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Abstract

For a non-abelian group G and a subset X of G, we define the commuting
graph, denoted Γ(X) = C(G,X), to be the graph whose vertex set is X with two
distinct vertices x, y ∈ X joined by an edge if and only if xy = yx.

In this short note, certain properties of commuting graphs constructed on the
dihedral type groups D2n with respect to some specific subsets are discussed.
More precisely, the chromatic number and clique number of these commuting
graphs are obtained.

1 Introduction

The study of algebraic structures, using the properties of graphs, has become an ex-
citing research topic in the last twenty years, leading to many fascinating results and
raising questions. For example, the study of zero-divisor graphs [6], total graph of
commutative rings and commuting graph of groups has attracted many researchers
towards this dimension. The concept of non-commuting graph has been studied in [2]
and [16]. Recently, the commuting graphs of groups have been studied extensively, see
for example [5, 15—17], and those of rings in [3—4]. In [15], Iranmanesh and Jafarzadeh
conjectured that there is a universal upper bound on the diameter of a connected
commuting graph for any finite nonabelian group. They determined that when the
commuting graph of a symmetric or alternating group is connected and that the diam-
eter is at most 5 in this case. The paper [17] proves that for all finite classical simple
groups over a field of size at least 5, when the commuting graph of a group is connected
then its diameter is at most 10.
If X is a conjugacy class of involutions of a group G, then Γ(G,X) is called a

commuting involution graph. Aschbacher [1] also showed a necessary condition on a
commuting involution graph for the presence of a strongly embedded subgroup in G.
The detailed study of commuting involution graphs can be found in [7—10, 13—15].
In this informative note, we discuss certain properties of commuting graphs con-

structed on the dihedral type groups D2n with respect to some specific subsets. For
ordinary dihedral groupD2n, the commuting graph of dihedral groupD2n was discussed
in [11].
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2 Definitions and Notations

We consider simple graphs which are undirected, with no loops or multiple edges. For
any graph Γ, we denote the set of the vertices and edges of Γ by V (Γ) and E(Γ),
respectively. The degree deg(v) of a vertex v in Γ is the number of edges incident to
v. A graph Γ is regular if the degrees of all the vertices of Γ are same.
A subset X of the vertices of Γ is called a clique if the induced subgraph of X is a

complete graph. The maximum size of a clique in a graph Γ is called the clique number
of Γ and denoted by w(Γ).
Let k > 0 be an integer. A k-vertex coloring of a graph Γ is an assignment of k

colors to the vertices of Γ such that no two adjacent vertices receive the same color.
The chromatic number ψ(Γ) of a graph Γ, is the minimum k for which Γ has a k-vertex
coloring.
If u and v are vertices in Γ, then d(u, v) denotes the length of the shortest path

between u and v. The maximum distance between all pairs of the vertices of Γ is called
the diameter of Γ, and is denoted by diam(Γ).

A matching or independent edge set in a graph is a set of edges without common
vertices. It may also be an entire graph consisting of edges without common vertices.
A perfect matching is a matching which matches all vertices of the graph. That is,

every vertex of the graph is incident to exactly one edge of the matching.
A subset X of the vertices of Γ is called an independent set if the induced subgraph

onX has no edge. The independent number of Γ is the maximum size of an independent
set of vertices and is denoted by α(Γ).

A vertex cover of a graph is a set S ⊆ V (Γ) that contains at least one endpoint of
every edge. The minimum size of a vertex cover is denoted by β(Γ).

3 Group Properties of D2n

The dihedral type groups denoted by D2n, are defined in terms of generators a, b and
relations as: D2n =< a, b | bn = a2 = 1, ab = bra >, where n = 4k with r = 2k − 1
or r = 2k + 1 and any positive integer k ≥ 2. In this section, we discuss some of the
group theoretic properties of the group D2n. Throughout this note a, b represent the
abstract generators of the groups D2n and n,m, d, r are always positive integers.

LEMMA 1. If a and b are the abstract generators of the groups D2n, then we have
the followings:

(i) a(bma) = bmr for all m < n,

(ii) (bma)2l = b(r+1)lm for all m < n and any positive integer l,

(iii) (bma)2l−1 = b(l−1)mr+lma for all m < n and any positive integer l.

Note: Lemma 1 shows that the order of bma must be even. The following Lemmas
are easy to proof, so we will give only statements:
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LEMMA 2. If n = 4k and r = 2k ± 1, then gcd(n, r − 1) is either 2, 4 or n
2 .

LEMMA 3. The element bi is in the center of the groupD2n if and only if n | (r−1)i,
where i 6= 1.

LEMMA 4. Consider the group D2n. We have the following results:

(i) If gcd(n, r − 1) = d, then there are d central elements of D2n. More precisely,

Z(D2n) = {bnd , b 2nd , b 3nd , . . . , bn}.

(ii) The element bia will commute with all the elements bja, where 1 ≤ j ≤ n − 1 if
and only if n | (r − 1)(j − i) for fixed i.

(iii) If gcd(n, r − 1) = d, then [D2n : Z(D2n)] = 2n
d .

4 Commuting Graph of D2n

Let [G : Z(G)] = m and T = {1, x1, x2 . . . , xm−1} be a transversal of Z(G) in a group
G. It is clear that every two elements of the coset xiZ(G), 1 ≤ i ≤ m − 1, commute.
Thus, every two elements of these coset are adjacent. Throughout this section, we shall
denote X1 = {b1, b2, b3, . . . , bn} and X2 = {b1a, b2a, b3a, . . . , bna} two subsets of D2n.
We associate to the commuting graph Γ(D2n) = C(D2n, D2n) of the group D2n,

the induced subgraph Γu(D2n) as follows: The vertex set of Γu(D2n) is U = T −{1} =
{x1, x2 . . . , xm−1}, and two vertices xi and xj are adjacent if and only if xixj = xjxi,
where 1 ≤ i, j ≤ m− 1.

LEMMA 5. If X is any subset of D2n and Γ(X) = C(D2n, X) is the commuting
graph on X, then for any a ∈ X, deg(a) =| CX(a) | −1.

LEMMA 6. If Γ(D2n) = C(D2n, D2n), then

(1) deg(bma) =

 3 if gcd(n, r − 1) = 2,
7 if gcd(n, r − 1) = 4,
n− 1 if gcd(n, r − 1) = n

2 .

(2) deg(bi) =

{
2n− 1 if n | (r − 1) i,
n− 1 otherwise.

PROOF. (1) If gcd(n, r−1) = 2, then there are two central elements e and b
n
2 . Now,

we have Cbma = {e, bn2 , bma, bm+n
2 a} for all bma ∈ D2n. Hence by virtue of Lemma 5

we have, deg(bma) = 4− 1 = 3. The remaining case can be proof in a similar manner.
(2) If n | (r − 1)i, then by Lemma 3, we have Cbi = D2n and so deg(bi) = 2n − 1.

If n - (r − 1)i, then Cbi = {bj : 1 ≤ j ≤ n} and so deg(bi) = n− 1.

COROLLARY 1. If X = D2n \ Z(D2n) and Γ(X) = C(D2n, X) is the commuting
graph on X, then
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(1) deg(bma) =

 1 if gcd(n, r − 1) = 2,
3 if gcd(n, r − 1) = 4,
n
2 − 1 if gcd(n, r − 1) = n

2 .

(2) deg(bi) =

 n− 3 if gcd(n, r − 1) = 2,
n− 5 if gcd(n, r − 1) = 4,
n
2 − 1 if gcd(n, r − 1) = n

2 .

(3) If Γ(X) = C(D2n, X), where X = D2n \ Z(D2n), then diam(Γ(X)) =∞.

LEMMA 7. If X is any subset of D2n, then Γ(X) = Kn if and only if X = X1.

PROOF. Suppose X = {bi : 1 6 i 6 n}. Then X is a cyclic subgroup of D2n and
so Γ(X) is a complete graph of n vertices. Conversely, Suppose Γ(X) = Kn. Then by
Lemma 5, we have X = {bi : 1 6 i 6 n} = X1.

COROLLARY 2. There does not exist any subset X of D2n such that Γ(X) is n
regular.

PROPOSITION 1. If X = D2n, then the edges in the commuting graph Γ(X) are:

|E(Γ(D2n))| =


n(n+4)

2 if gcd(n, r − 1) = 2,
n(n+10)

2 if gcd(n, r − 1) = 4,
n(5n−4)

4 if gcd(n, r − 1) = n
2 .

PROOF. Note thatX1

⋂
X2 = ∅ andX1

⋃
X2 = D2n. Suppose that gcd(n, r−1) =

2. Then the subgraph induced by X1 is complete and the subgraph induced by X2 is
n
2K2. Therefore the number of edges in Γ(D2n) is the sum of the number of edges in
these subgraphs and the number of edges from the center elements bn and b

n
2 to the set

of vertices in the induced graph by X2. Thus E(Γ(D2n)) = n(n−1)
2 + n

2 + 2n = n(n+4)
2 .

Similarly one can prove the remaining cases.

COROLLARY 3. If Γ(X) = C(D2n, X), where X = D2n \ Z(D2n), then

|E(Γ(D2n))| =


n2−4n+6

2 if gcd(n, r − 1) = 2,
n2−6n+20

2 if gcd(n, r − 1) = 4,
3n(n−2)

8 if gcd(n, r − 1) = n
2 .

THEOREM 1. There exists no subset X of D2n such that Γ(X) = C4.

PROOF. Let gcd(n, r − 1) = 2 and suppose Γ(X) = C4 for some subset X of D2n.
Then Γ(X) contains a complete graph of type Kn in X1 and n

2 complete graphs of type
K2 in X2. If X contains two vertices of X2 from different K2 and two vertices from X1.
Then this graph has no edge between the elements from different K2, a contradiction.
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Suppose X contains two elements from any one of K2 in X2 and two elements from X1

and they could be either one or both central elements. Then in both cases, the degree
of vertex of the central element is 3 and hence we get a contradiction. If X contains
any 3 elements from X1 and one element from any K2 in X2 then the graph contains a
complete graph of type K3 in X1 and thus a contradiction. Similarly if X ⊂ X1 then
Γ(X) is an induced subgraph of a complete graph Γ(X1) and hence itself complete, a
contradiction again. Similarly one can prove the remaining cases.

The following Lemma can be proof in a similar fashion as Theorem 1:

LEMMA 8. There exist no subset X of D2n such that Γ(X) = P4.

THEOREM 2. If Γ(D2n) is the commuting graph on D2n, then w(Γ(D2n)) =
ψ(Γ(D2n)) = n.

PROOF. Since X1 = {b1, b2, b3, . . . , bn} ⊂ D2n and Γ(X1) is a maximal complete
subgraph of Γ(D2n). Hence w(Γ(D2n)) = n.

If gcd(n, r − 1) = 2, then we need n colors to color the induced subgraph Γ(X1) ⊂
Γ(D2n) and so ψ(Γ(D2n)) ≥ n. Note that e and b

n
2 are two central elements in X1

and they are adjacent to all vertices in Γ(D2n) and so color assigned to these vertices
cannot be assigned to any other vertices. The remaining n − 2 vertices in X1 are not
adjacent to any of the remaining vertices in Γ(D2n) and so these vertices can be colored
by any one of the remaining n − 2 colors. Hence ψ(Γ(D2n)) = n. Similarly one can
prove the remaining cases.

COROLLARY 4. The following assertions (1)—(2) hold.

(1) If Γ(X) = C(D2n, X), where X = D2n \ Z(D2n) and gcd(n, r − 1) = d, then
w(Γ(D2n)) = ψ(Γ(D2n)) = n− d.

(2) The commuting graph Γ(D2n) has a perfect matching.

THEOREM 3. If gcd(n, r − 1) = d, then α(Γu(D2n)) = n
d + 1.

PROOF. Since gcd(n, r − 1) = d, therefore | Z(D2n) |= d and the set T =
{1, b, b2, . . . , bnd−1, a, ba, b2a, . . . , bnd−1a} is a transversal of Z(D2n) in D2n, so we have
the set U = T − 1 = {b, b2, . . . , bnd−1, a, ba, b2a, . . . , bnd−1a}. For any j, 1 ≤ j ≤ n

d − 1,
the set Aj = {bj , a, ba, . . . , bnd−1a} is an independent set of Γu(D2n) and each two ele-
ments of the set X = {bi, 1 ≤ i ≤ n

d − 1} are adjacent. Thus for any j, 1 ≤ j ≤ n
d − 1,

| Aj |= n
d + 1. Hence α(Γu(G)) = n

d + 1.

COROLLARY 5. As α(Γ(D2n)) = α(Γu(D2n)). Hence α(Γ(D2n)) = n
d + 1.

LEMMA 9. If gcd(n, r − 1) = d, then β(Γu(D2n)) = n
d − 2.

COROLLARY 6. The following assertions (1)—(5) hold.
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(1) If (Γ(D2n)) is the commuting graph on D2n, then β(Γ(D2n)) = n
d + (n − 1)d −

(n+ 1).

(2) The element a is always an involution and bi of D2n is involution if i = n
2 .

(3) The elements b2ia, 0 ≤ i ≤ n
2 − 1 of D2n are involutions if r = 2k − 1.

(4) The element b
n
2 a of D2n is involution if 8 | n and r = 2k + 1.

(5) The elements b
ni
4 a, 1 ≤ i ≤ 4 of D2n are involutions if 8 - n and r = 2k + 1.

COROLLARY 7. The following assertions (1)—(3) hold.

(1) If Y1 is the set of all involutions of D2n for r = 2k− 1, then Γ(Y1) = F (n2 + 1, n4 )
is a fan graph on n

2 + 1 vertices and n
4 number of triangles.

(2) If Y2 is the set of all involutions of D2n for r = 2k+1 and 8 | n, then Γ(Y2) = K3.

(3) If Y3 is the set of all involutions of D2n for r = 2k + 1 and 8 - n, then Γ(Y3) =
F (5, 2).

COROLLARY 8. The following assertions (1)—(5) hold.

(1) In Γ(Y1); deg(b
n
2 ) = n

2 and deg(b2ia) = 2.

(2) In Γ(Y2); deg(b
n
2 ) = deg(b

n
2 a) = deg(bna) = 2.

(3) In Γ(Y3); deg(b
n
2 ) = 4 and deg(b

ni
4 ) = 2 for 1 ≤ i ≤ 4.

(4) w(Γ(Yj)) = 3 = ψ(Γ(Yj)) for j = 1, 2, 3.

(5) diam(Γ(Y1)) = 2 = diam(Γ(Y3)) and diam(Γ(Y2)) = 1.
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