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Abstract

In this article, we prove the existence and uniqueness of solutions for the
Dirichlet problem

Aw(z)|AuP 2 Au) — div]w(z)|VulP>Vu] = f(z) — div(G(z)), in Q
(P){ u(z) =0, in 90

where Q is a bounded open set of RY (N>2), feLp,(Q,w) and G/we[Lp/(Q,w)}N.

1 Introduction

The main purpose of this paper (see Theorem 3.2) is to establish the existence and
uniqueness of solutions for the Dirichlet problem

(P) { Aw(z)|AulP "2 Au) — diviw(z)|Vul’>Vu] = f(z) — div(G(z)), in Q
u(z) =0, in 9N

where Q C RV is a bounded open set, feL? (Q,w), G/we [LP (2, w)]N, w is a weight

function (i.e., a locally integrable function on RY such that 0 < w(z) < co a.e. z€RY),

A is the Laplacian operator and 1 < p < 0o, p#2.

For degenerate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted Sobolev
spaces (see [1, 4, 5, 7, 8, 12]). The type of a weight depends on the equation type.

A class of weights, which is particularly well understood, is the class of A, weights
that was introduced by B. Muckenhoupt in the early 1970’s (see [8]). These classes have
found many useful applications in harmonic analysis (see [9, 11]). Another reason for
studying A,-weights is the fact that powers of the distance to submanifolds of RY often
belong to A, (see [3, 12]). There are, in fact, many interesting examples of weights
(see [7] for p-admissible weights).
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In the non-degenerate case (i.e. with w(x) = 1), for all fe€ LP(Q2) the Poisson
equation associated with the Dirichlet problem

—Au = f(z), in Q
{ u(z) =0, in 9N

is uniquely solvable in W2P(Q) N W, () (see [6]), and the nonlinear Dirichlet problem
—-Apu = f(z), in Q
u(z) =0, in 90

is uniquely solvable in WP () (see [2]), where Ayu = div(|[Vul’ >Vu) is the p-
Laplacian operator. In the degenerate case, the weighted p-Biharmonic operator have
been studied by many authors (see [10] and the references therein), and the degenerated
p-Laplacian has been studied in [3].

The paper is organized as follow. In Section 2 we present the definitions and basic
results. In Section 3 we prove our main result about existence and uniqueness of
solutions for problem (P).

2 Definitions and Basic Results

By a weight we shall mean a locally integrable function w on RY such that 0 < w(x) <
oo for a.e. € RY. Every weight w gives rise to a measure on the measurable subsets
of RV through integration. This measure will be denoted by p. Thus,
w(E) = / w(z)dx for measurable sets F C RY.
E

DEFINITION 2.1. Let 1 <p < co. A weight w is said to be an A,-weight, if there
is a positive constant C' = C(p,w) such that, for every ball B c RY

-1

(o) G ) < e

(1 o) (s, 555) = e

where |-| denotes the N-dimensional Lebesgue measure in RY.

If1 <q< p, then A, C A, (see [5, 7, 12] for more information about A,-weights).

As an example of an A,-weight, the function w(z) = |z|*, z € RY, is in A4, if and only
if -N < a < N(p—1) (see [11], Chapter IX, Corollary 4.4). If o € BMO(RY), then
w(z) = e*¥®) € A, for some a > 0 (see [9]).

REMARK 2.2. If we A,, 1 < p < o, then
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for all measurable subsets E of B (see 15.5 strong doubling property in [7]). Therefore,
if w(E) =0, then |E| = 0. Thus, if {u,} is a sequence of functions defined in B and
Uy — u p-a.e. then u, —u a.e..

DEFINITION 2.3. Let w be a weight. We shall denote by LP(Q,w) (1 < p < o0)
the Banach space of all measurable functions f defined in € for which

1/p
T ( / If(:v)lpw(w)dw> < co.
We denote [LP(Q,w)]N = LP(Q,w) x...x LP(Q,w).

REMARK 24. If w€A,, 1 < p < oo, then since w™'/P~1) is locally integrable,
we have LP(Q,w)C Li,.(Q) (see [12], Remark 1.2.4). Tt thus makes sense to talk about
weak derivatives of functions in LP(Q, w).

DEFINITION 2.5. Let Q CRY be a bounded open set, 1 < p < oo, k be a non-
negative integer and w € A,. We shall denote by W*P?(Q,w), the weighted Sobolev
spaces, the set of all functions u € LP(Q,w) with weak derivatives D%u € LP(Q,w),
1 <|a| < k. The norm in the space W*P(Q,w) is defined by

1/p

el ) = / @)@+ 3 / Do) Pw@)dz | . (1)

1<]al<k

We also define the space Wg’p(ﬂ,w) as the closure of C§°(Q2) with respect to the
norm

1/p

||u||Wé€’p(Q,w) = Z [2 |Dau(l')‘pw($)dl'

1<]al<k

The dual space of W, (Q,w) is the space [W, ?(Q,w)]* = W17 (Q,w),

WP (Quw) = {T = f — div(G) : G = (g1, .. ), g % eL” (Q,w)}.

It is evident that a weight function w which satisfies 0 < C; < w(z) < Cy, for
a.e. = €2, gives nothing new (the space W*P(Q,w) is then identical with the classical
Sobolev space W#P(Q)). Consequently, we shall be interested in all above such weight
functions w which either vanish somewhere in 2 U 9Q or increase to infinity (or both).

We need the following basic result.
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THEOREM 2.6 (The weighted Sobolev inequality). Let Q@ C RV be a bounded open
set and let w be an Ap-weight, 1 < p < co. Then there exists positive constants Cq
and ¢ such that, for all fe C3°(2) and 1 <n < N/(N —1)+9,

11l Lo (2.) <ClllV Al 1o (0,00 (2)

PROOF. See [4], Theorem 1.3.

3 Weak Solutions

We denote by X = W22(Q, w)NW, ?(Q,w) with the norm

1/p
Jull x = </ |Vu|p0-)d$+/ |Au|pwdx) .
Q Q

In this section we prove the existence and uniqueness of weak solutions u € X to
the Dirichlet problem

Aw(z)|AulP 2 Au) — diviw(z)|Vul’>Vu] = f(z) — div(G(z)), in Q
(P) o
u(z) =0, in 0N
where Q is a bounded open set of RN (N > 2), f/w € L? (Q,w) and G /w[L? (2, w)]N.
DEFINITION 3.1. We say that v € X is a weak solution for problem (P) if
/ |AulP " Au Ap w(z) daz+/ w(z) |VulP > (Vu, V) dz = / fodx +/ (G,V)dx,
Q Q Q Q

/ , (3)

for all p € X, with f/w € LP (Q,w) and G/w € [LP (2, w)]V.

THEOREM 3.2. Let w € A,, 1 < p < o0, f/w € LP (Q,w) and G/w € [LP (Q,w)]".
Then the problem (P) has a unique solution v € X.

PROOF. (I) Erxistence. By Theorem 2.6, we have that

/Qfﬁpdx </Q g wdw) " (/Q |<P|Pwd:1c>1/p

Ca HV@HLP(QM)
L' (Q,w)

f

w

!

IN

IN

f

IN

Ca el x» (4)

L/ (Qw)
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and
[@vaa| < [ |c.voe (5)
Q Q
< /|G|\Vap|dx
Q
= /@|V<p|wdw
Q W
e
S - ||V<p|| P w
Hw Le' (Q,w) Do)
G
< = ol x- (6)
HW Lr' (Qw) X

Define the functional J, : X — R by

1 1
I = [ 1apPude > [ [Voruds— [ fodo - [ (6, Vo)da.

Using (4), (5) and Young’s inequality, we have that

1 1
e = o [ |Aeluda s [ VePuds
P Ja pJa
f G
| Ca ||= +1= lellx
WllLe (Qw) WilLe' (Quw)
1 1 1 1
> 2 [ 1agtude s [ (Felrwds = Lol - 2 |a |2
P Ja P Ja p p w Lr' (Q,w)
...
+ -
Wl L' (Q,w)
p/
1 G
= —— C’Q i + ||= ,
p Wl Lr' (Q,w) Wl L (Q,w)

that is, J, is bounded from below.
Let {u,} be a minimizing sequence, that is, a sequence such that

Jp(tn)— Jnf Jp() -

Then for n large enough, we obtain that

OZJp(un)zl/ |Aun|pwd:v—|—1/\Vun|pwal:t—/fundx—/(G,Vun>alac7
P Ja P Jo Q Q
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and we get (by Theorem 2.6)

Junlly < (/ funder/(G,VUn,)dx)

(&
< p<' ||un||Lp<M+H ||Vun||Lp(Q,w>)
"(Q,w) L' (Q,w)
< P(CQ H )”vun”LP(Q,w)
Lr' (Qw) Lr' (Qw)
< plcot =z Al
< p( 21200 'w”m,w) ltmlx
Hence
G 1/(p—1)
lunlx < |o (o i .
L' (Q,w) WilLe" (Qw)

Therefore {u,} is bounded in X. Since X is reflexive, there exists a u € X such that
u,—u in X. Since

XB(pH/fgpdac+/<G7V<p>dx
Q Q

and ¢ — V| rr0.w) + |1A¢] 100, are continuous then Jj, is continuous. Moreover
since 1 < p < oo we have that J, is convex and thus lower semi-continuous for the
weak convergence. It follows that

Jp(uw) < liminf Jy(u,) = inf J,(p),
n peX

and thus v is a minimizer of J, on X. For any ¢ € X the function

A - 1/ |A(u+)\<p)|pwdx+1/ \V(u+)\<p)|pwda:f/(u+)\cp)fd:r
pPJa P Ja Q
—/ (G, V(u+ \p))dx
Q
has a minimum at A = 0. Hence

Jp(u+ Ap) =0, Vp eX.

A=0

d
da\
We have that
d _
o UVt Aplw) = p{[V(u+ Ap)” *((Vu, Vo) + A Vo) Jw,

and
d _
75 (A + 29)"w) = plAu + A" (Au + AMp) Apw,
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and we obtain that

d

A=0
= [1 <p/ |Au+)\A<p|p_2(Au+)\Aga)Acpwd:c)
p Q
1
+ (p [ 9 Ao (Vi v) +A|w?>wdx)
Q

—/ Lpqu:—/ <G,V<p>dx]

Q Q A=0

= /\Au|p72AuAcpwdx+/ |Vu|P~2(Vu, Vo) wdz
Q Q

f/Qfgod:z:f/S#G,Vgo)dm.

Therefore
/|Au|p_2AuAgawdm+/ |Vu\p_2<Vu7V<p>wdm:/f<pdx+/ (G, V) dx,
Q Q Q Q

for all p € X, that is, u € X is a solution of problem (P).

(I) Uniqueness. If uy, ug € X = W2P(Q,w)NWy P (Q,w) are two weak solutions of
problem (P), we have (for i = 1,2)

/|Aui|p_2AuiA<pwdx+/ |Vui|p_2<Vui,V<p>wdx:/f(pda:—i—/ (G,Vp)dz,
Q Q Q Q
for all p € X. Hence

/ | (Aur[P7?Auy — [Aua [P Aug) Apwda
Q

—|—/ (IVur [PV, Vo) — [Vua [P~ (Vug, Vo) ) wdz
Q
= 0.

Taking ¢ = u; — ug, and using that for every z,y € RY there exist two positive
constants ,, and 3, such that

_ —2 —2 —
ap(lz| + y)P 2 o —yl < (=" "e = yl" "y, @ —y) < B, (|a] + |y))P 3|z -y,

(see Proposition 17.3 in [2]) we obtain
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0 = /Q (18w P2 Au; — |AusP~? Auy) (Au; — Aus) wda (1)
+ /Q (IVur [P*(Vuy, Vug — Vug) — [Vua [P~ (Vug, Vuy — Vus)) wdz
_ /Q (|Aus[P~2 Auy — |Aup|P~2 M) (Aty — Auy) wdz
—|—/Q (|Vui P2V, — |Vug[P~2Vug, Vuy — Vug)wdzs
> oy [ (18w ]+ a2 s = Au o

+a / (V| + [Vual)* 2 [Ver — Vuglwde.
Q

Therefore Au; = Aug and Vuy = Vug p-a.e. and since ug,ug € X, then u; = uy a.e..
(by Remark 2.2).

EXAMPLE. Let Q = {(z,y) € R? : 22 + 3% < 1}, w(z,y) = (2 +y?)~V/? (w €43,
p=3),

o) = s and Glo) = (St ).

By Theorem 3.2, the problem

{ A((z? 4+ y?) Y2 Au|Au) — div[(@? + y?) V2| Vu| V] = f(z) — div(G(z)), in O
u(z) =0, in 0N

has a unique solution u € X = W23(Q,w)NW, *(Q,w).
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