
Applied Mathematics E-Notes, 13(2013), 8-16 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

A Note On The Constructive Proof Of Kakutani’s

Fixed Point Theorem With Uniformly Locally At

Most One Fixed Point Without Countable Choice∗

Yasuhito Tanaka
†

Received 30 January 2013

Abstract

We will prove Kakutani’s fixed point theorem in an n-dimensional simplex for

multi-functions which have uniformly closed graph and have uniformly locally at

most one fixed point from the viewpoint of constructive mathematics à la Bishop

without countable choice.

1 Introduction

In [7] we proved Kakutani’s fixed point theorem in an n-dimensional simplex for multi-
functions (multi-valued functions or correspondences) which are sequentially locally
non-constant and have uniformly closed graph from the viewpoint of constructive math-
ematics à la Bishop ([2], [3] and [4]). But we used the so called countable choice.
According to [5] countable choice is characterized as follows.

Let N denote the set of natural numbers. For X a set and S a subset of
X ×N, consider the following two statements.

1. For all n ∈ N there exists x ∈ X such that (x, n) ∈ S.

2. There exists a sequence of elements xn ∈ X such that (xn, n) ∈ S for all n ∈ N.

(2) implies (1). The axiom of countable choice says that (1) implies (2).
This axiom asserts the existence of certain sequences in X.

Countable choice, however, is not considered sufficiently constructive. So, some
authors such as [5] and [6] presented constructive analyses without countable choice.
In this paper according to these studies we will prove Kakutani’s fixed point theorem
in an n-dimensional simplex for multi-functions which have uniformly closed graph
and have uniformly locally at most one fixed point from the viewpoint of constructive
mathematics à la Bishop without countable choice. The concept of uniformly locally
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at most one fixed point is defined by reference to the concept of uniformly at most one
minimum in [6], and it is essentially equivalent to sequential local non-constancy in [7].
In [8] we present a proof of Brouwer’s fixed point theorem for single valued functions
without countable choice.

2 Proofs of Kakutani’s Fixed Point Theorem

2.1 With Countable Choice

In constructive mathematics a nonempty set is called an inhabited set. A set S is
inhabited if there exists an element of S. Also in constructive mathematics compactness
of a set means total boundedness with completeness. A set S is finitely enumerable if
there exist a natural number N and a mapping of the set {1, 2, . . . , N} onto S. An
ε-approximation to S is a subset of S such that for each x ∈ S there exists y in that
ε-approximation with ρ(x, y) < ε (ρ(x, y) is the distance between x and y). S is totally
bounded if for each ε > 0 there exists a finitely enumerable ε-approximation to S.

Completeness of a set in constructive mathematics with countable choice means
that every Cauchy sequence in the set converges.

Let us consider an n-dimensional simplex ∆ as a compact metric space. About a
totally bounded set, according to Corollary 2.2.12 in [4], we have the following result.

LEMMA 1. For each ε > 0 there exist totally bounded sets H1, . . . , Hh, each of
diameter less than or equal to ε, such that ∆ = ∪h

i=1Hi.

Let x = (x0, x1, . . . , xn) be a point in ∆ with n ≥ 2, and consider a function f from
∆ into itself. If f is a uniformly continuous function from ∆ into itself, according to
[9] and [10] it has an approximate fixed point. This means

For each ε > 0 there exists x ∈ ∆ such that ρ(f(x), x) < ε.

Since ε > 0 is arbitrary,
inf
x∈∆

ρ(f(x), x) = 0.

By Lemma 2.1 we have ∪h
i=1Hi = ∆, where h is a finite number. Since Hi is totally

bounded for each i, ρ(f(x), x) has the infimum in Hi because of the uniform continuity
of f and ρ. Thus, we can find Hi(1 ≤ i ≤ h) such that the infimum of ρ(f(x), x) in Hi

is 0, that is,
inf

x∈Hi

ρ(f(x), x) = 0,

for some i such that ∪h
i=1Hi = ∆.

By reference to the notion that a function has at most one minimum in [6] we define
the notion that a function has uniformly locally at most one fixed point. It is defined
as follows.

DEFINITION 1. (A function has uniformly locally at most one fixed point) There
exists ε̄ > 0 with the following property:
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For each ε > 0 less than or equal to ε̄ there exist totally bounded sets H1, H2, . . . , Hh,
each of diameter less than or equal to ε, such that ∆ = ∪h

i=1Hi and in at least one Hi

such that infx∈Hi
ρ(f(x), x) = 0, and for any δ > 0 and x, y ∈ Hi there exists ε > 0

such that if ρ(f(x), x) < ε and ρ(f(y), y) < ε, then ρ(x, y) ≤ δ.

Let F be a compact and convex valued multi-function from ∆ to the collection of
its inhabited subsets. Since ∆ and F (x) for x ∈ ∆ are compact, F (x) is located (see
Proposition 2.2.9 in [4]), that is, ρ(F (x), y) = infz∈F (x) ρ(z, y) for y ∈ ∆ exists. We
define the notion that a multi-function has uniformly locally at most one fixed point as
follows;

DEFINITION 2. (A multi-function has uniformly locally at most one fixed point)
There exists ε̄ > 0 with the following property: For each ε > 0 less than or equal to
ε̄ there exist totally bounded sets H1, H2, . . . , Hh, each of diameter less than or equal
to ε, such that ∆ = ∪h

i=1Hi and in at least one Hi such that infx∈Hi
ρ(F (x), x) = 0,

and for any δ > 0 and x, y ∈ Hi there exists ε > 0 such that if ρ(F (x), x) < ε and
ρ(F (y), y) < ε, then ρ(x, y) ≤ δ.

A graph of a multi-function F from ∆ to the collection of its inhabited subsets is

G(F ) = ∪x∈∆{x} × F (x).

If the following condition is satisfied, we say that F has a uniformly closed graph.

For any x, x′ and ε > 0 there exists δ > 0 such that if ρ(x, x′) < δ, then for
any y ∈ F (x) and some y′ ∈ F (x′) ρ(y, y′) < ε, that is, ρ(y, F (x′)) < ε for
some y′ ∈ F (x′), and for any y′ ∈ F (x′) and some y ∈ F (x) ρ(y, y′) < ε,
that is, ρ(y′, F (x)) < ε for some y ∈ F (x).

A fixed point of a multi-function is defined as follows;

DEFINITION 3. x is a fixed point of a multi-function F if x ∈ F (x).

A constructive proof of Kakutani’s fixed point theorem with countable choice is as
follows.

THEOREM 1. If F is a compact and convex valued multi-function with uniformly
closed graph from an n-dimensional simplex ∆ to the collection of its inhabited subsets
and it has uniformly locally at most one fixed point, then it has a fixed point.

The proof of 2 of this theorem is based on Lemma 2 in [1].

PROOF.

1. Let ∆ be an n-dimensional simplex, and consider m-th subdivision of ∆. Sub-
division in a case of 2-dimensional simplex is illustrated in Figure 1. In a 2-
dimensional case we divide each side of ∆ in m equal segments, and draw the
lines parallel to the sides of ∆. Then, the 2-dimensional simplex is partitioned
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Figure 1: Subdivision of 2-dimensional simplex

into m2 triangles. We consider subdivision of ∆ inductively for cases of higher
dimension.

Let us partition ∆ sufficiently fine, and define a uniformly continuous function
fm : ∆ −→ ∆ as follows. If x is a vertex of a simplex constructed by m-th
subdivision of ∆, let fm(x) = y for some y ∈ F (x). For other x ∈ ∆ we define
fm(x) by a convex combination of the values of F at vertices of a simplex xm

0 ,
xm

1 , . . . , xm
n . Let

∑n
i=0 λi = 1, λi ≥ 0,

fm(x) =

n∑

i=0

λif
m(xm

i ) with x =

n∑

i=0

λix
m
i .

Since fm is clearly uniformly continuous, it has an approximate fixed point ac-
cording to [9] and [10]. Let x∗ be an approximate fixed point of fm, then for
each ε

2 > 0 there exists x∗ ∈ ∆ which satisfies

ρ(x∗, fm(x∗)) <
ε

2
.

Consider a sequence, (∆m)m≥1, of partition of ∆ and a sequence of the distance
between vertices of simplices constructed by partition (ρ(xm

i , xm
j ))m≥1, i 6= j.

Suppose ρ(xm
i , xm

j ) −→ 0. Since F has a uniformly closed graph, for any ym
i ∈

F (xm
i ) and some ym

j ∈ F (xm
j ), ρ(ym

i , ym
j ) −→ 0, and for any ym

j ∈ F (xm
j ) and

some ym
i ∈ F (xm

i ), ρ(ym
i , ym

j ) −→ 0. x∗ is represented by x∗ =
∑n

i=0 λix
m
i . If

ρ(xm
i , xm

j ) −→ 0 for each pair of i and j (j 6= i), ρ(xm
i , x∗) −→ 0. Thus, for any

ym
i ∈ F (xm

i ) and some y∗i ∈ F (x∗), we have ρ(ym
i , y∗i ) < ε

2 . For different i, that
is, different xm

i , y∗i may be different. But, the convexity of F (x∗) implies

y∗ =

n∑

i=0

λiy
∗
i ∈ F (x∗).
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Since, for sufficiently large m we have ρ(ym
i , y∗i ) < ε

2 for each i, and

fm(x∗) =

n∑

i=0

λif
m(xm

i ) =

n∑

i=0

λiy
m
i ,

we obtain ρ(fm(x∗), y∗) < ε
2 . From ρ(x∗, fm(x∗)) < ε

2

ρ(x∗, y∗) < ε. (1)

Since y∗ ∈ F (x∗), x∗ is an approximate fixed point of F . ε is arbitrary, and so

inf
x∗∈∆

ρ(x∗, F (x∗)) = 0.

This means
inf

x∗∈Hi

ρ(F (x∗), x∗) = 0

in some Hi such that ∆ = ∪h
i=1Hi.

2. Choose a sequence (xl)l≥1 in Hi such that ρ(F (xl), xl) −→ 0. Compute L such
that ρ(F (xl), xl) < δ for all l ≥ L. Then, for l, l′ ≥ L we have ρ(xl, xl′) ≤ ε.
Since ε > 0 is arbitrary, (xl)l≥1 is a Cauchy sequence in Hi, and converges to a
limit x̂ ∈ Hi. The uniformly closed graph property of F yields x̂ ∈ F (x̂), and so
x̂ is a fixed point of F .

2.2 Without Countable Choice

Referring to [5] and [6] we investigate the proof of Kakutani’s fixed point theorem for
multi-functions with uniformly closed graph, which have uniformly locally at most one
fixed point, without countable choice.

First we present the following lemma. It is based on Lemma 1 of [6].

LEMMA 2. Let ∆ be an n-dimensional simplex, F be a multi-function from ∆ to
the collection of its inhabited subsets with uniformly closed graph, and g be a function
from ∆ to R. Consider ρ(F (x), x) = infy∈F (x) ρ(y, x) for x ∈ ∆. It is a function from ∆

to R. If infx∈Hi
ρ(F (x), x) = 0 in some Hi such that ∪h

i=1Hi = ∆, and F has uniformly
locally at most one fixed point, then the following (a) and (b) are equivalent.

(a) For any δ > 0 and x, y ∈ Hi there exists ε > 0 such that if ρ(F (x), x) < ε and
g(y) < ε, then ρ(x, y) ≤ δ; and

(b) For any z and δ > 0 and x, y ∈ Hi there exists ε > 0 such that if ρ(F (x), x) < ε

and g(y) < ε, then |ρ(x, z)− ρ(y, z)| ≤ δ.

1. (b) is derived from (a) because ρ(x, z) − ρ(y, z) ≤ ρ(x, y) and ρ(y, z) − ρ(x, z) ≤
ρ(x, y).
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2. Since F has uniformly locally at most one fixed point, for any δ, there exists η

such that for any x, z ∈ Hi,

if ρ(F (x), x) < η and ρ(F (z), z) < η,

then ρ(x, z) ≤
δ

3
.

By (b) there exists ε such that for any x, y ∈ Hi,

if ρ(F (x), x) < ε and g(y) < ε,

then |ρ(x, z) − ρ(y, z)| ≤
δ

3
.

We can make ε ≤ η. Then, we have

ρ(x, y) ≤ ρ(x, z) + ρ(y, z) ≤ 2ρ(x, z) + |ρ(x, z) − ρ(y, z)|

<
2

3
δ +

δ

3
= δ.

A location on Hi such that ∪h
i=1Hi = ∆ is a function Φ : ∆ −→ R with infx∈Hi

Φ =
0 and

Φ(x) − Φ(y) ≤ ρ(x, y) ≤ Φ(x) + Φ(y), (2)

for all x, y ∈ Hi. It is equivalent to

Φ(y) ≥ |Φ(x) − ρ(x, y)|.

Φ is nonnegative and uniformly continuous, and if x 6= y, that is, ρ(x, y) > 0, then
either Φ(x) > 0 or Φ(y) > 0. Φ vanishes at most one point in Hi.

Let Ĥi be the set of locations on Hi. According to Theorem 3 of [5] we have the
following result.

If Φ and Ψ are locations on Hi, then

ρ(Φ, Ψ) = sup
y∈Hi

|Φ(y) − Ψ(y)| = inf
x∈Hi

(Φ(x) + Ψ(x))

exists and defines a metric on Ĥi.

Every point z ∈ Hi gives rise to the location ẑ for each x ∈ Hi defined by

ẑ(x) = ρ(z, x).

infx∈Hi
ẑ(x) = 0, and triangle inequality gives

ẑ(x) − ẑ(y) = ρ(z, x) − ρ(z, y) ≤ ρ(x, y),

ρ(x, y) ≤ ρ(z, x) + ρ(z, y) = ẑ(x) + ẑ(y)
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Call ẑ as the image of z. We can identify a point in Hi with its image.
Let ŵ be a location defined by ŵ(x) = ρ(w, x) for some w 6= z, w ∈ Hi. It is the

image of w. Since

ρ(z, w) = inf
x∈Hi

(ρ(z, x) + ρ(w, x)) = inf
x∈Hi

(ẑ(x) + ŵ(x)),

we have
ρ(z, w) = ρ(ẑ, ŵ).

Thus, the map from Hi into Ĥi is an isometry (distance preserving map). If Φ ∈ Ĥi,
then we have

|Φ(x) − ẑ(x)| = |Φ(x) − ρ(z, x)| ≤ Φ(z)

for every x. Φ(z) can be arbitrarily small. Thus, the set of images of points of Hi is
dense in Ĥi, and if Hi is complete

Φ = ẑ

for some z ∈ Hi. Let h : Hi −→ R and a ∈ R with

inf
x∈Hi

|h(x)− a| = 0.

For every g : Hi −→ R,
lim

h(x)−→a
g(x) = b

represents;

for any ε there exists δ such that

|h(x) − a| < δ ⇒ |g(x) − b| < ε. (3)

According to [6] a necessary and sufficient condition for the existence of a limit
limh(x)−→a g(x) of a function g is that for any ε there exists δ such that if |h(x)−a| < δ

and |h(y) − a| < δ, then |g(x) − g(y)| < ε. From (2) every location Φ ∈ Ĥi satisfies

Φ(x) = lim
Φ(y)−→0

ρ(x, y).

A function g : ∆ −→ R extends to a mapping ĝ : ∆̂ −→ R̂ = R with

ĝ(Φ)(r) = lim
Φ(x)−→0

ρ(g(x), r)

for every r ∈ R. ∆̂ is the set of locations on ∆ (see Theorem 4 of [5]).
Now we show the following theorem. It is based on Lemma 2 and Theorem 5 of [6].

THEOREM 2.

1. Let F be a multi-function with uniformly closed graph from an n-dimensional sim-
plex ∆ to the collection of its inhabited subsets, and assume infx∈Hi

ρ(F (x), x) =

0 in some Hi such that
∑h

i=1 Hi = ∆, and F has uniformly locally at most one
fixed point. Then,

Φρ(x) = lim
ρ(F (y),y)−→0

ρ(x, y)
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defines Φρ ∈ Ĥi with ρ̂(Φρ)(0) = 0, where

ρ̂(Φρ)(0) = lim
Φρ(x)−→0

ρ(ρ(F (x), x), 0).

2. f has a fixed point in Hi.

PROOF.

1. If g(y) = ρ(F (y), y), the condition (a) of Lemma 2 is to say that F has uniformly
locally at most one fixed point, and the condition (b) means that limρ(F (y),y)−→0 ρ(x, y)
exists for every x. We show that Φρ is a location on Hi. Since F has uniformly
locally at most one fixed point, for any δ > 0 there exists ε > 0 such that

ρ(F (x), x) < ε and ρ(F (y), y) < ε ⇒ ρ(x, y) < δ.

Since infx∈Hi
ρ(F (x), x) = 0, for this ε there is x with ρ(F (x), x) < ε. If also

ρ(F (y), y) < ε, then ρ(x, y) < δ. Thus, we have the following result.

For any δ and y ∈ Hi there exist ε and x such that

ρ(F (y), y) < ε ⇒ ρ(x, y) < δ.

By triangle inequality we get

Φρ(y) − Φρ(z) = lim
ρ(F (x),x)−→0

(ρ(y, x) − ρ(z, x)) ≤ ρ(y, z),

and
ρ(y, z) ≤ lim

ρ(F (x),x)−→0
(ρ(y, x) + ρ(z, x)) = Φρ(y) + Φρ(z).

Thus, Φρ is a location on Hi. Let us prove

ρ̂(Φρ)(0) = lim
Φρ(x)−→0

ρ(ρ(F (x), x), 0) = lim
Φρ(x)−→0

ρ(F (x), x) = 0.

The last equality means that for any x and ε > 0, there exists δ > 0 such
that if Φρ(x) < δ

2 , then ρ(F (x), x) < ε. We can make δ ≤ ε
3 . Since F has

uniformly closed graph, there exists δ such that for any x, y if ρ(x, y) < δ, then
ρ(F (x), F (y)) < ε

3
, where

ρ(F (x), F (y)) = inf
x′∈F (x)

ρ(x′, F (y)) = inf
x′∈F (x)

inf
y′∈F (y)

ρ(x′, y′).

Let x satisfy Φρ(x) < δ
2 . There exists 0 < η ≤ ε

3 such that for any y if ρ(F (y), y) <

η, then |ρ(x, y) − Φρ(x)| < δ
2 . Since infx∈Hi

ρ(F (x), x) = 0, there exists y which
satisfies ρ(F (y), y) < η. Then, we have

ρ(x, y) ≤ Φρ(x) + |ρ(x, y) − Φρ(x)| <
δ

2
+

δ

2
= δ,

and

ρ(F (x), x) ≤ ρ(F (y), y) + ρ(x, y) + ρ(F (x), F (y))

<
ε

3
+

ε

3
+

ε

3
= ε.
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2. Since Hi is a closed subset of ∆, it is complete. Thus, Φρ corresponds to some
point z in Hi, that is, Φρ = ẑ for some z ∈ Hi, and Φρ(z) = ẑ(z) = 0. Then,

ρ̂(Φρ)(0) = lim
Φρ(x)−→0

ρ(F (x), x) = 0

means
ρ(F (z), z) = 0,

that is, z ∈ F (z), and z is a fixed point of F .
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