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Abstract

We discuss the convergence of weak nonnegative reversible splittings and
weaker reversible splittings.

1 Introduction

Consider the linear system
Ax = b. (1)

For the iterative solution of system (1) it is customary to represent the matrix A as

A = M −N.

If the matrix M is nonsingular, the iterative method is expressed in the form

x(n+1) = M−1Nx(n) +M−1b, n > 0 . (2)

As is well known, the above iterative scheme converges to the unique solution x = A−1b
of system (1) for each initial vector x(0) if, and only if, ρ(M−1N) < 1, where ρ(M−1N)
is the spectral radius of the iteration matrix M−1N [2].

The theory of matrix splittings plays an important role in convergence analysis for
the iterative scheme (2) [2, 4, 5, 6]. Some splittings, however, are not included in
definitions presented by Varga [2], Miller and Neumann [3], Woźnicki [4, 5, 6], among
others, so that we cannot discuss its convergence according to the known theories.
Yang [1], however, introduced the concept of reversible splittings of matrix:

DEFINITION 1 ([1]). Let A ∈ Rn×n. Then the decomposition A = M−N is called
a reversible splitting of matrix A if M and N are nonsingular, and λi(M−1A) > 0 for
i = 1, 2, ..., n.

DEFINITION 2 ([1]). Let A ∈ Rn×n. Then the reversible splitting A = M −N is
called

(a) a regular reversible splitting of A if M−1 ≥ 0 and A ≥ 0;
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(b) a nonnegative reversible splitting of A if M−1 ≥ 0, M−1A ≥ 0 and AM−1 ≥ 0;

(c) a weak nonnegative reversible splitting of A if M−1 ≥ 0 and either M−1A ≥ 0
(the first type) or AM−1 ≥ 0 (the second type);

(d) a weak reversible splitting of A if M−1A ≥ 0 and AM−1 ≥ 0; and

(e) a weaker reversible splitting of A if eitherM−1A ≥ 0 (the first type) or AM−1 ≥ 0
(the second type).

Also, the author proved that the splittings defined in the first two items of Definition
2 are convergent if N−1 > 0 [1]. In this paper, we will discuss the conditions of
convergence for weak (weaker) splitting. We need the following notations:
Let λi for i = 1, 2, ..., n be the eigenvalues of n × n complex matrix A, σ(A) =

min1≤i≤n |λi|, and I be the identity matrix.

2 Convergence of Weak Reversible Splitting

In this section, we will discuss the convergence of splitting defined in the third item of
Definition 2.

LEMMA 1 ([2]). IfM is an n×n matrix with ρ(M) < 1, then I−M is nonsingular
and

(I −M)−1 = I +M +M2 + · · · ,

the series on the right converges; conversely, if the series on the right converges, then
ρ(M) < 1.

LEMMA 2 ([1]). Let A = M −N be a reversible splitting of A and ρ(M−1A) < 1.
Then ρ(M−1N) < 1.

LEMMA 3 ([1]). Let A = M −N be a reversible splitting of A and ρ(M−1A) < 1.
Then

ρ(M−1N) = 1− σ(M−1A).

THEOREM 1. Let A = M − N be a weak nonnegative reversible splitting of the
first type. Then the following conditions are equivalent

(a) N−1 ≥ 0;

(b) N−1 ≥M−1;

(c) N−1M ≥ 0;

(d) ρ(M−1A) =
ρ(N−1M)− 1

ρ(N−1M)
;
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(e) ρ(M−1A) < 1;

(f) (I −M−1A)−1 ≥ 0;

(g) N−1A ≥ 0;

(h) N−1A ≥M−1A;

(i) ρ(M−1A) =
ρ(N−1A)

1 + ρ(N−1A)
.

PROOF. (a)⇒(b): From N−1 > 0 and M−1A > 0, we have

M−1AN−1 = M−1(M −N)N−1 = N−1 −M−1 > 0,

that is, N−1 ≥M−1.
(b)⇒(c): Obvious.
(c)⇒(d): From A = M −N = N(N−1M − I), we have

M−1A = M−1N(N−1M − I) = (N−1M)−1(N−1M − I). (3)

SinceN−1M > 0, for the eigenvalue ρ(N−1M) 6= 0 there exists an eigenvector x > 0(see
[2]) such that

N−1Mx = ρ(N−1M)x.

Now by equality (3), we have

M−1Ax =
ρ(N−1M)− 1

ρ(N−1M)
x,

i.e., ρ(N
−1M)−1

ρ(N−1M) is an eigenvalue of M−1A. Hence,

ρ(M−1A) > ρ(N−1M)− 1

ρ(N−1M)
. (4)

On the other hand, since M−1A > 0, for the eigenvalue ρ(M−1A), there exists an
eigenvector y > 0 such that

M−1Ay = ρ(M−1A)y.

Now by equality (3), we have

M−1Ay = (N−1M)−1(N−1M − I)y,

i.e., ρ(M−1A) is an eigenvalue of (N−1M)−1(N−1M − I). Hence

ρ(M−1A) 6 ρ(N−1M)− 1

ρ(N−1M)
. (5)
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From inequalities (4) and (5) we obtain (d).
(d)⇒(e): Obvious.
(e)⇒(f): From Lemma 1, we have

(I −M−1A)−1 =

∞∑
i=0

(M−1A)i > 0.

(f)⇒(g): From N = M −A and M−1A > 0, we have

N−1A = (M −A)−1A = (I −M−1A)−1 ·M−1A > 0.

(g)⇔(h): From A = M −N, we have

N−1A = N−1M ·M−1A = N−1(N +A) ·M−1A = M−1A+N−1A ·M−1A.

Then
N−1A−M−1A = N−1A ·M−1A > 0

because N−1A > 0 and M−1A > 0.
The converse is trivial because M−1A > 0.
(g)⇒(i): Similar to (c)⇒(d), we use

M−1A = (N +A)−1A = (I +N−1A)−1 ·N−1A

instead of equality (3).
(g)⇒(c): From A = M −N, we have

N−1M = N−1(N +A) = I +N−1A > 0

because it is a sum of nonnegative matrices.
(f)⇒(a): From N = M −A, M−1 > 0 and (I −M−1A)−1 > 0, we have

N−1 = (M −A)−1 = (I −M−1A)−1 ·M−1 > 0.

REMARK 1. The above theorem also holds if we replace “first type" by “second
type" and matrices N−1M , M−1A and N−1A by MN−1, AM−1 and AN−1 respec-
tively.

REMARK 2. By Lemma 3 and items (d) and (i) of Theorem 1, the spectral radius
ρ(M−1N) can be obtained as follows:

ρ(M−1N) =
1

σ(N−1M)
(6)

or

ρ(M−1N) =
1

1 + σ(N−1A)
. (7)
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Theorem 1 provides some suffi cient conditions for a weak nonnegative reversible
splitting both of the first and the second type to be convergent, and we can see that,
as pointed out in [1], the condition N−1 > 0 also plays an important role in the
convergence of this type of reversible splitting, in fact, the splittings defined in first
three items of Definition 2 are convergent if and only if N−1 > 0, which means that
both conditions N−1 > 0 and ρ(M−1N) < 1 are equivalent.

EXAMPLE 1. Let A =

(
1 −1
−1 2

)
= M −N where

M =

(
3 −2
−3 4

)
and N =

(
2 −1
−2 2

)
.

It is a weak nonnegative reversible splitting of the first type [1], and

N−1 =

(
1 1

2

1 1

)
> 0.

By Theorem 1, we know that the splitting is convergent. In fact, we have

M−1A =

( 1
3 0

0 1
2

)
> 0 and N−1A =

( 1
2 0

0 1

)
> 0.

From σ(M−1A) =
1

3
and σ(N−1A) =

1

2
, we obtain

ρ(M−1N) = 1− σ(M−1A) =
2

3
< 1 or ρ(M−1N) =

1

1 + σ(N−1A)
=

2

3
< 1 .

As for weak and weaker splittings, the assumption N−1 > 0 is not a suffi cient condition
in order to ensure the convergence of a given splitting of matrix A; it is also possible
to construct a convergent weak or weaker splitting even if N−1 � 0.

EXAMPLE 2. Let A =

( 1
2 0
2
3

1
6

)
= M −N where

M =

(
1 0

1 1
2

)
and N =

( 1
2 0
1
3

1
3

)
.

Evidently, M,N are nonsingular,

M−1 =

(
1 0

−2 2

)
� 0, N−1 =

(
2 0
−2 3

)
� 0,

M−1A =

( 1
2 0
1
3

1
3

)
> 0 and AM−1 =

( 1
2 0
1
3

1
3

)
> 0.

From Definition 2, it is a weak reversible splitting, and although N−1 � 0, the splitting

is convergent because we have ρ(M−1N) = 1− σ(M−1A) = 1− 1

3
=

2

3
< 1.



Z. M. Yang 73

EXAMPLE 3. Let A =

( 1
2 2

− 12 −4

)
= M −N where

M =

( 3
2 6

− 14 −2

)
and N =

(
1 4
1
4 2

)
.

Evidently M, N are nonsingular,

M−1 =

( 4
3 4

− 16 −1

)
� 0 and N−1 =

(
2 −4
− 14 1

)
� 0,

and

M−1A =

(− 43 − 403
5
12

11
3

)
� 0 and AM−1 =

( 1
3 0

0 2

)
> 0.

It is a weaker reversible splitting of the second type. Here N−1 � 0, and the splitting
does not converge because we can easily obtain that ρ(M−1N) = 1.

EXAMPLE 4. Let A =

 4 0 1
−1 0 2
1 3 3

 = M −N where

M =

12 −36 7
−3 9 14
3 − 92 21

 and N =

 8 −36 6
−2 9 12
2 − 152 18

 .

It is also a weaker reversible splitting of the first type [1], and although

N−1 =

−
14
9 − 6718 3

− 1027 − 2227
2
3

1
54

2
27 0

 � 0,

the splitting is convergent (see Example 7).

Therefore we need to establish other suffi cient conditions for a weaker reversible
splitting.

3 Convergence of Weaker Reversible Splitting

We have

THEOREM 2. Let A = M − N be a weaker reversible splitting of the first type.
Then the following inequality holds if N−1A > 0,

ρ(M−1A) =
ρ(N−1A)

1 + ρ(N−1A)
< 1 . (8)
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Conversely, if ρ(M−1A) < 1, then N−1A > 0.

PROOF. The proof of equality (8) under the condition N−1A > 0 can be accom-
plished just as (g)⇒(i) of Theorem 2. Conversely, from A = M −N we have

N = M −A = M(I −M−1A).

If ρ(M−1A) < 1, then from Lemma 1 and Definition 1, it follows that

N−1A = [M(I −M−1A)]−1A = (I −M−1A)−1 ·M−1A

=

∞∑
i=1

(M−1A)i+1 > 0.

The proof is complete.

REMARK 3. Theorem 2 also holds if we replace “first type" by “second type" and
matrix N−1A by AN−1.

As an immediate consequence of Lemma 2 and Theorem 2, we obtain the following
result.

COROLLARY 1. Let A = M − N be a weaker reversible splitting of the first
(second) type. If N−1A > 0 (AN−1 > 0), then ρ(M−1N) < 1.

Similar to the proof (c)⇒ (d) of Theorem 2, we have the following

THEOREM 3. Let A = M − N be a weaker reversible splitting of the first type.
Then the following inequality holds if N−1M > 0 and

ρ(M−1A) =
ρ(N−1M)− 1

ρ(N−1M)
< 1.

Conversely, if ρ(M−1A) < 1, then N−1M > 0.

REMARK 4. Theorem 3 also holds if we replace “first type" by “second type" and
matrix N−1M by MN−1.

COROLLARY 2. Let A = M − N be a weaker reversible splitting of the first
(second) type. If N−1M > 0 (MN−1 > 0), then ρ(M−1N) < 1.

REMARK 5. For a weak reversible splitting defined in the fourth item of Definition
2, we can prove that it is convergent if N−1M > 0 and N−1A > 0, and from

N−1M = N−1(N +A) = I +N−1A

we know that N−1M > 0 if N−1A > 0, which implies the following result.

COROLLARY 3. Let A = M − N be a weak reversible splitting. If N−1A > 0,
then ρ(M−1N) < 1.



Z. M. Yang 75

EXAMPLE 5. In the weak reversible splitting given in Example 2, where

N−1A =

(
1 0

1 1
2

)
> 0,

by Corollary 3, we know that the splitting converges.

EXAMPLE 6. In the weaker reversible splitting of the second type given in Example
3, where

AN−1 =

(
1
2 0

0 −2

)
� 0 and MN−1 =

(
3
2 0

0 −1

)
� 0,

by Corollary 1 or Corollary 2, we know that the splitting does not converge.

EXAMPLE 7. In the weaker reversible splitting of the first type given in Example
4, where

N−1M =


3
2 9 0

0 3 0

0 0 7
6

 > 0 and N−1A =


1
2 9 0

0 2 0

0 0 1
6

 > 0

by Corollary 1 or Corollary 2, we know that the splitting is convergent. In fact, from
the above matrices we know that

σ(N−1M) =
7

6
and σ(N−1A) =

1

6
,

hence from equalities (6) and (7) we obtain

ρ(M−1N) =
1

σ(N−1M)
=

6

7
< 1 and ρ(M−1N) =

1

1 + σ(N−1A)
=

6

7
< 1.

4 Notes

According to Definition 2, we know that “if M−1 > 0 and A > 0, then M−1A > 0",
that is, if A = M −N is a regular reversible splitting of matrix A, it must be a weak
nonnegative reversible splitting of A, but the converse is not true. See Example 1,
where A = M −N is a weak nonnegative reversible splitting of the first type, and we
know that any splittings of matrix

A =

(
1 −1
−1 2

)
are not regular reversible splitting because A � 0, so we cannot discuss the rates of
convergence of the above two kinds of reversible splittings under the condition A � 0.
On the other hand, if A > 0, then the regular reversible splitting of matrix A is

equivalent to the weak nonnegative reversible splitting, so they have the same rates of
convergence.
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In fact, we can compare the speed of convergence of two different (and evidently
convergent) reversible splittings of the same type, for example, let

A = M1 −N1 = M2 −N2

be two regular reversible splittings of matrix A, then we can discuss which one of the
two splittings will converge faster. The theories about them will be studied elsewhere.
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