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Abstract

The aim of the present paper is to give some properties of A-statistical con-
vergence of sequences. We give definition of A-statistical monotonicity, upper
and lower peak points of sequences. The relation between these concepts and
A-statistical monotonicity is investigated. Also, some results given in [11] are
generalized.

1 Introduction and Some Definitions

Statistical convergence of real or complex valued sequences was firstly introduced by
Fast [5] and Steinhaus [16] in the journal Colloquim Math. independently in 1951.
Since then some properties of statistical convergence have been studied in [6, 7, 9, 15].
The idea of this subject depends on asymptotic density of the subset K of natural
numbers N (see [3, 4]).
Let K be a subset of natural numbers N and

K(n) := {k ∈ K : k 6 n}.

Then, the asymptotic density of the set K ⊂ N is defined by

δ(K) := lim
n→∞

1

n
|K(n)|,

if the limit exists. The vertical bars above indicate the cardinality of the set K(n).
A real or complex valued sequence x = (xn) is said to be statistically convergent to

the number l, if for every ε > 0, the set

K(n, ε) = {k : k 6 n and |xk − l| > ε}

has asymptotic density zero, i.e.,

lim
n→∞

1

n
|K(n, ε)| = 0
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250 A-statistical Convergence and A-Statistical Monotonicity

and it is denoted by xn → l(S) or st− limn→∞ xn = l.
Statistically convergence is deeply connected to the strongly Cesàro summability

and uniform summability (see [10]).
LetA = (ank) be a matrix. If the matrixA = (ank) transforms convergent sequences

to convergent sequences with the same limit, then it is called regular. The following
theorem gives the conditions for a matrix to be regular:

THEOREM 1.1. ([18], p.165) A = (ank) is a regular matrix if and only if the
following conditions hold

(i) supn
∑
|ank| <∞,

(ii) ank → 0 (n→∞, k fixed), and

(iii)
∑
ank → 1 (n→∞).

A-density of a subset K of the natural numbers N is defined as

δA(K) := lim
n→∞

∑
k∈K

ank,

if the limit exists.
The sequence x = (xn) is A-statistically convergent to l ∈ R, if for every ε > 0,

the set K(n, ε) := {k : k 6 n, |xk − l| > ε} has A-density zero [8]. It is denoted by
xn → l(A− st).

2 Some Results About A-Statistical Convergence

The space of all complex valued sequences x = (xn) will be denoted by CN. In many
circumstances we refer to CN as the space of arithmetical functions f : N→ C, specially,
when f reflects the multiplicative structure of N. This is the case for additive and
multiplicative functions.
Throughout this article, the matrix A = (ank) is non-negative and regular.
Define the function dA : CN × CN → [0,∞) as follows,

dA(x, y) := lim sup
n→∞

∑
k6n

ankϕ(|xk − yk|)

for x = (xn), y = (yn) ∈ CN and ϕ is the function ϕ : [0,∞)→ [0,∞) where

ϕ(t) :=

{
t if t 6 1,
1 if t > 1.

It is clear that, the function dA is a semi-metric and it is called A-semi-metric on
CN.

THEOREM 2.1. The sequence x = (xn) is A-statistically convergent to l ∈ R if
and only if dA(x, y) = 0 where yn = l for all n ∈ N.
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PROOF. Let us assume dA(x, y) = 0 where yn = l for all n ∈ N. Then, if ε > 0,

lim sup
n→∞

∑
k6n

|xk−l|>ε

ank ≤


1
ε lim sup
n→∞

∑
k6n ankϕ(|xk − l|), ε ≤ |xk − l| ≤ 1,

lim sup
n→∞

∑
k6n ankϕ(|xk − l|), |xk − l| > 1,

6 max

{
1,

1

ε

}
lim sup
n→∞

∑
k6n

ankϕ(|xk − l|) = max

{
1,

1

ε

}
dA(x, l).

This calculation implies that xn → l(A− st).
Now, assume that x = (xn) is A-statistically convergent to l ∈ R. Then for every

ε > 0, ∑
k6n

ankϕ(|xk − yk|) =
∑
k6n

|xk−l|<ε

ankϕ(|xk − l|) +
∑
k6n

|xk−l|>ε

ankϕ(|xk − l|)

6 ε
∑
k6n

ank +
∑
k6n

|xk−l|>ε

ank.

Then, since A = (ank) is a regular matrix, we have

dA(x, y) = lim sup
n→∞

∑
k6n

ankϕ(|xk − yk|) 6 ε lim sup
n→∞

∑
k6n

ank + lim sup
n→∞

∑
k6n

|xk−l|>ε

ank 6 ε

and this implies that
dA(x, y) 6 ε

for any ε > 0 where y = (yn) and yn = l (n ∈ N). This ends the proof.

COROLLARY 2.1. If the sequence x = (xk) is convergent to l (in the usual case)
then dA(x, y) = 0, where yn = l for all n ∈ N.

PROOF. Let us assume x = (xk) is convergent to l, i.e., for each ε > 0, there exists
at least an n0 = n0(ε) ∈ N such that |xn− l| < ε

2 holds for all n > n0. Therefore, since
A is a regular matrix

dA(x, y) = lim sup
n→∞

∑
k6n

ankϕ(|xk − l|)

= lim sup
n→∞

∑
k6n0

ankϕ(|xk − l|) +
∑

n0+16k6n
ankϕ(|xk − l|)


6 lim sup

n→∞

∑
k6n0

ank + lim sup
n→∞

n∑
k=n0+1

ank|xk − l|

6 n0 lim sup
n→∞

ank + ε lim sup
n→∞

n∑
k=n0+1

ank <
ε

2
+
ε

2
= ε.
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REMARK 2.1. The converse of Corollary 2.1 is not true in general. To see this, let
us consider the sequence x = (xn) where

xn =

{ √
n for n = m2 and m = 1, 2, ...,

0 otherwise,

and the regular matrix A = C1, the Cesàro matrix. It is clear that

dA(x, 0) = lim sup
n→∞

1

n

∑
k6n

ϕ(|xk − 0|) = lim sup
n→∞

1

n

n∑
k=1

√
k = 0.

But the sequence above is not convergent to 0 in the usual case.
Let f be an arithmetical function. With MA(f), we denote A-value of f ,

MA(f) := lim
n→∞

∑
k6n

ankf(k)

if the limit exists.

THEOREM 2.2. Assume that f : N→ C is bounded and A-statistically convergent
to L and H ⊂ N is an arbitrary subset of N which has finite A-density δA(H). Then,
MA(1Hf) = LδA(H).

PROOF. From the following inequality the proof can be obtained easily:∣∣∣∣∣∑
k∈H

ankf(k)−
∑
k∈H

ankL

∣∣∣∣∣ 6 ∑
k∈H

|f(k)−L|<ε

ank |f(k)− L|+
∑
k∈H

|f(k)−L|≥ε

ank |f(k)− L|

6 ε
∑
k∈H

ank +
∑
k∈H

|f(k)−L|≥ε

ank |f(k)− L| < εδA(H) + ε < ε(δA(H) + 1) < ε.

3 A-Statistical Monotone Sequence

Statistical monotonicity for real valued sequences has been defined and studied in [11]
In this section, A-statistical monotonicity will be defined and its relation between

A-statistical convergence will be investigated.

DEFINITION 3.1. A sequence x = (xn) is called A-statistical monotone increasing
(decreasing), if there exists a subset H of the natural numbers N with δA(H) = 1 such
that the sequence x = (xn) is monotone increasing (decreasing) on H. A sequence x =
(xn) is called A-statistical monotone sequence if it is A-statistical monotone increasing
or A-statistical monotone decreasing.

Now, we list some results about A-statistical monotonicity:

PROPOSITION 3.1. If x = (xn) is monotone sequence then x = (xn) is A-statistical
monotone. The converse is not true.
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PROOF. Assume x = (xn) is a nondecreasing sequence. That is, for all n ∈ N,
xn ≤ xn+1. So, we can consider the set H = N. Since, δA(H) = 1, we see that
x = (xn) is A-statistical monotone increasing. The proof can be obtained by the same
way when the sequence is monotone decreasing.

Let us consider the sequence x = (xn) as

xn =

{
1 for n = m2 and m = 1, 2, ...,
n otherwise,

and the matrix A = C1. It is clear that x = (xn) is A-statistical monotone increasing
but it is not monotone increasing.

THEOREM 3.1. If the sequence x = (xn) is A-statistical monotone increasing or
A-statistical monotone decreasing, then the set

{k ∈ N : xk+1 < xk} or {k ∈ N : xk+1 > xk}

has A-density zero respectively.

PROOF. Let us assume that x = (xn) is A-statistical monotone increasing. That
is, there exist a subset H of N with δA(H) = 1 such that (xn) is monotone increasing
on H, i.e.,

xn 6 xn+1 for all n ∈ H.

Therefore, the inclusion

{k ∈ N : xk+1 < xk} ⊂ N−H

and the inequality

δA({k ∈ N : xk+1 < xk}) 6 δA(N−H) = 0

hold. From this argument the assertion is satisfied.

REMARK 3.1. The converse of Theorem 3.1 is not true in general. This can be
seen by looking at the example given in (page 264, [11]).

THEOREM 3.2. Let x = (xn) be a sequence. If x = (xn) bounded and A-statistical
monotone, then x = (xn) is A-statistical convergent.

PROOF. We shall give the proof only for A-statistical monotone increasing se-
quence. From the definition of A-statistical monotonicity of x = (xn), there exists a
subset H of N such that δA(H) = 1 and x = (xn)n∈H is monotone increasing. Let us
denote the element of H by kn.
Without lost of generality, we may assume that kn is a monotone increasing sequence

of natural numbers. Then (xkn) is the monotone increasing subsequence of (xn).
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Since the sequence x = (xn) is bounded, we see that the subsequence (xkn) is also
bounded. Therefore, the subsequence (xkn) is convergent to supxkn . It means that,
for every ε > 0 there exists a positive natural number kn0 = kn0(ε) ∈ N such that

|xkn − supxkn | < ε

holds for all kn > kn0 .
Since all convergent sequence is A-statistical convergent, we see that

xkn → supxkn (A− st)

and

K(n) : = {k 6 n : |xk − supxk| > ε}
= {k 6 n : k 6= kn and |xk − supxk| > ε}
∪ {k 6 n : k = kn and |xk − supxk| > ε}

= K1(n) ∪K2(n).

Since K1(n) ⊂ N−H and xkn → l(A−st), we see that δ(K1(n)) = 0 and δ(K2(n)) = 0
respectively. Therefore, xn → l(A− st).

REMARK 3.2. Boundedness of A-statistical monotone sequence is suffi cient but
not necessary for A-statistical convergence in general. To see this let us consider the
matrix A = C1 and sequence x = (xn) where

xn =

{
m for n = m2 and n ∈ N,
1
n for n 6= m2.

It is easy to see that the sequence x = (xn) is not bounded but it is statistical monotone
decreasing and statistically convergent to zero.

REMARK 3.3. For a bounded sequence, A-statistical monotonicity is suffi cient but
not necessary for A-statistical convergence. Let us consider the matrix A = C1 and
the sequence x = (xn) defined by

xn :=

{
1
n for n is odd,
− 1
n for n is even.

It is clear that x = (xn) is bounded and statistical convergent to zero but it is not
statistical monotone.

DEFINITION 3.2. The real number sequence x = (xn) is said to be A-statistical
bounded if there is a number M > 0 such that

δA({n ∈ N : |xn| > M}) = 0.

REMARK 3.4. For A-statistical convergence, boundedness and A-statistical monotonic-
ity is suffi cient but not necessary.
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Let us consider the Cesàro matrix and the sequence x = (xn) defined by

xn =


n for n is an odd square,
2 for n is an even square,
1
n for n is an odd nonsquare,
− 1
n for n is an even nonsquare.

(1)

Obviously, x = (xn) is statistical convergent to zero but the sequence is neither A-
statistical bounded nor statistical monotone.
By using Definition 3.2, we may give the weak converse of Theorem 3.2 without

proof as follows:

THEOREM 3.3. A-statistical monotone sequence x = (xn) is A-statistical conver-
gent if and only if x = (xn) is A-statistical bounded.

4 Peak Points and A-Statistical Monotonicity

In [11] the concept of peak points of real valued sequences has been defined and its
relation between statistical monotonicity and statistical convergence has been investi-
gated.

Let us recall the definitions of upper and lower peak points:

DEFINITION 4.1.([11]). The element xk is called an upper (or lower) peak point
of the sequence x = (xn) if xk > xl (respectively xl > xk) holds for all l > k.

The element xk is called a peak point of the sequence if it is an upper peak point
or lower peak point.

THEOREM 4.1. If the index set of peak points of the sequence x = (xn) has
A-density 1, then the sequence x = (xn) is A-statistical monotone.

PROOF. Let us denote the index set of upper peak points of the sequence x = (xn),

H := {k : xk is an upper peak point of (xn)}.

There exist a monotone increasing sequence (kn) of positive natural number such that
the set H can be represented as

H := {k1 < k2 < k3 < ...}

with δA(H) = 1.
Since, xkn is an upper peak point for all n ∈ N, the following

xk1 > xk2 > xk3 > ... > xkn > ...

inequalities hold. So, xn is A-statistical monotone decreasing. By using the same
arguments for lower peak points the proof is obtained easily.
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Let nk be a strictly increasing sequence of positive natural numbers and x = (xn)
be a real valued sequence. Define x̃ = (xnk) and Kx̃ = {nk : k ∈ N}.

DEFINITION 4.2. The subsequence x̃ = (xnk) of x = (xn) is called (I) A-dense
subsequence if δA(Kx̃) = 1,

(II) A-empty subsequence if δA(Kx̃) = 0.

DEFINITION 4.3. The sequences x = (xn) and y = (yn) are called A-statistical
equivalent if there exists a subset M of N with δA(M) = 1 such that xn = yn for all

n ∈M . A-statistical equivalence is denoted by x
(A)
� y.

In the following we list some properties of A-statistical monotonicity and peak
points:
(I) Every A-dense subsequence of an A-statistical monotone sequence is A-statistical

monotone.

(II) Let x = (xn) and y = (yn) be A-statistical equivalent sequences, i.e. x
(A)
�

y. Then, x = (xn) is A-statistical monotone if and only if y = (yn) is A-statistical
monotone.
(III) If the sequence x = (xn) is A-statistical monotone, then it has at least an

A-dense and an A-empty subsequence.
The converse is not true. Let us consider the Cesàro matrix and the sequence

x = (xn) given in (1). The subsequence

(yn) = (x2, x3, x4, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16, ..)

=

(
−1

2
,

1

3
, 2,

1

5
,
−1

6
,

1

7
,
−1

8
,
−1

10
,

1

11
,
−1

12
,

1

13
,
−1

14
,

1

15
, 2, ...

)
and

(zn) = (x1, x9, x25, x49, x81, ...) = (1, 9, 25, 49, 81, ...)

are C1-dense and C1-empty subsequence of x = (xn). But it is not statistical monotone.
(IV) If the index set of peak points of the sequence has A-density 1, then it has

monotone A-dense and A-empty subsequences.

THEOREM 4.2. Under the condition of Theorem 4.1, if the sequence xn is A-
statistical bounded then it is A-statistical convergent.

PROOF. From the assumption of Theorem 4.1, we can assume x = (xn) is A-
statistical monotone increasing and A-statistical bounded. Therefore, the proof is
obtained by using Theorem 3.3.

5 Inclusion Results for Cλ and Dλ

Let λ = λ(n) be a strictly increasing sequence of positive natural numbers such that
λ(0) = 0. Cλ and Dλ asymptotic density of a subset of K of natural numbers N is
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defined by

lim
n→∞

1

λ(n)
|{k ∈ K : k 6 λ(n)}|

and

lim
n→∞

1

λ(n)− λ(n− 1)
|{k ∈ K : λ(n− 1) < k 6 λ(n)}|

respectively.
The more detailed knowledge about the densities Cλ and Dλ can be found in [2],

[14, 17] respectively.

THEOREM 5.1. If the sequence x = (xn) is Dλ-statistical monotone, then it is
Cλ-statistical monotone.

PROOF. We shall apply the technique which was used by Agnew in his paper
[1]. Assume, x = (xn) is a Dλ-statistical monotone. That is, there is a subset H
of N such that δDλ(H) = 1, and (xn) is monotone on H. Let us denote the set
{k : k 6 λ(n), k ∈ H} by H(n). The set H(n) can be represented as

H(n) = {k ∈ H : λ(0) + 1 6 k 6 λ(1)} ∪ {k ∈ H : λ(1) + 1 6 k 6 λ(2)} ∪
... ∪ {k ∈ H : λ(n− 1) + 1 6 k 6 λ(n)}

=

n⋃
j=1

{k ∈ H : λ(j − 1) + 1 ≤ k ≤ λ(j)},

for an arbitrary n ∈ N. From this representation we have

|H(n)| = |{k ∈ H : 1 6 k 6 λ(1)}|+ |{k ∈ H : λ(1) + 1 6 k 6 λ(2)}|+
...+ |{k ∈ H : λ(n− 1) + 1 6 k 6 λ(n)}|

=

n∑
j=1

|{k ∈ H : λ(j − 1) + 1 6 k 6 λ(j)}|

and

1

λ(n)
|H(n)| =

n∑
j=1

λ(j)− λ(j − 1)

λ(n)

1

λ(j)− λ(j − 1)
|{k ∈ H : λ(j − 1) + 1 6 k 6 λ(j)}| .

Let us consider the matrix T = (tn,k) defined by

tn,k :=

{
λ(k)−λ(k−1)

λ(n) for k = 1, 2, ..., n,

0 otherwise.

Clearly, the matrix T is regular, and

δCλ(H) = TδDλ(H).
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Since, limn→∞(δDλ(H))n = 1 and T is regular,

δCλ(H) = 1.

It means that the sequence x = (xn) is Dλ-statistically monotone.

THEOREM 5.2. Let E = {λ(n)} be an infinite subset of N with λ(0) = 0. Then, a
Cλ-statistical monotone sequence is also Dλ-statistical monotone sequence if and only
if

lim inf
n→∞

λ(n)

λ(n− 1)
> 1.

PROOF. Let x be a Cλ-statistical monotone sequence. That is, there exists a
subset H of N such that δCλ(H) = 1 and (xn) is monotone on H. From the definition
of δDλ(H) we have

lim
n→∞

|{k ∈ N : λ(n− 1) + 1 6 k 6 λ(n)}|
λ(n)− λ(n− 1)

=
λ(n)

λ(n)− λ(n− 1)

|{k ∈ H : 1 6 k 6 λ(n)}|
λ(n)

− λ(n− 1)

λ(n)− λ(n− 1)

|{k ∈ H : 1 6 k 6 λ(n− 1)}|
λ(n− 1)

.

If we let the matrix T = (tn,k) defined by

tn,k =


λ(n)

λ(n)−λ(n−1) for k = n,

− λ(n−1)
λ(n)−λ(n−1) for k = n− 1,

0 otherwise,

we obtain (δDλ(H))n = (T (δCλ(H)))n.
Therefore, δDλ(H) is obtained by δCλ(H) if and only if T is regular. Thus, T will

be regular if and only if the sequence{
λ(n)

λ(n)− λ(n− 1)
+

λ(n− 1)

λ(n)− λ(n− 1)

}
n∈N

(2)

is bounded. After simple calculation (2) is bounded if and only if lim infn→∞
λ(n)
λ(n−1) >

1.

The following corollaries are simple consequences of Theorem 6.2 in (page 208, [11]).

COROLLARY 5.1. E = {λ(n)} and F = {µ(n)} be an infinite subset of N. If
F − E is finite, then Cλ-statistical (Dλ-st.) monotonicity implies Cµ-statistical (Dµ-
st.) monotonicity.

COROLLARY 5.2. Assume F∆E is finite. Then Cλ (Dλ) statistical monotonicity
implies if Cµ (respectively Dµ) statistical monotonicity and vice versa.
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COROLLARY 5.3. Let E = {λ(n)} be an infinite subset of N and

lim sup
n→∞

λ(n+ 1)

λ(n)
= 1.

Then, the sequence x = (xn) is Cλ-statistical monotone if and only if it is statistical
monotone.
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