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Abstract

We study some generalizations of the inequality π(x)2 <
ex

log x
π(x

e
), which is

due to Ramanujan. We also obtain some reverses for it under various conditions
including the Riemann Hypothesis.

1 Introduction

A part of various conjectures and results of Ramanujan on the theory of prime numbers,
are about the prime counting function π(x), which as usual denotes the number of
primes not exceeding x. On page 310 in Ramanujan’s second notebook, he asserts that
the inequality

π(x)2 <
ex

logx
π
(x

e

)

(1)

holds for x sufficiently large (see also [2]). This is not very hard to verify. Let us set
` := log x, for the whole text. We let

$(`) :=
π(e`)

e`
=

π(x)

x
.

Then, the prime number theorem with error term gives the expansion

$(`) =
1

`

(

n
∑

k=0

k!

`k
+ O

( 1

`n+1

)

)

(2)

for any integer n ≥ 0. We note that π(xea)/(xea) = $(` + a), and the inequality (1)
is equivalent to the following one

$(`)2 <
$(` − 1)

`
. (3)

Considering the expansion of $(`) with n = 4, we see that

$(`)2 −
$(` − 1)

`
= −

1

`6
+ O

(

1

`7

)

(as ` → ∞),
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from which we obtain validity of (3) for ` sufficiently large; furthermore, we obtain

π(x)2 −
ex

logx
π
(x

e

)

= −
x2

log6 x
+ O

(

x2

log7 x

)

(as x → ∞),

and this proves (1) for x sufficiently large. But how much large?
To answer this question, we need some “very good” bounds for the prime counting

function. Let us clear what we mean by “very good”!

DEFINITION 1. Let n ≥ 0 be an integer. We say the function π(x) satisfies the
“Condition U-n”, if the inequality `$(`) −

∑n

k=0 k!/`k < c/`n+1 holds true for some
c > (n + 1)!, and for x ≥ x0.

In search of the integer xR in which the inequality (1) holds for x ≥ xR, and fails
for x < xR, recently the author has proved the following conditional results, which are
Theorem 1.1 and Theorem 1.2 of [1], respectively.

PROPOSITION 1. Assume that the function π(x) satisfies the Condition U-4, and
let ε ∈ (0, 1/25). Then xR ≤ eλ with

λ = max{2b(1 + ε) + 73 + ε, 2.2 + 132/ε, logx0} > 530.2.

PROPOSITION 2. Let h = 138766146692471228, and assume that the Riemann
Hypothesis is true. Then, we have xR ≤ h.

Our aim in this paper is to obtain further generalizations of the Ramanujan’s in-
equality, and examine validity of them under Condition U-4, and assuming validity of
the Riemann Hypothesis. Implication of the first generalization is based on the ap-
pearance of the function π(x) on both sides of it. Indeed, repeated use of itself on its
right hand side leads us to the following result.

THEOREM 1. For given positive integer n, we set

Ξn(x) :=

n
∏

k=1

(

1 −
k − 1

logx

)2n−k

. (4)

Consider the following generalization of Ramanujan’s inequality

π(x)2
n

<
en

Ξn(x)

( x

log x

)2n
−1

π
( x

en

)

. (5)

(i) Assume that the function π(x) satisfies the Condition U-4, and let ε ∈ (0, 1/25).
Then the inequality (5) is valid for x > eλ+n−1, with λ defined as in Proposition
1.

(ii) Assume that the Riemann hypothesis is true. Then the inequality (5) is valid for
x > en−1h, with h defined as in Proposition 2.

We note that for n = 1, the inequality (5) becomes the Ramanujan inequality (1). In
continuation, we do some numerical observations, which lead us to more generalizations
of (1), as well as, to some inverses for it.
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2 Proof of Theorem 1

We define the function RΞ
n(x) by setting

RΞ
n(x) :=

en

Ξn(x)

(

x

log x

)2n
−1

π
( x

en

)

− π(x)2
n

.

First, we observe that RΞ
1 (x) > 0 (Ramanujan’s inequality) is valid for x ≥ xR. Then,

by induction on n we show that RΞ
n(x) > 0 is valid for x ≥ en−1xR. To do this,

we assume that n ≥ 2, and we square both sides of RΞ
n−1(x) > 0, which is valid for

x ≥ en−2xR. Thus, we obtain

π(x)2
n

<
e2n−2

(

x
log x

)2n
−2

∏n−1
k=1

(

1 − k−1
log x

)2n−k
π
( x

en−1

)2

, (x ≥ en−2xR).

Validity of RΞ
1 (x) > 0 for x ≥ xR implies that

π
( x

en−1

)2

<

x
log x

en−2
(

1 − n−1
log x

)π
( x

en

)

,
( x

en−1
≥ xR

)

.

If we combine the above inequalities, then, for x ≥ en−1xR we obtain

π(x)2
n

<







e2n−2
(

x
log x

)2n
−2

∏n−1
k=1

(

1 − k−1
log x

)2n−k













x
log x

en−2
(

1 − n−1
log x

)2n−n π
( x

en

)






.

The right hand side of the last inequality is actually the right hand side of (5). So, we
have completed induction’s steps. Now, we note that under assumptions of Proposition
1, xR ≤ eλ. This completes the proof of (i). Implication of (ii) is similar under
assumptions of Proposition 2, where xR ≤ h.

3 Numerical Experiments and Further Generaliza-

tions

The factor Ξn(x) equals 1 only for n = 1, and for n ≥ 2 it satisfies 0 < Ξn(x) < 1 for
x > en. More precisely, for n ≥ 2, by using the inequality log(1 − t) ≤ −t, which is
valid for 0 ≤ t < 1, we have

logΞn(x) =

n
∑

k=1

2n−k log

(

1 −
k − 1

logx

)

≤

n
∑

k=1

−2n−k

(

k − 1

logx

)

= −
2n − n − 1

log x
.

Thus, it is natural to ask about the validity of the inequality

π(x)2
n

<
en

Θn(x)

(

x

logx

)2n
−1

π
( x

en

)
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where

Θn(x) = e−
2n

−n−1
log x . (6)

We consider the function

RΘ
n (x) :=

en

Θn(x)

(

x

log x

)2n
−1

π
( x

en

)

− π(x)2
n

.
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Figure 1: Graph of the function RΘ
1 (x) = RΞ

1 (x) for 106 ≤ x ≤ 107.

To determine the sign of RΘ
n (x), and also examine critical situation of (5), we study

the functions RΘ
n (x) and RΞ

n(x) together. It is clear that RΘ
1 (x) = RΞ

1 (x) := R(x), say,
and for n ≥ 2 we have RΘ

n (x) < RΞ
n(x). Figures 1 and 2 show the graph of functions

RΘ
n (x) and RΞ

n(x) for some values of n.
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Figure 2: Graphs of the functions RΘ
2 (x) and RΞ

2 (x) for 106 ≤ x ≤ 107 (left), and
graphs of the functions RΘ

3 (x) and RΞ
3 (x) for 104 ≤ x ≤ 105 (right).

For n ≥ 4, the values of RΘ
n (x) become very large and some technical difficulties

appear in generating figures. To cope with this problem, we consider some new func-
tions involving logarithms of sides. Indeed, we define functions LΞ

n(x) and LΘ
n (x) by
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setting

LΞ
n(x) := log

(

en

Ξn(x)

(

x

log x

)2n
−1

π
( x

en

)

)

− 2n logπ(x)

and

LΘ
n (x) := log

(

en

Θn(x)

(

x

log x

)2n
−1

π
( x

en

)

)

− 2n log π(x).

As Figure 3 shows, it seems that RΘ
n (x) < 0 for n ≥ 2 and for x sufficiently large.
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Figure 3: Graphs of the functions LΘ
4 (x) and LΞ

4 (x) for 106 ≤ x ≤ 107 (left), and
graphs of the functions LΘ

5 (x) and LΞ
5 (x) for 106 ≤ x ≤ 107 (right).

The inequality RΘ
2 (x) < 0 is equivalent to

e
1
`

`3
$(` − 2) < $(`)4 . (7)

To verify the validity of this inequality, we consider the expansion of $(`) with n = 2,
from which we obtain

e
1
`

`3
$(` − 2) − $(`)4 = −

1

2`6
+ O

(

1

`7

)

(as ` → ∞).

Thus, we get (7) for ` sufficiently large, and consequently, we obtain validity of the
inequality RΘ

2 (x) < 0 for x sufficiently large. More generally, the inequality RΘ
n (x) < 0

is equivalent to

e
2n

−n−1
`

`2n−1
$(` − n) < $(`)2

n

. (8)

We deduce this general form by induction on n. To do this, we assume the validity of
RΘ

n−1(x) < 0 in the equivalent form

e
2n−1

−(n−1)−1
`

`2n−1−1
$(` − n − 1) < $(`)2

n−1

(n ≥ 3),
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and we square both sides to obtain

e
2n

−2n−4
`

`2n−2
$(` − n − 1)2 < $(`)2

n

,

from which we observe that to complete implication of (8), we should show

e
2n

−n−1
`

`2n−1
$(` − n) ≤

e
2n

−2n−4
`

`2n−2
$(` − n − 1)2,

which is equivalent to e
n+3

` $(` − n) ≤ `$(` − n− 1)2. By considering the truth of the
following lemma, this last inequality is valid for ` (and consequently for x) sufficiently
large.

LEMMA 1. Assume that n ≥ 1 is an integer. There exists x0 > 0 such that:

(i) For x ≥ x0, we have

x

1 + log x
e

4
1+log x

−2π(x) ≤ π
(x

e

)2

. (9)

(ii) For x ≥ enx0, we have

x

logx
e

n+3
log x

−(n+2)π
( x

en

)

≤ π
( x

en+1

)2

. (10)

PROOF. (i) The inequality (9) is equivalent to e
4

1+`
$(`)
1+`

≤ $(`−1)2 . By considering
the expansion of $(`) with n = 2 we see that

e
4

1+`
$(`)

1 + `
− $(` − 1)2 = −

8

`4
+ O

(

1

`5

)

(as ` → ∞).

Thus, (9) is valid for ` sufficiently large, and consequently for x ≥ x0, where x0 > 0 is
large enough.
(ii) Let us take y := x

en . Then, the inequality (10) is equivalent to

f(n, y)π(y) ≤ π
(y

e

)2

, (11)

where
f(n, y) =

y

n + log y
e

n+3
n+log y

−2.

We have
∂

∂n
f(n, y) = −

(n + 3)ye−
n−3+2 log y

n+log y

(n + log y)3
< 0.

Thus, for n ≥ 1 we imply f(n, y) ≤ f(1, y), and this means that for proving (11), it is

enough to show that f(1, y)π(y) ≤ π
(

y

e

)2
, and this is what we have done in part (i)

for y ≥ x0. This completes the proof of (10).
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Therefore, we have proved the validity of the inequality RΘ
n (x) < 0 for every n ≥ 2,

and for x sufficiently large. We state this result and a corollary of Theorem 1:

THEOREM 2. Assume that n ≥ 2 is an integer. Recall the functions Ξn(x) and
Θn(x) defined by (4) and (6), respectively. Then, the following double side inequality

en

Θn(x)

(

x

log x

)2n
−1

π
( x

en

)

< π(x)2
n

<
en

Ξn(x)

(

x

log x

)2n
−1

π
( x

en

)

is valid for x sufficiently large.

Finally, for arbitrary real number α, we consider the inequality

x

α + log x
e

4
1+log x

−2π(x) ≤ π
(x

e

)2

, (12)

which is generalization of (9), and it is equivalent to e
4

1+`
$(`)
α+`

≤ $(` − 1)2. Again, by
considering the expansion of $(`) with n = 2, we imply

e
4

1+`
$(`)

α + `
− $(` − 1)2 =

1 − α

`3
+

α2 − 5α− 4

`4
+ Oα

(

1

`5

)

(as ` → ∞).

Thus, for x sufficiently large, the inequality (12) is valid for α ≥ 1, and its reverse is
valid for α < 1.
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