1, \tau_2 \geq 0$  with  $\tau_1 \tau_2 \neq 0$ , and intend to find the exact region containing the parameters such that the equation (8) has no real roots. We note that when  $\tau_1 = \tau_2 = 0$ , it is a quadratic polynomial so we may ignore this easy case. The other case, however, is a relatively difficult one. Fortunately, we have an envelope method which can be used to handle the existence of real roots of functions (e.g. [6]) This method is formalized recently and presented in the book [3]. We will apply this method together with several new ideas and techniques to tackle our problem.

# 2 Preliminary

To facilitate discussion, we first recall a few basic concepts and tool explained in [3]. Let  $\Theta_0$  be the null function, that is  $\Theta_0(x) = 0$  for all  $x \in \mathbf{R}$ . Given an interval I in  $\mathbf{R}$ , the chi-function  $\chi_I : I \to R$  is defined by  $\chi_I(x)$  is equal to 1 if  $x \in I$  and 0 elsewhere. The restriction of a real function f defined over an interval J (which is not disjoint from I) will be written as  $f\chi_I$ , so that  $f\chi_I$  is now defined on  $I \cap J$  and

$$(f\chi_I)(x) = f(x), \ x \in I \cap J.$$

A point in the plane is said to be a *dual point* of order m of the plane curve S, where m is a nonnegative integer, if there exist exactly m mutually distinct tangents of S that also pass through it. The set of all dual points of order m of S in the plane is called the dual set of order m of S. We remark that m = 0 is allowed. In this case, there are no tangents of S that pass through the point in consideration.

Let  $\{C_{\lambda} : \lambda \in I\}$ , where *I* is a real interval, be a family of plane curves. With each  $C_{\lambda}$ , suppose we can associate just one point  $P_{\lambda}$  in each  $C_{\lambda}$  such that the totality of these points form a curve *S*. Then *S* is called an **envelope** of the family  $\{C_{\lambda} | \lambda \in I\}$  if the curves  $C_{\lambda}$  and *S* share a common tangent line at the common point  $P_{\lambda}$ . Suppose we have a family of curves in the *x*, *y*-plane implicitly defined by

$$F(x, y, \lambda) = 0, \ \lambda \in I,$$

where I is an interval of **R**. Then it is well known that the envelope S is described by a pair of parametric functions  $(\psi(\lambda), \phi(\lambda))$  that satisfy

$$\begin{cases} F(\psi(\lambda), \phi(\lambda), \lambda) = 0, \\ F'_{\lambda}(\psi(\lambda), \phi(\lambda), \lambda) = 0, \end{cases}$$

for  $\lambda \in I$ , provided some "good conditions" are satisfied. In particular, let  $\alpha, \beta, \gamma : I \to \mathbf{R}$ . Then for each fixed  $\lambda \in I$ , the equation

$$L_{\lambda}: \alpha(\lambda)x + \beta(\lambda)y = \gamma(\lambda), \ (\alpha(\lambda), \beta(\lambda)) \neq 0, \tag{9}$$

defines a straight line  $L_{\lambda}$  in the x, y-plane, and we have a collection  $\{L_{\lambda} : \lambda \in I\}$  of straight lines. For such a collection, we have the following result.

THEOREM 2.1 (see [3, Theorems 2.3 and 2.5]). Let  $\alpha, \beta, \gamma$  be real differentiable functions defined on the interval I such that  $\alpha(\lambda)\beta'(\lambda) - \alpha'(\lambda)\beta(\lambda) \neq 0$  and  $\beta(\lambda) \neq 0$ for  $\lambda \in I$ . Let  $\Phi$  be the family of straight lines of the form (9). Let the curve S be defined by the functions  $x = \psi(\lambda), y = \phi(\lambda)$ :

$$\psi(\lambda) = \frac{\beta'(\lambda)\gamma(\lambda) - \beta(\lambda)\gamma'(\lambda)}{\alpha(\lambda)\beta'(\lambda) - \alpha'(\lambda)\beta(\lambda)}, \quad \phi(\lambda) = \frac{\alpha(\lambda)\gamma'(\lambda) - \alpha'(\lambda)\gamma(\lambda)}{\alpha(\lambda)\beta'(\lambda) - \alpha'(\lambda)\beta(\lambda)}, \quad \lambda \in I.$$
(10)

Suppose  $\psi$  and  $\phi$  are smooth functions over I and one of the following cases holds: (i)  $\psi'(\lambda) \neq 0$  for  $\lambda \in I$ ; (ii)  $\psi'(\lambda) \neq 0$  for  $I \setminus \{d\}$  where  $d \in I$  and  $\lim_{\lambda \to d^-} \phi'(\lambda)/\psi'(\lambda)$  as well as  $\lim_{\lambda \to d^+} \phi'(\lambda)/\psi'(\lambda)$  exist and are equal. Then S is the envelope of the family  $\Phi$ .

THEOREM 2.2 (see [3, Theorem 2.6]). Let  $\Lambda$  be an interval in  $\mathbf{R}$ , and  $\alpha, \beta, \gamma$  be real differentiable functions defined on  $\Lambda$  such that  $\alpha(\lambda)\beta'(\lambda) - \alpha'(\lambda)\beta(\lambda) \neq 0$  for  $\lambda \in \Lambda$ . Let  $\Phi$  be the family of straight lines of the form (9), where  $\lambda \in \Lambda$ , and let the curve S be the envelope of the family  $\Phi$ . Then the point  $(\alpha, \beta)$  in the plane is a dual point of order m of S, if, and only if, the function  $\alpha(\lambda)\alpha + \beta(\lambda)\beta - \gamma(\lambda)$ , as a function of  $\lambda$ , has exactly m mutually distinct roots in  $\Lambda$ . Let g be a function defined on an interval I with  $c = \inf I$  and  $d = \sup I$ . Note that c or d may be infinite, or may be outside the interval I, and that  $g(c^+)$ ,  $g(d^-)$ ,  $g'(c^+)$  or  $g'(d^-)$  may not exist. For  $\lambda \in (c, d)$ , let

$$L_{g|\lambda}(x) = g'(\lambda)(x-\lambda) + g(\lambda), \ x \in R.$$
(11)

In case d is finite and  $g(d^{-})$ ,  $g'(d^{-})$  exist, we let

$$L_{g|d}(x) = g'(d^{-})(x-d) + g(d^{-}), \ x \in R,$$
(12)

and in case c is finite and  $g(c^+), g'(c^+)$  exist, we let

$$L_{g|c}(x) = g'(c^{+})(x-c) + g(c^{+}), \ x \in \mathbb{R}.$$
(13)

When d is finite, we say  $g \sim H_{d^-}$  if  $\lim_{\lambda \to d^-} L_{g|\lambda}(\alpha) = -\infty$  for any  $\alpha < d$ ; and similarly when c is finite,  $g \sim H_{c^+}$  if  $\lim_{\lambda \to c^+} L_{g|\lambda}(\alpha) = -\infty$  for any  $\alpha > c$ . In case d is infinite, we say  $g \sim H_{+\infty}$  if  $\lim_{\lambda \to +\infty} L_{g|\lambda}(\alpha) = -\infty$  for any  $\alpha \in \mathbf{R}$ ; and similarly, when c is infinite, we say  $g \sim H_{-\infty}$  if  $\lim_{\lambda \to -\infty} L_{g|\lambda}(\alpha) = -\infty$  for any  $\alpha \in \mathbf{R}$ .

There is a convenient criterion for the determination of functions with the above stated properties.

LEMMA 2.3.([3, Lemmas 3.1 and 3.5]). Let  $g: (c, d) \to \mathbf{R}$  be a smooth and strictly convex function. (i) Assume  $d < +\infty$ . If  $g'(d^-) = +\infty$ , then  $g \sim H_{d^-}$ . (ii) Assume  $d = +\infty$ . If  $g'(+\infty) = +\infty$ , or,  $g'(+\infty) = 0$  and  $g(+\infty) = -\infty$ , then  $g \sim H_{+\infty}$ .

The description of the distribution of dual points of a plane curve can be cumbersome. For this reason, it is convenient to introduce several notations. We say that a point (a, b) in the plane is strictly above (above, strictly below, below) the graph of a function g if a belongs to the domain of g and g(a) < b (respectively  $g(a) \le b, g(a) > b$ and  $g(a) \ge b$ ). The notation is  $(a, b) \in \lor(g)$  (respectively  $(a, b) \in \bigtriangledown(g), (a, b) \in \land(g)$ and  $(a, b) \in \land(g)$ ). Suppose we now have two real functions  $g_1$  and  $g_2$  defined one real subsets  $I_1$  and  $I_2$  respectively. We say that  $(a, b) \in \lor(g_1) \oplus \lor(g_2)$  if  $a \in I_1 \cap I_2$  and  $b > g_1(a)$  and  $b > g_2(a)$ , or,  $a \in I_1 \setminus I_2$  and  $b > g_1(a)$ , or,  $a \in I_2 \setminus I_1$  and  $b > g_2(a)$ . The notations  $(a, b) \in \bigtriangledown(g_1) \oplus \lor(g_2)$ ,  $(a, b) \in \bigtriangledown(g_1) \oplus \land(g_2)$ , etc. are similarly defined. If we now have n real functions  $g_1, \ldots, g_n$  defined on intervals  $I_1, \ldots, I_n$  respectively, we write  $(a, b) \in \lor(g_1) \oplus \lor(g_2) \oplus \cdots \oplus \lor(g_n)$  if  $a \in I_1 \cup I_2 \cup \cdots \cup I_n$ , and if

$$a \in I_{i_1} \cup I_{i_2} \cup \dots \cup I_{i_m} \Rightarrow b > g_{i_1}(a), b > g_{i_2}(a), \dots, b > g_{i_m}(a), i_1, \dots, i_m \in \{1, \dots, n\}.$$

The notations  $(a, b) \in \overline{\nabla}(g_1) \oplus \overline{\nabla}(g_2) \oplus \cdots \oplus \overline{\nabla}(g_n)$ , etc. are similarly defined.

We will utilize several theorems in [3] (Theorems 3.6, 3.7, 3.10, 3.11, 3.17, 3.18, 3.19, 3.20, A3, A5, A8 and A16) which are relevant to the distribution maps for dual points. However, two more new results are needed (see Lemmas 2.4 and 2.5 below).

By Theorems 3.6 and 3.10 in [3], we may easily show the following lemma.

LEMMA 2.4. Let a > 0,  $G_1 \in C^1(0, a)$  and  $G_2 \in C^1(-\infty, a]$ . Suppose the following hold:

- (i)  $G_1$  is strictly concave on (0, a) such that  $G_1(a^-)$  and  $G'_1(a^-)$  exist,  $G_1(0^+) = -\infty$ and  $G_1 \tilde{H}_{0^+}$ ;
- (ii)  $G_2$  is strictly convex on  $(-\infty, a]$  such that  $L_{G_2|-\infty}$  exists;
- (iii)  $G_1^{(v)}(a^-) = G_2^{(v)}(a)$  for v = 0, 1.

Then the intersection of the dual sets of order 0 of  $G_1$  and  $G_2$  is

$$\vee (G_2\chi_{(-\infty,0]}) \oplus \wedge (G_1) \oplus \underline{\wedge}(L_{G_2|-\infty}).$$

See Figure 1.



Figure 1: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.6 and 3.10]) to yield (c).

By Theorems 3.8 and A.5 in [3], we may show the following lemma.

LEMMA 2.5. Let b > 0 > a,  $G_1 \in C^1(a, 0)$ ,  $G_2 \in C^1[a, b]$  and  $G_3 \in C^1(-\infty, b)$ . Suppose the following hold:

- (i)  $G_1$  is strictly convex on [a, 0) such that  $G_1(0^+)$  exists and  $G_1 \ H_{0^-}$ ;
- (ii)  $G_2$  is strictly concave on (a, b) such that  $G_2(a^+)$ ,  $G'_2(a^+)$ ,  $G_2(b^-)$  and  $G'_2(b^-)$  exist
- (iii)  $G_3$  is strictly convex on  $(-\infty, b]$  such that  $L_{G_3|-\infty}$  exists;
- (iv)  $G_1^{(v)}(a) = G_2^{(v)}(a^+)$  and  $G_2^{(v)}(b^-) = G_3^{(v)}(b)$  for v = 0, 1.

Then the intersection of the dual sets of order 0 of  $G_1$   $G_2$  and  $G_3$  is

 $\vee (G_2\chi_{(-\infty,0]}) \oplus \wedge (G_2\chi_{[0,b]}) \oplus \underline{\wedge} (L_{G_3|-\infty}\chi_{[0,\infty]}).$ 

See Figure 2.



Figure 2: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.8 and A.5]) to yield (c).

# 3 Cubic Polynomial

Before studying our problem, we need to consider the distribution of real roots of cubic polynomial

$$P(\lambda|\tilde{x},\tilde{y},d) = \lambda^3 + \tilde{x}\lambda^2 + \tilde{y}\lambda + d \tag{14}$$

for  $\lambda \in \mathbf{R}$  where  $\widetilde{x}, \widetilde{y} \in \mathbf{R}$  and d > 0. Let

$$\Omega_{ij}(d) = \{ (\tilde{x}, \tilde{y}) \in \mathbf{R}^2 : P(\lambda | \tilde{x}, \tilde{y}, d) \text{ has } i \text{ distinct positive roots} \\ \text{and } j \text{ distinct negative roots} \}$$

for nonnegative integers i and j such that  $i + j \leq 3$ . We will apply the Cheng-Lin envelope method to find the exact sets  $\Omega_{01}(d)$ ,  $\Omega_{11}(d)$ ,  $\Omega_{02}(d)$ ,  $\Omega_{21}(d)$  and  $\Omega_{03}(d)$  for any d > 0. We note that  $P(0|\tilde{x}, \tilde{y}, d) \neq 0$  for all  $\tilde{x}, \tilde{y} \in \mathbf{R}$ . For each  $\lambda \in \mathbf{R} \setminus \{0\}$ , let  $L_{\lambda}$ be the straight line in the plane defined by

$$L_{\lambda}: \tilde{x}\lambda^2 + \tilde{y}\lambda = -\lambda^3 - d.$$
<sup>(15)</sup>

Note that  $L_{\lambda}$  defined by (15) is of the form (9) and  $\alpha'(\lambda)\beta(\lambda) - \alpha(\lambda)\beta'(\lambda) = -\lambda^2 \neq 0$ for  $\lambda \in \mathbf{R} \setminus \{0\}$ . From (10), we let S be the curve defined by the parametric functions

$$\widetilde{x}(\lambda) = -2\lambda + \frac{d}{\lambda^2} \text{ and } \widetilde{y}(\lambda) = \lambda^2 - \frac{2d}{\lambda} \text{ for } \lambda \neq 0.$$
 (16)

By Theorem 2.1, S is the envelope of the family  $\{L_{\lambda} : \lambda \in \mathbf{R} \setminus \{0\}\}$  where  $L_{\lambda}$  is defined by (15). We have

$$\begin{split} \widetilde{x}(-d^{1/3}) &= 3d^{1/3}, \ \widetilde{y}(-d^{1/3}) = 3d^{2/3}, \\ \lim_{\lambda \to -\infty} \left( \widetilde{x}(\lambda), \widetilde{y}(\lambda) \right) &= (\infty, \infty), \\ \lim_{\lambda \to 0^+} \left( \widetilde{x}(\lambda), \widetilde{y}(\lambda) \right) &= (sgn(d)\infty, sgn(-d)\infty), \\ \lim_{\lambda \to 0^-} \left( \widetilde{x}(\lambda), \widetilde{y}(\lambda) \right) &= (sgn(d)\infty, sgn(d)\infty), \\ \lim_{\lambda \to \infty} \left( \widetilde{x}(\lambda), \widetilde{y}(\lambda) \right) &= (-\infty, \infty), \end{split}$$

S. Y. Huang and S. S. Cheng

$$\widetilde{x}'(\lambda) = -2\frac{\lambda^3 + d}{\lambda^3} \text{ and } \widetilde{y}'(\lambda) = 2\frac{\lambda^3 + d}{\lambda^2} \text{ for } \lambda \neq 0.$$
 (17)

For  $\lambda \neq -d^{1/3}$ , we further have

$$\frac{d\tilde{y}}{d\tilde{x}}(\lambda) = -\lambda \text{ and } \frac{d^2\tilde{y}}{d\tilde{x}^2}(\lambda) = \frac{\lambda^3}{2(\lambda^3 + d)}.$$
(18)

In view of (17),  $\tilde{x}(\lambda)$  is strictly increasing on  $(-d^{1/3}, 0)$  and strictly decreasing on  $(-\infty, -d^{1/3}) \cup (0, \infty)$ , and  $\tilde{y}(\lambda)$  is strictly increasing on  $(-d^{1/3}, \infty)$  and strictly decreasing on  $(-\infty, -d^{1/3})$ . We can see that the curve S is composed of two pieces  $S_1$ and  $S_2$  restricted respectively to  $(-\infty, 0)$  and  $(0, \infty)$ . We can further see that the curve  $S_1$  is composed of  $S_{11}$  and  $S_{12}$  restricted respectively to  $(-\infty, -d^{1/3}]$  and  $(-d^{1/3}, \infty)$ .  $S_{11}$  is the graph of a function  $y = S_{11}(x)$  which is strictly increasing, strictly convex, and smooth over  $[3d^{1/3}, \infty)$  (see Figure 3(a));  $S_{12}$  is the graph of a function  $y = S_{12}(x)$ which is strictly increasing, strictly concave, and smooth over  $(3d^{1/3}, \infty)$  (see Figure 3(a)); and  $S_2$  is the graph of a function  $y = S_2(x)$  which is strictly decreasing, strictly convex, and smooth over **R** (see Figure 3(b)). We have

$$S_{11}^{(v)}(3d^{1/3}) = S_{12}^{(v)}((3d^{1/3})^+), \ v = 1, 2.$$

Furthermore,  $S_{11} \sim H_{+\infty}$ ,  $S_{12} \sim H_{+\infty}$  and  $S_2 \sim H_{-\infty}$  by Lemma 2.3 and (18). We have the following lemma.

LEMMA 3.1. Assume that d > 0. Let the functions  $\tilde{x}(\lambda)$  and  $\tilde{y}(\lambda)$  be defined by (16). The curve  $S_1$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda < 0$ , and curve  $S_2$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda > 0$ . Then the curve  $S_1$  lies in the first quadrant, and the curve  $S_2$  does not pass through the first quadrant.

PROOF. In view of (16), we may observe that  $\tilde{x}(\lambda) > 0$  and  $\tilde{y}(\lambda) > 0$  for  $\lambda < 0$ . It follows that the curve  $S_1$  lies in the first quadrant. We further observe that  $\tilde{x}(\lambda) = 0$  if, and only if,  $\lambda = (d/2)^{1/3}$ , and that  $\tilde{y}(\lambda) = 0$  if, and only if,  $\lambda = (2d)^{1/3}$ . Then  $\tilde{x}((2d)^{1/3}) < 0$  and  $\tilde{y}((d/2)^{1/3}) < 0$ . Since  $S_2$  is strictly decreasing, we can see that any point in the first quadrant does not lie on the curve  $S_2$ . The proof is complete.

By Lemma 3.1, the graph  $S_2$  cannot intersect with the graph  $S_1$ . By Theorems 3.11 and 3.17 in [3], we can see that the dual set of order 1 of  $S_1$  is  $\mathbf{R}^2 \setminus (\underline{\wedge}(S_{11}\chi_{(0,\infty)}) \oplus \overline{\vee}(S_{12}))$ , the dual set of order 2 of  $S_1$  is

$$\{(x, y) \in \mathbf{R}^2 : x > 3d^{1/3} \text{ and } y = S_{1i}(x) \text{ for some } i = 1, 2\}$$

and the dual set of order 3 of  $S_1$  is  $\wedge(S_{11}\chi_{(0,\infty)}) \oplus \vee(S_{12})$  (see Figure 3(a)). By Theorem 3.20 in [3], the dual set of order 0 of  $S_2$  is  $\vee(S_2)$ , the dual set of order 1 of  $S_2$  is  $\{(x, y) \in \mathbf{R}^2 : y = S_2(x)\}$ , and the dual set of order 2 of  $S_2$  is  $\wedge(S_2)$  (see Figure 3(b))



Figure 3

By Theorem 2.2, we note that for any  $i, j \ge 0$  with  $i + j \le 3$ ,  $(\tilde{x}, \tilde{y}) \in \Omega_{ij}(d)$  if, and only if  $(\tilde{x}, \tilde{y})$  is the dual point of order j of  $S_1$  and is the dual point of order i of  $S_2$ . So we have the following theorem.

THEOREM 3.2. Assume that d > 0. Let  $\tilde{x}(\lambda)$  and  $\tilde{y}(\lambda)$  be defined by (16). Then

$$\Omega_{01}(d) = \lor(S_3) \setminus \left( \underline{\land}(S_1 \chi_{(3d^{1/3},\infty)}) \oplus \overline{\lor}(S_2) \right), \tag{19}$$

$$\Omega_{11}(d) = \{(x, y) \in \mathbf{R}^2 : y = S_3(x)\},$$
(20)

$$\Omega_{02}(d) = \{(x, y) \in \mathbf{R}^2 : y = S_1(x) \text{ or } y = S_2(x)\},$$
(21)

$$\Omega_{21}(d) = \wedge(S_3),\tag{22}$$

and

$$\Omega_{03}(d) = \wedge (S_1 \chi_{(3d^{1/3},\infty)}) \oplus \lor (S_2)$$

$$\tag{23}$$

where the curve  $S_1$  is described by  $(\tilde{x}(\lambda), \tilde{y}(\lambda))$  for  $\lambda \leq -d^{1/3}$ ,  $S_2$  is described by  $(\tilde{x}(\lambda), \tilde{y}(\lambda))$  for  $-d^{1/3} < \lambda < 0$  and  $S_2$  is described by  $(\tilde{x}(\lambda), \tilde{y}(\lambda))$  for  $\lambda > 0$ . See Figure 4.



Figure 4

# 4 Main Results

We recall the equation (8). Let

$$\Omega(\tau_1, \tau_2) = \left\{ (x, y) \in \mathbf{R}^2 : (8) \text{ has no real roots} \right\}$$

for  $\tau_1, \tau_2 \geq 0$ . We apply the Cheng-Lin envelope method to find the set  $\Omega(\tau_1, \tau_2)$  for  $\tau_1, \tau_2 \geq 0$ . For each  $\lambda \in \mathbf{R}$ , let  $L_{\lambda}$  be the straight line in the plane defined by

$$L_{\lambda}: x\lambda e^{-\lambda\tau_1} + ye^{-\lambda\tau_2} = -\lambda^2.$$
<sup>(24)</sup>

Note that  $L_{\lambda}$  defined by (24) is of the form (9) and

$$\alpha'(\lambda)\beta(\lambda) - \alpha(\lambda)\beta'(\lambda) = e^{-\lambda(\tau_1 + \tau_2)}(1 + (\tau_2 - \tau_1)\lambda)$$
(25)

for  $\lambda \in \mathbf{R}$ . In view of (25), we may consider the following two cases:  $\tau_1 = \tau_2$  and  $\tau_1 \neq \tau_2$ .

#### 4.1 The case $\tau_1 = \tau_2$

From (25),  $\alpha'(\lambda)\beta(\lambda) - \alpha(\lambda)\beta'(\lambda) \neq 0$  for  $\lambda \in \mathbf{R}$ . From (10), we let C be the curve defined by the parametric functions

$$x(\lambda) = \left(-\tau_1 \lambda^2 + 2\lambda\right) e^{\lambda \tau_1} \text{ and } y(\lambda) = \left(\tau_1 \lambda^3 + \lambda^2\right) e^{\lambda \tau_1} \text{ for } \lambda \in \mathbf{R}.$$
 (26)

By Theorem 2.1, C is the envelope of the family  $\{L_{\lambda} : \lambda \in \mathbf{R}\}$  where  $L_{\lambda}$  is defined by (24). We have

$$(x(0), y(0)) = (0, 0),$$
  
$$\lim_{\lambda \to -\infty} (x(\lambda), y(\lambda)) = (0, 0), \quad \lim_{\lambda \to \infty} (x(\lambda), y(\lambda)) = (-\infty, \infty),$$
  
$$x'(\lambda) = -e^{\lambda \tau_1} \left(\tau_1^2 \lambda^2 + 4\tau_1 \lambda + 2\right) \text{ and } y'(\lambda) = \lambda e^{\lambda \tau_1} \left(\tau_1^2 \lambda^2 + 4\tau_1 \lambda + 2\right)$$

for  $\lambda \in \mathbf{R}$ . Furthermore,

$$\frac{y'(\lambda)}{x'(\lambda)} = -\lambda \text{ and } \frac{\frac{d}{d\lambda} \left(\frac{y'(\lambda)}{x'(\lambda)}\right)}{x'(\lambda)} = \frac{e^{-\tau_1 \lambda}}{\tau_1^2 \lambda^2 + 4\tau_1 \lambda + 2}$$
(27)

for  $\lambda \neq \lambda_1$  and  $\lambda \neq \lambda_2$  where

$$\lambda_1 = \frac{-2 - \sqrt{2}}{\tau_1}$$
 and  $\lambda_2 = \frac{-2 + \sqrt{2}}{\tau_1}$ .

Then x is strictly increasing on  $(\lambda_1, \lambda_2)$  and strictly decreasing on  $(-\infty, \lambda_1) \cup (\lambda_2, \infty)$ , and y is strictly increasing on  $(\lambda_1, \lambda_2) \cup (0, \infty)$  and strictly decreasing on  $(-\infty, \lambda_1) \cup (\lambda_2, 0)$ . We can see that C is composed of three pieces  $C_1$ ,  $C_2$  and  $C_3$  restricted respectively to  $(-\infty, \lambda_1]$ ,  $(\lambda_1, \lambda_2]$  and  $(\lambda_2, \infty)$ .  $C_1$  is the graph of a function  $y = C_1(x)$ which is strictly increasing, strictly convex, and smooth over  $[x(\lambda_1), 0)$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly concave and smooth over  $(x(\lambda_1), x(\lambda_2)]$ ; and  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly convex and smooth over  $(-\infty, x(\lambda_2))$ . See Figure 5. We have

$$C_1^{(v)}(x(\lambda_1)) = C_2^{(v)}(x(\lambda_1)^+)$$
 and  $C_2^{(v)}(x(\lambda_2)) = C_3^{(v)}(x(\lambda_2)^-), v = 1, 2.$ 

Furthermore,  $C_3 \ H_{-\infty}$  by Lemma 2.3 and (27). In view of Theorem (2.2),  $\Omega(\tau_1, \tau_1)$  is the intersection of dual sets of order 0 of  $C_1$ ,  $C_2$ , and  $C_3$ . By Theorem 3.7 in [3], the dual set of order 0 of  $C_1$  is

$$\lor (L_{\lambda_1}) \oplus \lor (C_1) \cup \{(0, y) : y \ge 0\} \cup \{\land (L_{\lambda_1}\chi_{[0, \infty)}) \cup \{(0, y) : y < 0\}\}.$$

See Figure 5(a). By Theorem A.3 in [3], the intersection of dual sets of order 0 of  $C_2$ and  $C_3$  is  $\nabla(L_{\lambda_1}) \oplus \vee(C_3)$ . See Figure 5(b). So we have  $\Omega(\tau_1, \tau_1) = \vee(C_3\chi_{(-\infty,0]})$ . See Figure 5(c).



Figure 5: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.7 and A.5) to yield (c).

THEOREM 4.1. Assume that  $\tau_1 = \tau_2$ . Let  $x(\lambda)$  and  $y(\lambda)$  be defined by (26). Then the equation (8) has no real roots if, and only if,  $(x, y) \in \lor(C)$  where the curve C is described by  $(x(\lambda), y(\lambda))$  for  $\lambda \ge 0$ .

## 4.2 The case $\tau_1 \neq \tau_2$

Let  $\lambda_* = 1/(\tau_1 - \tau_2)$ . From (10), we let C be the curve defined by the parametric functions

$$x(\lambda) = -\frac{\tau_2 \lambda + 2}{1 + (\tau_2 - \tau_1)\lambda} \lambda e^{\lambda \tau_1} \text{ and } y(\lambda) = \frac{\tau_1 \lambda^3 + \lambda^2}{1 + (\tau_2 - \tau_1)\lambda} e^{\lambda \tau_2}$$
(28)

for  $\lambda \in \mathbf{R} \setminus \{\lambda_*\}$ . We have

$$(x(0), y(0)) = (0, 0),$$
$$\lim_{\lambda \to -\infty} (x(\lambda), y(\lambda)) = \begin{cases} (0, 0) & \text{if } \tau_1 \tau_2 \neq 0\\ (\infty, 0) & \text{if } \tau_2 > \tau_1 = 0\\ (0, -\infty) & \text{if } \tau_1 > \tau_2 = 0 \end{cases}$$

 $\lambda$ 

$$\lim_{\lambda \to \infty} (x(\lambda), y(\lambda)) = \begin{cases} (-\infty, \infty) & \text{if } \tau_2 \ge \tau_1 > 0\\ (-\infty, \infty) & \text{if } \tau_2 > \tau_1 = 0\\ (\infty, -\infty) & \text{if } \tau_1 > \tau_2 > 0\\ (\infty, -\infty) & \text{if } \tau_1 > \tau_2 = 0 \end{cases}$$
$$\lim_{\lambda \to \lambda_*^-} (x(\lambda), y(\lambda)) = \begin{cases} (\infty, \infty) & \text{if } \tau_1 < \tau_2 < 2\tau_1\\ (-\infty, -\infty) & \text{if } 2\tau_1 < \tau_2\\ (-\infty, \infty) & \text{if } \tau_2 < \tau_1 \end{cases},$$

and

$$\lim_{\lambda \to \lambda_*^+} (x(\lambda), y(\lambda)) = \begin{cases} (-\infty, -\infty) & \text{if } \tau_1 < \tau_2 < 2\tau_1 \\ (\infty, \infty) & \text{if } 2\tau_1 < \tau_2 \\ (\infty, -\infty) & \text{if } \tau_2 < \tau_1 \end{cases}.$$

We note that

$$x'(\lambda) = \frac{-e^{\lambda \tau_1} g(\lambda)}{\left(1 + (\tau_2 - \tau_1)\lambda\right)^2} \text{ and } y'(\lambda) = \frac{\lambda e^{\lambda \tau_2} g(\lambda)}{\left(1 + (\tau_2 - \tau_1)\lambda\right)^2} \text{ for } \lambda \in \mathbf{R} \setminus \{\lambda_*\}$$
(29)

where

$$g(\lambda) = \tau_1 \tau_2 (\tau_2 - \tau_1) \lambda^3 + (\tau_2^2 - 2\tau_1^2 + 2\tau_1 \tau_2) \lambda^2 + 2(\tau_1 + \tau_2) \lambda + 2.$$
(30)

We observe that

$$g(\lambda_*) = \frac{2\tau_1 - \tau_2}{\tau_1 - \tau_2}.$$
(31)

Let  $\Sigma(\tau_1, \tau_2) = \{\lambda \in \mathbf{R} : g(\lambda) = 0\}$ . Then

$$\frac{y'(\lambda)}{x'(\lambda)} = -\lambda e^{(\tau_2 - \tau_1)\lambda} \text{ and } \frac{\frac{d}{d\lambda} \left(\frac{y'(\lambda)}{x'(\lambda)}\right)}{x'(\lambda)} = \frac{e^{(\tau_2 - 2\tau_1)\lambda} \left(1 + (\tau_2 - \tau_1)\lambda\right)^3}{g(\lambda)}$$
(32)

for  $\lambda \in \mathbf{R} \setminus \Sigma(\tau_1, \tau_2)$  and  $\lambda \neq \lambda_*$ . We need to further analyze the function g in order to understand the standard properties of the curve C. Therefore, we consider five cases. Case 1:  $0 = \tau_2 < \tau_1$ ; Case 2:  $0 = \tau_1 < \tau_2$ ; Case 3:  $2\tau_1 = \tau_2$ ; Case 4:  $0 < \tau_1 < \tau_2$  and  $2\tau_1 \neq \tau_2$ ; and Case 5:  $0 < \tau_2 < \tau_1$ .

Case 1. In this case, we note that

$$g(\lambda) = -2\left(\tau_1^2\lambda^2 - \tau_1\lambda - 1\right) \text{ for } \lambda \in \mathbf{R}.$$

Then  $g(\lambda)$  has two real roots  $\lambda_1$  and  $\lambda_2$  where

$$\lambda_1 = \frac{1 - \sqrt{5}}{2\tau_1}$$
 and  $\lambda_2 = \frac{1 + \sqrt{5}}{2\tau_1}$ 

Clearly,  $\lambda_1 < 0 < \lambda_* < \lambda_2$ . In view of (29), we can see that  $x(\lambda)$  is strictly increasing on  $(-\infty, \lambda_1) \cup (\lambda_2, \infty)$  and strictly decreasing on  $(\lambda_1, \lambda_*) \cup (\lambda_*, \lambda_2)$ , and  $y(\lambda)$  is strictly increasing on  $(-\infty, \lambda_1) \cup (0, \lambda_*) \cup (\lambda_*, \lambda_2)$  and strictly decreasing on  $(\lambda_1, 0) \cup (\lambda_2, \infty)$ . We can further see that C is composed of four pieces  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  restricted respectively to  $(-\infty, \lambda_1)$ ,  $[\lambda_1, \lambda_*)$ ,  $(\lambda_*, \lambda_2]$  and  $(\lambda_2, +\infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly concave, and smooth over  $(0, x(\lambda_1))$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly convex and smooth over  $(-\infty, x(\lambda_1)]$ ;  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly decreasing, strictly concave, and smooth over  $[x(\lambda_2), x(\lambda_*))$ ; and  $C_4$  is the graph of a function  $y = C_4(x)$  which is strictly decreasing, strictly convex, and smooth over  $(x(\lambda_2), \infty)$ . See Figure 6. We have

$$C_1^{(v)}(x(\lambda_1)^-) = C_2^{(v)}(x(\lambda_1))$$
 and  $C_3^{(v)}(x(\lambda_2)) = C_4^{(v)}(x(\lambda_2)^+), v = 1, 2.$ 

By Lemma 2.3 and (32),  $C_1 \tilde{H}_{0^+}$  and  $C_4 \tilde{H}_{+\infty}$ . By Lemma 2.4, we can see that the intersection of dual sets of order 0 of  $C_1$  and  $C_2$  is

$$\vee (C_2\chi_{(-\infty,0]}) \cup \{\wedge (C_1) \oplus \underline{\wedge}(L_{\lambda_*})\}.$$

See Figure 6(a). By Theorem A.8 in [3], we can further see that the intersection of dual sets of order 0 of  $C_3$  and  $C_4$  is

$$\vee(C_4) \oplus \overline{\vee}(L_{\lambda_*})$$

See Figure 6(b). By Theorem (2.2),  $\Omega(\tau_1, 0) = \vee(C_2\chi_{(-\infty,0]})$ . See Figure 6(c).



Figure 6: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorem A.8] and Lemma 2.4) to yield (c).

THEOREM 4.2. Assume that  $0 = \tau_2 < \tau_1$ . Let  $x(\lambda)$  and  $y(\lambda)$  be defined by (28). Then  $\Omega(\tau_1, 0) = \lor(C)$  where the curve C is described by  $(x(\lambda), y(\lambda))$  for  $0 \le \lambda < 1/\tau_1$ .

Case 2. In this case, we note that  $\lambda_* < 0$  and

$$g(\lambda) = \tau_2^2 \lambda^2 + 2\tau_2 \lambda + 2 > 0$$
 for  $\lambda \in \mathbf{R}$ .

By (29), we can see that  $x(\lambda)$  is strictly decreasing on  $\mathbf{R} \setminus \{\lambda_*\}$ , and  $y(\lambda)$  is strictly increasing on  $(0, \infty)$  and strictly decreasing on  $(-\infty, \lambda_*) \cup (\lambda_*, 0)$ . We can further see that C is composed of two pieces  $C_1$  and  $C_2$  restricted respectively to  $(-\infty, \lambda_*)$  and  $(\lambda_*, \infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly concave, and smooth over  $\mathbf{R}$ ; and  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly convex and smooth over **R**. By Lemma 2.3 and (32),  $C_2 {}^{\sim} H_{-\infty}$ . We can apply Theorems 3.18 and 3.19 in [3] respectively to see the dual set of order 0 of  $C_1$  and the dual set of order 0 of  $C_2$ . See Figures 7(a) and (b). By Theorem 2.2,  $\Omega(0, \tau_2) = \vee(C_2)$ . See Figure 7(c).



Figure 7: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.18 and 3.19] to yield (c).

THEOREM 4.3. Assume that  $0 = \tau_1 < \tau_2$ . Let  $x(\lambda)$  and  $y(\lambda)$  be defined by (28). Then  $\Omega(0, \tau_2) = \lor(C)$  where the curve C is described by  $(x(\lambda), y(\lambda))$  for  $\lambda > 0$ .

Case 3. In this case, we note that  $x(\lambda) = -2\lambda e^{\lambda \tau_1}$  and  $y(\lambda) = \lambda^2 e^{2\lambda \tau_1}$  for  $\lambda \in \mathbf{R} \setminus \{\lambda_*\}$ . Furthermore, we have

$$\lim_{\lambda \to \lambda_*^-} \left( x(\lambda), y(\lambda) \right) = \left( \frac{2}{\tau_1 e}, \frac{1}{\tau_1^2 e^2} \right).$$

Then the curve C is the graph of a function  $y = C(x) = x^2/4$  for  $x < 2/\tau_1 e$ . Clearly,  $C \tilde{H}_{-\infty}$ . By Theorem 3.11 in [3],  $\Omega(\tau_1, \tau_2) = \vee(C) \oplus \overline{\vee}(L_{\lambda_*})$ . See Figure 8.



Figure 8

THEOREM 4.4. Assume that  $2\tau_1 = \tau_2$ . Then

$$\Omega(\tau_1, \tau_2) = \left\{ (x, y) \in \mathbf{R}^2 : y > \frac{x^2}{2} \text{ and } x < \frac{2}{\tau_1 e} \right\} \\ \cup \left\{ (x, y) \in \mathbf{R}^2 : y \ge \left(\frac{e}{\tau_1} x - \frac{1}{\tau_1^2}\right) e^{-\frac{\tau_2}{\tau_1}} \text{ and } x \ge \frac{2}{\tau_1 e} \right\}.$$

Case 4. Assume that  $0 < \tau_1 < \tau_2$  and and  $2\tau_1 \neq \tau_2$ . Then g is a cubic polynomial with positive leading term. Let

$$A = \frac{\tau_2^2 - 2\tau_1^2 + 2\tau_1\tau_2}{\tau_1\tau_2(\tau_2 - \tau_1)}, \ B = \frac{2(\tau_1 + \tau_2)}{\tau_1\tau_2(\tau_2 - \tau_1)} \text{ and } D = \frac{2}{\tau_1\tau_2(\tau_2 - \tau_1)}.$$
 (33)

Clearly, B > 0 and D > 0. We note that

$$A = \frac{(1+\sqrt{3})\tau_1 + \tau_2}{\tau_1\tau_2(\tau_2 - \tau_1)} \left( (1-\sqrt{3})\tau_1 + \tau_2 \right) > \frac{(1+\sqrt{3})\tau_1 + \tau_2}{\tau_1\tau_2(\tau_2 - \tau_1)} (2-\sqrt{3})\tau_1 > 0.$$

By Lemma 3.1, (A, B) belongs to one of  $\Omega_{01}(D)$ ,  $\Omega_{02}(D)$  and  $\Omega_{03}(D)$ . Therefore, we need to consider three cases. Case 4-1:  $(A, B) \in \Omega_{01}(D)$ ; Case 4-2:  $(A, B) \in \Omega_{02}(D)$ ; and Case 4-3:  $(A, B) \in \Omega_{03}(D)$ .

Case 4-1. In this case, the cubic polynomial

$$\lambda^3 + A\lambda^2 + B\lambda + D = 0$$

has a unique root  $\lambda_1$  with  $\lambda_1 < 0$ . It follows that  $g(\lambda) < 0$  for  $\lambda < \lambda_1$  and  $g(\lambda) > 0$  for  $\lambda > \lambda_1$ . If  $\tau_2 > 2\tau_1$ , by (31), we may see that  $\lambda_1 < \lambda_* < 0$  because of  $g(\lambda_*) > 0$ . Then x is strictly increasing on  $(-\infty, \lambda_1)$  and strictly decreasing on  $(\lambda_1, \lambda_*) \cup (\lambda_*, \infty)$ , and y is strictly increasing on  $(-\infty, \lambda_1) \cup (0, \infty)$  and strictly decreasing on  $(\lambda_1, \lambda_*) \cup (\lambda_*, 0)$ . We may see that C is composed of three pieces  $C_1$ ,  $C_2$  and  $C_3$  restricted respectively to  $(-\infty, \lambda_{\cdot})$ ,  $[\lambda_1, \lambda_*)$  and  $(\lambda_*, \infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly convex, and smooth over  $(0, x(\lambda_1))$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly convex, and smooth over  $(-\infty, x(\lambda_1)]$ ; and  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly convex and smooth over  $(-\infty, \infty)$ . We have

$$C_1^{(v)}(x(\widetilde{\lambda})) = C_2^{(v)}(x(\lambda_1)^-), \ v = 1, 2.$$

By Lemma 2.3 and (32),  $C_3 H_{-\infty}$ . See Figure 9. By Theorem A.5 in [3], the intersection of dual sets of order 0 of  $C_1$  and  $C_2$  is

$$\{\lor(C_1)\oplus\overline{\lor}(L_{\lambda_*})\oplus\overline{\lor}(\Theta_0)\}\cup\{\land(C_2)\oplus\underline{\land}(\Theta_0)\}.$$

See Figure 9(a). By Theorem 3.19 in [3], the dual set of order 0 of  $C_3$  is  $\lor(C_3)$ . See Figure 9(b). Therefore,  $\Omega(\tau_1, \tau_2) = \lor(C_1) \oplus \lor(C_3)$ . See Figure 9(c).



Figure 9: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems A.5 and 3.19]) to yield (c).

If  $2\tau_1 > \tau_2$ , by (31), we may see that  $\lambda_* < \lambda_1 < 0$  because of  $g(\lambda_*) < 0$ . Then x is strictly increasing on  $(-\infty, \lambda_*) \cup (\lambda_*, \widetilde{\lambda})$  and strictly decreasing on  $(\widetilde{\lambda}, \infty)$ , and y is strictly increasing on  $(-\infty, \lambda_*) \cup (\lambda_*, \widetilde{\lambda}) \cup (0, \infty)$  and strictly decreasing on  $(\widetilde{\lambda}, 0)$ . We may see that C is composed of three pieces  $C_1$ ,  $C_2$  and  $C_3$  restricted respectively to  $(-\infty, \lambda_*), (\lambda_*, \widetilde{\lambda})$  and  $[\widetilde{\lambda}, \infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly convex, and smooth over  $(0, \infty)$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly concave, and smooth over  $(-\infty, x(\widetilde{\lambda}))$ ; and  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly convex and smooth over  $(-\infty, \widetilde{\lambda}]$ . We have

$$C_2^{(v)}(x(\tilde{\lambda})^-) = C_3^{(v)}(x(\tilde{\lambda})), \ v = 1, 2.$$

By Lemma 2.3 and (32),  $C_3 H_{-\infty}$ . By Theorems 3.10 and A.8 in [3],  $\Omega(\tau_1, \tau_2) = \vee(C_1) \oplus \vee(C_3)$ . See Figure 10.



Figure 10: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems 3.10 and A.8] to yield (c).

THEOREM 4.5. Assume that  $0 < \tau_1 < \tau_2$  and  $(A, B) \in \Omega_{01}(D)$  where A, B and D are defined by (33). Let  $\lambda_1$  be the root of g defined by (30). Then  $\Omega(\tau_1, \tau_2) = \lor(C_1) \oplus \lor(C_2)$  where the curve  $C_1$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda < \min\{1/(\tau_1 - \tau_2), \lambda_1\}$ , and curve  $C_2$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda > \max\{1/(\tau_1 - \tau_2), \lambda_1\}$ .

Case 4-2. In this case, we may know that the cubic polynomial

$$\lambda^3 + A\lambda^2 + B\lambda + D = 0$$

has exactly two distinct negative roots  $\lambda_1$  and  $\lambda_2$  with  $\lambda_1 < \lambda_2$ . Then either  $g(\lambda) < 0$  for  $\lambda < \lambda_1$  and  $g(\lambda) > 0$  for  $\lambda > \lambda_1$  and  $\lambda \neq \lambda_2$ , or  $g(\lambda) > 0$  for  $\lambda > \lambda_2$  and  $g(\lambda) < 0$  for  $\lambda < \lambda_2$  and  $\lambda \neq \lambda_1$ . See Figure 11.



Figure 11

Assume that  $g(\lambda) < 0$  for  $\lambda < \lambda_1$  and  $g(\lambda) > 0$  for  $\lambda > \lambda_1$  and  $\lambda \neq \lambda_2$ . We may note that  $g'(\lambda_1) \neq 0$  and  $g'(\lambda_2) = 0$ . If  $2\tau_1 < \tau_2$ , we may see that  $\lambda_1 < \lambda_* < 0$ because of  $g(\lambda_*) > 0$ . Then x is strictly increasing on  $(-\infty, \lambda_1)$  and strictly decreasing on  $(\lambda_1, \lambda_*) \cup (\lambda_*, \infty)$ , and y is strictly increasing on  $(-\infty, \lambda_1) \cup (0, \infty)$  and strictly decreasing on  $(\lambda_1, \lambda_*) \cup (\lambda_*, 0)$ . We can see that C is composed of three pieces  $C_1$ ,  $C_2$ , and  $C_3$  restricted respectively to  $(-\infty, \lambda_1)$ ,  $[\lambda_1, \lambda_*)$  and  $(\lambda_*, \infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly convex and smooth over  $(0, x(\lambda_1))$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly concave and smooth over  $(-\infty, x(\lambda_1)]$ ; and  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly convex and smooth over  $(-\infty, \infty)$ . We have

$$C_1^{(v)}(x(\lambda_1)^-) = C_2^{(v)}(x(\lambda_1))$$
 for  $v = 1, 2$ .

By Lemma 2.3 and (32),  $C_3 \ H_{-\infty}$ . The graph of C is similar to the graph described in Figure 9. So  $\Omega(\tau_1, \tau_2) = \vee(C_1) \oplus \vee(C_3)$ .

If  $2\tau_1 > \tau_2$ , we may see that  $\lambda_* < \lambda_1 < 0$  because of  $g(\lambda_*) < 0$ . Then x is strictly increasing on  $(-\infty, \lambda_*) \cup (\lambda_*, \lambda_1)$  and strictly decreasing on  $(\lambda_1, \infty)$ , and y is strictly increasing on  $(-\infty, \lambda_*) \cup (\lambda_*, \lambda_1) \cup (0, \infty)$  and strictly decreasing on  $(\lambda_1, 0)$ . We may see that C is composed of three pieces  $C_1$ ,  $C_2$ , and  $C_3$  restricted respectively to  $(-\infty, \lambda_*)$ ,  $(\lambda_*, \lambda_1]$ , and  $(\lambda_1, \infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$ which is strictly increasing, strictly convex, and smooth over  $(0, \infty)$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly concave, and smooth over  $(-\infty, x(\lambda_1)]$ ; and  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly convex and smooth over  $(-\infty, \infty)$ . We have

$$C_2^{(v)}(x(\lambda_1)^-) = C_3^{(v)}(x(\lambda_1))$$
 for  $v = 1, 2$ .

By Lemma 2.3 and (32),  $C_3 \ H_{-\infty}$ . The graph of C is similar to the graph described in Figure 10. So  $\Omega(\tau_1, \tau_2) = \lor(C_1) \oplus \lor(C_3)$ .

Assume that  $g(\lambda) > 0$  for  $\lambda > \lambda_2$  and  $g(\lambda) < 0$  for  $\lambda < \lambda_2$  and  $\lambda \neq \lambda_1$ . By discussions similar to those above, we may obtain the same conclusion,  $\Omega(\tau_1, \tau_2) = \bigvee(C_1) \oplus \bigvee(C_3)$ .

THEOREM 4.6. Assume that  $0 < \tau_1 < \tau_2$  and  $(A, B) \in \Omega_{02}(D)$  where A, Band D are defined by (33). Let  $\lambda_1$  be the root of g defined by (30) with  $g'(\lambda_1) \neq 0$ . Then  $\Omega(\tau_1, \tau_2) = \lor(C_1) \oplus \lor(C_3)$ . where curve  $C_1$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda < \min\{1/(\tau_1 - \tau_2), \lambda_1\}$  and curve  $C_2$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda > \max\{1/(\tau_1 - \tau_2), \lambda_1\}$ .

Case 4-3. In this case, we may know that the cubic polynomial

$$\lambda^3 + A\lambda^2 + B\lambda + D = 0$$

has three distinct negative roots  $\lambda_1$ ,  $\lambda_2$  and  $\lambda_3$  with  $\lambda_1 < \lambda_2 < \lambda_3$ . Then  $g(\lambda) > 0$  on  $(\lambda_1, \lambda_2) \cup (\lambda_3, \infty)$  and  $g(\lambda) < 0$  on  $(-\infty, \lambda_1) \cup (\lambda_2, \lambda_3)$ . We note that

$$g'(\lambda) = 3\tau_1\tau_2(\tau_2 - \tau_1)\lambda^2 + 2(\tau_2^2 - 2\tau_1^2 + 2\tau_1\tau_2)\lambda + 2(\tau_1 + \tau_2)$$

for  $\lambda \in \mathbf{R}$ . Since  $g(\lambda_2) = g(\lambda_3) = 0$ , by the Mean Value Theorem, we may see that  $g'(\lambda)$  has a real roots  $\lambda_+$  such that  $\lambda_2 < \lambda_+ < \lambda_3$  and

$$\lambda_{+} = \frac{-(\tau_{2}^{2} - 2\tau_{1}^{2} + 2\tau_{1}\tau_{2}) + \sqrt{(2\tau_{1} - \tau_{2})(2\tau_{1}^{3} - \tau_{2}^{3})}}{3\tau_{1}\tau_{2}(\tau_{2} - \tau_{1})}.$$

We observe that

$$(2\tau_1 - \tau_2) \left(\tau_1 + \tau_2\right)^2 = 2\tau_1^3 - \tau_2^3 + 3\tau_1^2\tau_2.$$
(34)

If  $2\tau_1 < \tau_2$ , by (31), we may see that  $g(\lambda_*) > 0$ . Thus either  $\lambda_1 < \lambda_* < \lambda_2$  or  $\lambda_3 < \lambda_* < 0$ . We claim that the former case  $\lambda_1 < \lambda_* < \lambda_2$  holds. It is sufficient to prove that  $\lambda_+ > \lambda_*$ . In view of (34), we may see that  $(2\tau_1 - \tau_2)^2 (\tau_1 + \tau_2)^2 < (2\tau_1 - \tau_2) (2\tau_1^3 - \tau_2^3)$ , which implies that

$$-\left(\tau_{2}^{2}-2\tau_{1}^{2}-\tau_{1}\tau_{2}\right)+\sqrt{\left(2\tau_{1}-\tau_{2}\right)\left(2\tau_{1}^{3}-\tau_{2}^{3}\right)}$$
  
>  $\left(2\tau_{1}-\tau_{2}\right)\left(\tau_{1}+\tau_{2}\right)+\sqrt{\left(2\tau_{1}-\tau_{2}\right)^{2}\left(\tau_{1}+\tau_{2}\right)^{2}}$   
= 0.

Then

$$\lambda_{+} = \frac{-(\tau_{2}^{2} - 2\tau_{1}^{2} + 2\tau_{1}\tau_{2}) + \sqrt{(2\tau_{1} - \tau_{2})(2\tau_{1}^{3} - \tau_{2}^{3})}}{3\tau_{1}\tau_{2}(\tau_{2} - \tau_{1})} > \frac{1}{\tau_{1} - \tau_{2}} = \lambda_{*}$$

We have verified our assertion. We may now see that C is composed of five pieces  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  and  $C_5$  restricted respectively to  $(-\infty, \lambda_1)$ ,  $[\lambda_1, \lambda_*)$ ,  $(\lambda_*, \lambda_2)$ ,  $[\lambda_2, \lambda_3]$  and

 $(\lambda_3, \infty)$ .  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly convex, and smooth over  $(0, x(\lambda_1))$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly concave, and smooth over  $(-\infty, x(\lambda_1)]$ ;  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly increasing, strictly convex and smooth over  $(x(\lambda_2), \infty)$ ;  $C_4$  is the graph of a function  $y = C_4(x)$  which is strictly increasing, strictly concave, and smooth over  $[x(\lambda_2), x(\lambda_3)]$ ; and  $C_5$  is the graph of a function  $y = C_5(x)$ which is strictly convex and smooth over  $(-\infty, x(\lambda_3)]$ . We have

$$C_2^{(v)}(x(\lambda_1)) = C_3^{(v)}(x(\lambda_1)^-),$$
  

$$C_3^{(v)}(x(\lambda_2)^+) = C_4^{(v)}(x(\lambda_2)) \text{ and } C_4^{(v)}(x(\lambda_3)) = C_5^{(v)}(x(\lambda_3)^-)$$

for v = 1, 2. By Lemma 2.3 and (32),  $C_5 \sim H_{-\infty}$ . By Theorem A.5 in [3], the intersection of dual sets of order 0 of  $C_1$  and  $C_2$  can be seen in Figure 12(a). By Theorem A.16 in [3], the intersection of dual sets of order 0 of  $C_3$ ,  $C_4$  and  $C_5$  can be seen in Figure 12(b). So  $\Omega(\tau_1, \tau_2) = \vee(C_1) \oplus \vee(C_3) \oplus \vee(C_5)$ . See Figure 12(c).



Figure 12: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorems A.5 and A.16]) to yield (c).

If  $2\tau_1 > \tau_2$ , by (31), we may see that  $g(\lambda_*) < 0$ . Thus either  $\lambda_2 < \lambda_* < \lambda_3$  or  $\lambda_* < \lambda_1$ . We claim that  $\lambda_2 < \lambda_* < \lambda_3$ . It is sufficient to prove that  $\lambda_+ < \lambda_*$ . In view of (34), we can see that  $(2\tau_1 - \tau_2)^2 (\tau_1 + \tau_2)^2 > (2\tau_1 - \tau_2) (2\tau_1^3 - \tau_2^3)$ , which implies that

$$-\left(\tau_2^2 - 2\tau_1^2 - \tau_1\tau_2\right) + \sqrt{\left(2\tau_1 - \tau_2\right)\left(2\tau_1^3 - \tau_2^3\right)} < 0$$

Then

$$\lambda_{+} = \frac{-(\tau_{2}^{2} - 2\tau_{1}^{2} + 2\tau_{1}\tau_{2}) + \sqrt{(2\tau_{1} - \tau_{2})(2\tau_{1}^{3} - \tau_{2}^{3})}}{3\tau_{1}\tau_{2}(\tau_{2} - \tau_{1})} < \frac{1}{\tau_{1} - \tau_{2}} = \lambda_{*}.$$

We have verified our assertion. By analyzing the monotonicity of x and y, we may see that C is composed of five pieces  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  and  $C_5$  restricted respectively to  $(-\infty, \lambda_1)$ ,  $[\lambda_1, \lambda_2]$ ,  $(\lambda_2, \lambda_*)$ ,  $(\lambda_*, \lambda_3]$  and  $(\lambda_3, \infty)$ . Then  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly convex, and smooth over  $(0, x(\lambda_1))$ ;  $C_2$ is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly concave, and smooth over  $[x(\lambda_2), x(\lambda_1)]$ ;  $C_3$  is the graph of a function  $y = C_3(x)$  which is strictly increasing, strictly convex and smooth over  $(x(\lambda_2), \infty)$ ;  $C_4$  is the graph of a function  $y = C_4(x)$  which is strictly increasing, strictly concave, and smooth over  $(-\infty, x(\lambda_3)]$ ; and  $C_5$  is the graph of a function  $y = C_5(x)$  which is strictly convex and smooth over  $(-\infty, x(\lambda_3))$ . We have

$$C_1^{(v)}(x(\lambda_1)^-) = C_2^{(v)}(x(\lambda_1)),$$
  

$$C_2^{(v)}(x(\lambda_2)) = C_3^{(v)}(x(\lambda_2)^+) \text{ and } C_4^{(v)}(x(\lambda_3)) = C_5^{(v)}(x(\lambda_3)^-),$$

for v = 1, 2. By Lemma 2.3 and (32),  $C_5 H_{-\infty}$ . By Theorem A.8 in [3] and Lemma 2.5,  $\Omega(\tau_1, \tau_2) = \vee(C_1) \oplus \vee(C_3) \oplus \vee(C_5)$ . See Figure 13(c).



Figure 13: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorem A.8] and Lemma 2.5) to yield (c).

THEOREM 4.7. Assume that  $0 < \tau_1 < \tau_2$  and  $(A, B) \in \Omega_{03}(D)$  where A, Band D are defined by (33). Let  $\lambda_1, \lambda_2$  and  $\lambda_3$  be the roots of g defined by (30). Then  $\Omega(\tau_1, \tau_2) = \lor(C_1) \oplus \lor(C_3) \oplus \lor(C_5)$  where curve  $C_1$  is described by  $(x(\lambda), y(\lambda))$ for  $\lambda < \lambda_1$ , curve  $C_2$  is described by  $(x(\lambda), y(\lambda))$  for  $\min\{1/(\tau_1 - \tau_2), \lambda_2\} < \lambda < \max\{1/(\tau_1 - \tau_2), \lambda_2\}$ , and curve  $C_3$  is described by  $(x(\lambda), y(\lambda))$  for  $\lambda > \lambda_3$ .

Case 5. Assume that  $0 < \tau_2 < \tau_1$ . Let G be a function defined by  $G(\lambda) = g(-\lambda)$ . We can see that G has exactly m positive roots if, and only if g has exactly m negative roots. We recall the numbers A, B and D defined by 33. Then

$$G(\lambda) = \tau_1 \tau_2 (\tau_1 - \tau_2) \left( \lambda^3 - A \lambda^2 + B \lambda - D \right).$$

We note that B < 0 and -D > 0. Then  $(-A, B) \in \Omega_{01}(-D)$  or  $(-A, B) \in \Omega_{11}(-D)$ or  $(-A, B) \in \Omega_{21}(-D)$ . If  $(-A, B) \in \Omega_{01}(-D) \cup \Omega_{11}(-D)$ , then G has a negative root  $\lambda_1$ , and there exists  $\lambda_2 > 0$  such that  $G(\lambda) < 0$  for  $\lambda < \lambda_1$  and  $G(\lambda) > 0$  for  $\lambda > \lambda_1$ and  $\lambda \neq \lambda_2$ . See Figure 14.

It implies that  $g(\lambda) < 0$  for  $\lambda > -\lambda_1$  and  $g(\lambda) > 0$  for  $\lambda < -\lambda_1$  and  $\lambda \neq -\lambda_2$ . Then x is strictly decreasing in  $(-\infty, 0]$ . It is impossible that

$$x(-\infty) = 0 > x(0) = 0.$$



Figure 14

So we may assume that  $(-A, B) \in \Omega_{21}(-D)$ . Then g has three real roots  $\lambda_1$ ,  $\lambda_2$  and  $\lambda_3$  with  $\lambda_1 < \lambda_2 < 0 < \lambda_3$ , and  $g(\lambda) > 0$  on  $(-\infty, \lambda_1) \cup (\lambda_2, \lambda_*) \cup (\lambda_*, \lambda_3)$  and  $g(\lambda) < 0$  on  $(\lambda_1, \lambda_2) \cup (\lambda_3, \infty)$ . In view of (31), we can see that  $\lambda_1 < \lambda_2 < 0 < \lambda_* < \lambda_3$ . By analyzing the monotonicity of x and y, we may see that C is composed of five pieces  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ , and  $C_5$  restricted respectively to  $(-\infty, \lambda_1)$ ,  $[\lambda_1, \lambda_2]$ ,  $(\lambda_2, \lambda_*)$ ,  $(\lambda_*, \lambda_3]$  and  $(\lambda_3, \infty)$ .  $C_1$  is the graph of a function  $y = C_1(x)$  which is strictly increasing, strictly convex, and smooth over  $(x(\lambda_1), 0)$ ;  $C_2$  is the graph of a function  $y = C_2(x)$  which is strictly increasing, strictly convex, and smooth over  $[x(\lambda_1), x(\lambda_2)]$ ;  $C_3$  is the graph of a function  $y = C_4(x)$  which is strictly decreasing, strictly concave, and smooth over  $[x(\lambda_3), \infty)$ ; and  $C_5$  is the graph of a function  $y = C_5(x)$  which is strictly convex, and smooth over  $(x(\lambda_3), \infty)$ . We have

$$C_1^{(v)}(x(\lambda_1)^+) = C_2^{(v)}(x(\lambda_1))$$
$$C_2^{(v)}(x(\lambda_2)) = C_3^{(v)}(x(\lambda_2)^-) \text{ and } C_4^{(v)}(x(\lambda_1)) = C_5^{(v)}(x(\lambda_1)^+)$$

for v = 1, 2. By Lemma 2.3 and (32),  $C_5 \tilde{H}_{-\infty}$ . By Theorem A.8 in [3] and Lemma 2.5,  $\Omega(\tau_1, \tau_2) = \vee(C_3\chi_{(-\infty,0]})$ . See Figure 15.

THEOREM 4.8. Assume that  $0 < \tau_2 < \tau_1$ . Let  $\lambda_1$  be the positive root of g defined by (30). Then  $\Omega(\tau_1, \tau_2) = \vee(D)$ . where the curve C is described by  $(x(\lambda), y(\lambda))$  for  $0 \leq \lambda < 1/(\tau_1 - \tau_2)$ .

## 5 Examples

We illustrate our results with two examples.

EXAMPLE 5.1. Consider the equation

$$\lambda^2 + a\lambda e^{-\lambda} + be^{-3\lambda} = 0 \tag{35}$$



Figure 15: Intersection of the dual sets of order 0 in (a) and (b) (see [1, Theorem A,8] and Lemma 2.5) to yield (c).

where  $a, b \in \mathbf{R}$ . In view of (33), A = 13/6, B = 4/3 and D = 1/3. Let curve  $S_1$  be described by  $(\tilde{x}(\lambda), \tilde{y}(\lambda))$  for  $\lambda < 0$  and curve  $S_2$  by  $(\tilde{x}(\lambda), \tilde{y}(\lambda))$  for  $\lambda > 0$  where

$$\widetilde{x}(\lambda) = -2\lambda + \frac{1}{3\lambda^2}$$
 and  $\widetilde{y}(\lambda) = \lambda^2 - \frac{2}{3\lambda}$ 

We note that

$$\widetilde{x}(-D^{1/3}) = 3^{2/3}$$
 and  $\widetilde{y}(-D^{1/3}) = 3^{1/3}$ .

Then  $A > \widetilde{x}(-D^{1/3})$  and  $B < \widetilde{y}(-D^{1/3})$ . See Figure 16. By Theorem 3.2, we may see that  $(A, B) \in \Omega_{01}(D)$ . We note that

$$g(\lambda) = 6\lambda^3 + 13\lambda^2 + 8\lambda + 2$$
 for  $\lambda \in \mathbf{R}$ .

Then g has the unique negative root  $\lambda_1 \approx -1.3719$ . Let curve  $C_1$  be described by  $(x(\lambda), y(\lambda))$  for  $\lambda < \lambda_1$ , and curve  $C_2$  by  $(x(\lambda), y(\lambda))$  for  $\lambda > -0.5$  where

$$x(\lambda) = -\frac{3\lambda + 2}{1 + 2\lambda}\lambda e^{\lambda} \text{ and } y(\lambda) = \frac{\lambda^3 + \lambda^2}{1 + 2\lambda}e^{3\lambda}.$$

By Theorem 4.5,  $\Omega(1,3) = \vee(C_1) \oplus \vee(C_2)$ . See Figure 17. So  $(a,b) \in \vee(C_1) \oplus \vee(C_2)$  if, and only if, the equation (35) has no real roots. As an application, we see that  $(a,b) \in \vee(C_1) \oplus \vee(C_2)$  if, and only if, the all solutions of delay differential equation

$$N''(t) + aN'(t-1) + bN(t-3) = 0$$

are oscillatory. On the other hand, we may also consider the oscillation of the impulsive delay differential equation

$$x''(t) + ax'(t-1) + bx(t-3) = 0, t \in [0,\infty) \setminus \Gamma,$$
(36)

$$x(t_k^+) = a_k x(t_k), \, k \in \mathbf{N},\tag{37}$$

$$x'(t_k^+) = a_k x'(t_k), \ k \in \mathbf{N},\tag{38}$$

where  $a_k > 0$  for  $k \in \mathbf{N}$ . Indeed, we assume that  $A(t-1,t) = \alpha_1$  and  $A(t-3,t) = \alpha_2$  for  $t \ge 0$ . By Lemma 1.1, all solutions of system (36)-(38) are oscillatory if, and only if,  $(a/\alpha_1, b/\alpha_2) \in \lor(C_1) \oplus \lor(C_2)$ .



Figure 16

Figure 17

EXAMPLE 5.2. Consider the equation

$$\lambda^2 + a\lambda e^{-2\tau\lambda} + be^{-\tau\lambda} = 0 \tag{39}$$

where  $a, b \in \mathbf{R}$ . Let the curve C be described by  $(x(\lambda), y(\lambda))$  for  $0 \le \lambda < 1/\tau$  where

$$x(\lambda) = -\frac{\tau\lambda + 2}{1 - \tau\lambda}\lambda e^{2\lambda\tau} \text{ and } y(\lambda) = \frac{2\tau\lambda^3 + \lambda^2}{1 - \tau\lambda}e^{\lambda\tau}.$$

By Theorem 4.8, we may see that  $(a, b) \in \lor(C)$  if, and only if equation (39) has no real roots. We will give a criterion in order to facilitate determination. Let 0 < k < 1. Let

$$m(k) = \frac{y(\frac{1}{k\tau})}{x(\frac{1}{k\tau})} = \frac{k+2}{-(2k+1)k^2\tau e^{\frac{1}{k}}}.$$

Since C is strictly convex, we may see that the line segment  $L_k(x) = m(k)x$  on  $(x(\frac{1}{k\tau}), 0)$  lies above the curve C. In other words, the point (a, b) satisfies  $x(\frac{1}{k\tau}) < a < 0$  and  $L(a) \leq b$  belongs to  $\lor(C)$ . Therefore, if there exists 0 < k < 1 such that

$$-\frac{2k+1}{(k-1)k\tau}e^{\frac{2}{k}} < a < 0 \text{ and } \frac{-(k+2)}{(2k+1)k^2\tau e^{\frac{1}{k}}}a < b,$$

then equation (39) has no real roots. See Figure 18.

# 6 Appendix

Before proving Lemma 1.1, we need the definition of a solution of impulsive delay differential equation (3)-(5) and some basic concepts. Let  $\Lambda_1$  and  $\Lambda_2$  be two subsets of **R**. We first define two sets

$$PC(\Lambda_1, \Lambda_2) = \{ \varphi : \Lambda_1 \to \Lambda_2 | \varphi \text{ is continuous in each interval } \Lambda_1 \cap (t_k, t_{k+1}], k \in \mathbb{N} \cup \{0\}$$
with discontinuities of the first kind only}

and

$$PC'(\Lambda_1, \Lambda_2) = \{ \varphi \in PC(\Lambda_1, \Lambda_2) | \varphi \text{ is continuously differentiable a.e. in } \Lambda_1 \}$$



Figure 18

DEFINITION 6.1. Let  $\Lambda$  be an interval in  $[0, \infty)$ ,  $T = \inf \Lambda$  and  $r_T = \min\{T - \tau_1, T - \tau_2\}$ . For any  $\phi \in PC([r_T, T], \mathbf{R})$ , a function x defined on  $[r_T, T] \cup \Lambda$  is said to be a solution of system (3)-(5) on  $\Lambda$  satisfying the initial value condition  $x(t) = \phi(t)$  for  $t \in [r_T, T]$  if

- (i)  $x, x' \in PC'(\Lambda, \mathbf{R});$
- (ii) x(t) satisfies (3) a.e. on  $\Lambda$ ; and
- (iii) x(t) satisfies (4) and (5) on  $\Lambda$ .

DEFINITION 6.2. Let a function  $\varphi(t)$  be defined for all sufficiently large t. We say that  $\varphi(t)$  is eventually positive (or negative) if there exists a number T such that  $\varphi(t) > 0$  (respectively  $\varphi(t) < 0$ ) for every  $t \ge T$ . We say that  $\varphi(t)$  is nonoscillatory if  $\varphi(t)$  is eventually positive or eventually negative. Otherwise,  $\varphi(t)$  is called oscillatory.

Proof of Lemma 1.1. Let  $\tau = \max{\{\tau_1, \tau_2\}}$ . Assume that the system (3)-(5) has a nonoscillatory solution N(t). We may assume that N(t) > 0 for  $t \ge -\tau$ . Let y(t) = N(t)/A(0,t) for  $t \ge 0$ . We note that

$$y(t_k^+) = \frac{N(t_k^+)}{A(0, t_k^+)} = \frac{a_k N(t_k)}{a_k A(0, t_k)} = y(t_k)$$

and

$$y'(t_k^+) = \frac{N'(t_k^+)}{A(0,t_k^+)} = \frac{a_k N'(t_k)}{a_k A(0,t_k)} = y'(t_k)$$

for  $k \in \mathbf{N}$ . Then y(t) is a continuously differentiable function on  $[0, \infty)$  and satisfies

$$y''(t) + \frac{a}{\alpha_1} y'(t-\tau_1) + \frac{b}{\alpha_2} y(t-\tau_2)$$
  
=  $\frac{1}{A(0,t)} \left( N''(t) + a \frac{A(t-\tau_1,t)}{\alpha_1} N'(t-\tau_1) + b \frac{A(t-\tau_2,t)}{\alpha_2} N(t-\tau_2) \right)$   
=  $\frac{1}{A(0,t)} \left( N''(t) + a N'(t-\tau_1) + b N(t-\tau_2) \right)$   
=  $0$ 

for  $t \ge 0$ . Since y is not oscillatory, we can see that the equation (6) has a real root. Conversely, assume that  $\lambda_1$  is the real root of equation (6). Let  $N(t) = A(0, t)e^{\lambda_1 t}$  for  $t \ge -\tau$ . Then

$$N(t_k^+) = A(0, t_k^+)e^{\lambda_1 t_k^+} = a_k A(0, t_k)e^{\lambda_1 t_k} = a_k N(t_k)$$

and

$$N'(t_k^+) = A(0, t_k^+)\lambda_1 e^{\lambda_1 t_k^+} = a_k A(0, t_k)\lambda_1 e^{\lambda_1 t_k} = a_k N'(t_k)$$

for  $k \in \mathbf{N}$ . Furthermore,

$$N''(t) + aN'(t - \tau_1) + bN(t - \tau_2)$$
  
=  $A(0,t)e^{\lambda_1 t} \left(\lambda_1^2 + \frac{a}{A(0,t-\tau_1)}\lambda_1 e^{-\lambda_1 \tau_1} + \frac{b}{A(0,t-\tau_2)}e^{-\lambda_1 \tau_2}\right)$   
=  $A(0,t)e^{\lambda_1 t} \left(\lambda_1^2 + \frac{a}{\alpha_1}\lambda_1 e^{-\lambda_1 \tau_1} + \frac{b}{\alpha_2}e^{-\lambda_1 \tau_2}\right)$   
=  $0$ 

for  $t \ge 0$ . So N(t) is a positive solution of system (3)-(5). The proof is complete.

# References

- R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, 2003.
- [2] L. Berezansky, On oscillation of a second order impulsive linear delay differential equation, J. Math. Anal. Appl., 233(1999), 276–300.
- [3] S. S. Cheng and Y. Z. Lin, Dual Sets of Envelopes and Characteristic Regions of Quasi-Polynomials, World Scientific, 2009.
- [4] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
- [5] Z. M. He and W. G. Ge, Oscillation in second order linear delay differential equations with nonlinear impulses, Math. Slovaca, 52(2002), 331–341.
- [6] S. Y. Huang and S. S. Cheng, Absence of positive roots of sextic polynomials, Taiwanese J, Math., 15(2011), 2609–2646.
- [7] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
- [8] W. Luo, J. Luo and L. Debnath, Oscillation of second order quasilinear delay differential equations with impulses, J. Appl. Math. & Computing, 13(2003), 165– 182.

- [9] M. Peng and W. Ge, Oscillation criteria for second order nonlinear differential equations with impulses, Comput. Math. Appl., 39(2000), 217–225.
- [10] J. R. Yan, Oscillation properties of a second order impulsive delay differential equation, Comput. Math. Appl., 47(2004), 253–258.