Third-Order BVP With Advanced Arguments And Stieltjes Integral Boundary Conditions^{*}

Jian-Ping Sun[†], Ping Yan[‡], Fang-Di Kong[§]

Received 3 January 2013

Abstract

A class of third-order boundary value problem with advanced arguments and Stieltjes integral boundary conditions is discussed. Some existence criteria of at least three positive solutions are established. The main tool used is a fixed point theorem due to Avery and Peterson.

1 Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics and physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [6].

Recently, third-order boundary value problems (BVPs for short) with integral boundary conditions, which cover third-order multi-point BVPs as special cases, have attracted much attention from many authors, see [1, 3, 4, 5, 9, 10, 11] and the references therein. In particular, in 2012, Jankowski [9] studied the existence of multiple positive solutions to the following BVP

$$\begin{cases} u'''(t) + h(t)f(t, u(\alpha(t))) = 0, \ t \in (0, 1), \\ u(0) = u''(0) = 0, \ u(1) = \beta u(\eta) + \lambda[u], \end{cases}$$
(1)

where λ denoted a linear functional on C[0, 1] given by

$$\lambda[u] = \int_0^1 u(t) d\Lambda(t) \tag{2}$$

involving a Stieltjes integral with a suitable function Λ of bounded variation. The measure $d\Lambda$ could be a signed one. The situation with a signed measure $d\Lambda$ was first

^{*}Mathematics Subject Classifications: 34B10, 34B18.

[†]Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China

[‡]Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China

[§]Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China

discussed in [12, 13] for second-order differential equations; it was also discussed in [7, 8] for second-order impulsive differential equations.

Among the boundary conditions in (1), only u(1) is related to a Stieltjes integral. A natural question is that whether we can obtain similar results when u(0) is also related to a Stieltjes integral. To answer this question, in this paper, we are concerned with the following third-order BVP with advanced arguments and Stieltjes integral boundary conditions

$$\begin{cases} u'''(t) + f(t, u(\alpha(t))) = 0, \ t \in (0, 1), \\ u(0) = \gamma u(\eta) + \lambda[u], \ u''(0) = 0, \ u(1) = \beta u(\eta) + \lambda[u]. \end{cases}$$
(3)

Throughout this paper, we always assume that $\alpha : [0,1] \rightarrow [0,1]$ is continuous and $\alpha(t) \geq t$ for $t \in [0,1]$, $0 < \eta < 1$, $0 \leq \gamma < \beta < 1$, Λ is a suitable function of bounded variation and $\lambda[u]$ is defined as in (2). It is important to indicate that it is not assumed that $\lambda[u]$ is positive to all positive u.

In order to obtain our main results, we need the following concepts and Avery and Peterson fixed point theorem [2].

Let E be a real Banach space and K be a cone in E.

A map Θ is said to be a nonnegative continuous convex functional on K if $\Theta: K \to [0, \infty)$ is continuous and

$$\Theta(tu + (1-t)v) \le t\Theta(u) + (1-t)\Theta(v)$$

for all $u, v \in K$ and $t \in [0, 1]$.

Similarly, A map Φ is said to be a nonnegative continuous concave functional on K if $\Phi: K \to [0, \infty)$ is continuous and

$$\Phi(tu + (1-t)v) \ge t\Phi(u) + (1-t)\Phi(v)$$

for all $u, v \in K$ and $t \in [0, 1]$.

Let φ and Θ be nonnegative continuous convex functionals on K, Φ be a nonnegative continuous concave functional on K and Ψ be a nonnegative continuous functional on K. For positive numbers a, b, c, d, we define the following sets:

$$\begin{split} K(\varphi,d) &= \{ u \in K : \varphi(u) < d \}, \\ K(\varphi,\Phi,b,d) &= \{ u \in K : b \leq \Phi(u), \varphi(u) \leq d \}, \\ K(\varphi,\Theta,\Phi,b,c,d) &= \{ u \in K : b \leq \Phi(u), \ \Theta(u) \leq c, \varphi(u) \leq d \} \end{split}$$

and

$$R(\varphi, \Psi, a, d) = \{ u \in K : a \le \Psi(u), \varphi(u) \le d \}.$$

THEOREM 1 (Avery and Peterson fixed point theorem). Let E be a real Banach space and K be a cone in E. Let φ and Θ be nonnegative continuous convex functionals on K, Φ be a nonnegative continuous concave functional on K, and Ψ be a nonnegative continuous functional on K satisfying $\Psi(ku) \leq k\Psi(u)$ for $0 \leq k \leq 1$, such that for some positive numbers M and d,

$$\Phi(u) \leq \Psi(u)$$
 and $||u|| \leq M\varphi(u)$

for all $u \in \overline{K(\varphi, d)}$. Suppose $S : \overline{K(\varphi, d)} \to \overline{K(\varphi, d)}$ is completely continuous and there exist positive numbers a, b, c with a < b, such that

- (C1) $\{u \in K(\varphi, \Theta, \Phi, b, c, d) : \Phi(u) > b\} \neq \phi \text{ and } \Phi(Su) > b \text{ for } u \in K(\varphi, \Theta, \Phi, b, c, d);$
- (C2) $\Phi(Su) > b$ for $u \in K(\varphi, \Phi, b, d)$ with $\Theta(Su) > c$; and
- (C3) $\theta \notin R(\varphi, \Psi, a, d)$ and $\Psi(Su) < a$ for $u \in R(\varphi, \Psi, a, d)$ with $\Psi(u) = a$.

Then S has at least three fixed points $u_1, u_2, u_3 \in \overline{K(\varphi, d)}$, such that

$$b < \Phi(u_1),$$

 $a < \Psi(u_2)$ with $\Phi(u_2) < b$

and

$$\Psi(u_3) < a.$$

2 Main Results

Let $\Delta = 1 - \gamma - (\beta - \gamma)\eta$. Then $\Delta > 0$.

LEMMA 1. For any $y \in C[0, 1]$, the BVP

$$\begin{cases} u'''(t) = -y(t), \ t \in (0,1), \\ u(0) = \gamma u(\eta) + \lambda[u], \ u''(0) = 0, \ u(1) = \beta u(\eta) + \lambda[u] \end{cases}$$
(4)

has the unique solution

$$u(t) = \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta}\lambda[u] + \frac{\gamma + (\beta - \gamma)t}{\Delta}\int_0^1 k(\eta, s)y(s)ds + \int_0^1 k(t, s)y(s)ds$$

for $t \in [0, 1]$ where

$$k(t,s) = \frac{1}{2} \begin{cases} (1-t)(t-s^2), \ 0 \le s \le t \le 1, \\ t(1-s)^2, \ 0 \le t \le s \le 1. \end{cases}$$

PROOF. By integrating the differential equation in (4) three times from 0 to t and using the boundary condition u''(0) = 0, we get

$$u(t) = u(0) + u'(0)t - \frac{1}{2} \int_0^t (t-s)^2 y(s) ds, \ t \in [0,1].$$
(5)

So,

$$u'(0) = u(1) - u(0) + \frac{1}{2} \int_0^1 (1-s)^2 y(s) ds.$$
 (6)

Sun et. al

In view of (5), (6) and the boundary conditions $u(0) = \gamma u(\eta) + \lambda[u]$ and $u(1) = \beta u(\eta) + \lambda[u]$, we have

$$u(t) = [\gamma + (\beta - \gamma)t]u(\eta) + \lambda[u] + \int_0^1 k(t, s)y(s)ds, \ t \in [0, 1].$$
(7)

So,

$$u(\eta) = \frac{1}{\Delta}\lambda[u] + \frac{1}{\Delta}\int_0^1 k(\eta, s)y(s)ds.$$
(8)

Substituting (8) into (7), we get

$$u(t) = \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta}\lambda[u] + \frac{\gamma + (\beta - \gamma)t}{\Delta}\int_0^1 k(\eta, s)y(s)ds + \int_0^1 k(t, s)y(s)ds$$

for $t \in [0, 1]$.

LEMMA 2 [9].
$$0 \le k(t,s) \le \frac{1}{2}(1+s)(1-s)^2$$
 for $(t,s) \in [0,1] \times [0,1]$

Throughout, we assume that the following conditions are fulfilled:

(H1) $f \in C([0,1] \times [0,+\infty), [0,+\infty));$ (H2)

$$\int_{0}^{1} d\Lambda(t) \ge 0, \ \int_{0}^{1} t d\Lambda(t) \ge 0, \ \kappa(s) = \int_{0}^{1} k(t,s) d\Lambda(t) \ge 0, \ s \in [0,1].$$

For convenience, we denote

$$\rho = [1 - (\beta - \gamma)\eta] \int_0^1 d\Lambda(t) + (\beta - \gamma) \int_0^1 t d\Lambda(t)$$

and

$$\rho' = \gamma \int_0^1 d\Lambda(t) + (\beta - \gamma) \int_0^1 t d\Lambda(t).$$

Obviously, ρ , $\rho' \ge 0$. In the remainder of this paper, we always assume that $\rho < \Delta$.

Let C[0,1] be equipped with the maximum norm. Then C[0,1] is a Banach space. Define

$$K = \left\{ u \in C[0,1] : u(t) \ge 0, \ t \in [0,1], \ \min_{t \in [\eta,1]} u(t) \ge \Gamma \|u\|, \ \lambda[u] \ge 0 \right\},\$$

where

$$\Gamma = \min\left\{\frac{\beta(1-\eta)}{1-\beta\eta}, \frac{\beta\eta}{1-\gamma(1-\eta)}\right\}.$$

Then K is a cone in C[0,1].

Now, we define operators T and S on K by

$$(Tu)(t) = \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta}\lambda[u] + (Fu)(t), \ t \in [0, 1]$$

and

$$(Su)(t) = \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta - \rho}\lambda[Fu] + (Fu)(t), \ t \in [0, 1],$$

where

$$(Fu)(t) = \frac{\gamma + (\beta - \gamma)t}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 k(t, s) f(s, u(\alpha(s))) ds$$

for $t \in [0, 1]$.

LEMMA 3. $T, S: K \to K$.

PROOF. Let $u \in K$. Then it is easy to verify that

$$(Tu)''(t) = -\int_0^t f(s, u(\alpha(s)))ds \le 0, \ t \in [0, 1],$$

which shows that Tu is concave down on [0, 1]. In view of

$$(Fu)(0) = \frac{\gamma}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds \ge 0$$

and

$$(Fu)(1) = \frac{\beta}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds \ge 0,$$

we have

$$(Tu)(0) = \frac{1 - (\beta - \gamma)\eta}{\Delta}\lambda[u] + (Fu)(0) \ge 0$$

and

$$(Tu)(1) = \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta}\lambda[u] + (Fu)(1) \ge 0.$$

So, $(Tu)(t) \ge 0, t \in [0, 1]$.

Now, we prove that $\min_{t \in [\eta, 1]} (Tu)(t) \ge \Gamma ||Tu||$. To do it we consider two cases:

Case 1. Let $(Tu)(\eta) \leq (Tu)(1)$. Then $\min_{t \in [\eta, 1]} (Tu)(t) = (Tu)(\eta)$ and there exists $\overline{t} \in [\eta, 1]$ such that $||Tu|| = (Tu)(\overline{t})$. Moreover,

$$\frac{(Tu)(\bar{t}) - (Tu)(0)}{\bar{t} - 0} \le \frac{(Tu)(\eta) - (Tu)(0)}{\eta - 0}.$$

So,

$$||Tu|| \le \frac{1}{\eta}(Tu)(\eta) - \frac{1-\eta}{\eta}(Tu)(0),$$

Sun et. al

which together with

$$(Tu)(0) = \gamma(Tu)(\eta) + \lambda[u] \tag{9}$$

implies that

$$||Tu|| \le \frac{1 - \gamma(1 - \eta)}{\eta} (Tu)(\eta),$$

i.e.,

$$\min_{t \in [\eta, 1]} (Tu)(t) \ge \frac{\eta}{1 - \gamma(1 - \eta)} \|Tu\|.$$
(10)

Case 2. Let $(Tu)(\eta) > (Tu)(1)$ and $||Tu|| = (Tu)(\bar{t})$. Note that in this case $\min_{t \in [\eta, 1]} (Tu)(t) = (Tu)(1)$.

If $\bar{t} \in [0, \eta]$, then

$$\frac{(Tu)(1) - (Tu)(\bar{t})}{1 - \bar{t}} \ge \frac{(Tu)(1) - (Tu)(\eta)}{1 - \eta}$$

So,

$$||Tu|| \le \frac{1}{1-\eta}(Tu)(\eta) - \frac{\eta}{1-\eta}(Tu)(1),$$

which together with

$$(Tu)(\eta) = \frac{1}{\beta} \Big((Tu)(1) - \lambda[u] \Big)$$
(11)

implies that

$$||Tu|| \le \frac{1 - \beta\eta}{\beta(1 - \eta)}(Tu)(1),$$

i.e.,

$$\min_{t \in [\eta, 1]} (Tu)(t) \ge \frac{\beta(1 - \eta)}{1 - \beta\eta} \|Tu\|.$$
(12)

If $\bar{t} \in (\eta, 1)$, then

$$\frac{(Tu)(\bar{t})-(Tu)(\eta)}{\bar{t}-\eta} \leq \frac{(Tu)(\eta)-(Tu)(0)}{\eta-0}.$$

So,

$$||Tu|| \le \frac{1}{\eta}(Tu)(\eta) - \frac{1-\eta}{\eta}(Tu)(0),$$

which together with (9) and (11) implies that

$$||Tu|| \le \frac{1 - \gamma(1 - \eta)}{\beta \eta} (Tu)(1),$$

i.e.,

$$\min_{t \in [\eta, 1]} (Tu)(t) \ge \frac{\beta \eta}{1 - \gamma(1 - \eta)} \|Tu\|.$$
(13)

It follows from (10), (12) and (13) that

$$\min_{t \in [\eta, 1]} (Tu)(t) \ge \Gamma ||Tu||.$$

Finally, we need to show that $\lambda[Tu] \ge 0$. In view of

$$\begin{split} \lambda[Fu] &= \int_0^1 \frac{\gamma + (\beta - \gamma)t}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds d\Lambda(t) \\ &+ \int_0^1 \int_0^1 k(t, s) f(s, u(\alpha(s))) ds d\Lambda(t) \\ &= \frac{\rho'}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 \kappa(s) f(s, u(\alpha(s))) ds \\ &\geq 0, \end{split}$$

we have

$$\lambda[Tu] = \frac{\rho}{\Delta}\lambda[u] + \lambda[Fu] \ge 0.$$

This shows that $T: K \to K$. Similarly, we can prove that $S: K \to K$.

LEMMA 4. The operators T and S have the same fixed points in K.

PROOF. Suppose that $u \in K$ is a fixed point of S. Then

$$\begin{split} \lambda[u] &= \int_0^1 \left(\frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta - \rho} \lambda[Fu] + (Fu)(t) \right) d\Lambda(t) \\ &= \frac{\Delta}{\Delta - \rho} \lambda[Fu], \end{split}$$

which shows that

$$\lambda[Fu] = \frac{\Delta - \rho}{\Delta} \lambda[u].$$

So,

$$u(t) = (Su)(t)$$

$$= \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta - \rho}\lambda[Fu] + (Fu)(t)$$

$$= \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta}\lambda[u] + (Fu)(t)$$

$$= (Tu)(t), t \in [0, 1],$$

which indicates that u is a fixed point of T. Suppose that $u \in K$ is a fixed point of T. Then

$$\begin{split} \lambda[u] &= \int_0^1 \left(\frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta} \lambda[u] + (Fu)(t) \right) d\Lambda(t) \\ &= \frac{\rho}{\Delta} \lambda[u] + \lambda[Fu], \end{split}$$

Sun et. al

which shows that

$$\lambda[u] = \frac{\Delta}{\Delta - \rho} \lambda[Fu]$$

So,

$$\begin{aligned} u(t) &= (Tu)(t) \\ &= \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta}\lambda[u] + (Fu)(t) \\ &= \frac{1 - (\beta - \gamma)\eta + (\beta - \gamma)t}{\Delta - \rho}\lambda[Fu] + (Fu)(t) \\ &= (Su)(t), \ t \in [0, 1], \end{aligned}$$

which indicates that u is a fixed point of S.

LEMMA 5. $T, S : K \to K$ is completely continuous.

PROOF. First, by LEMMA 3, we know that $T(K) \subset K$. Next, we show that T is compact. Let $D \subset K$ be a bounded set. Then there exists $M_1 > 0$ such that $||u|| \leq M_1$ for any $u \in D$. Since Λ is a function of bounded variation, there exists $M_2 > 0$ such that $v_{\Delta'} = \sum_{i=1}^{n} |\Lambda(t_i) - \Lambda(t_{i-1})| \leq M_2$ for any partition $\Delta' : 0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = 1$. Let

$$M_3 = \sup\{f(t, u) : (t, u) \in [0, 1] \times [0, M_1]\}.$$

Then for any $u \in D$,

$$\begin{aligned} |Tu|| &= \max_{t \in [0,1]} (Tu)(t) \\ &\leq \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta} \lambda[u] + \frac{\beta}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds \\ &+ \frac{1}{2} \int_0^1 (1 + s)(1 - s)^2 f(s, u(\alpha(s))) ds \\ &\leq \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta} M_1 M_2 + \frac{\beta M_3}{\Delta} \int_0^1 k(\eta, s) ds + \frac{5}{24} M_3, \end{aligned}$$

which shows that T(D) is uniformly bounded.

On the other hand, for any $\varepsilon > 0$, since k(t, s) is uniformly continuous on $[0, 1] \times [0, 1]$, there exists $\delta_1(\varepsilon) > 0$ such that for any $t_1, t_2 \in [0, 1]$ with $|t_1 - t_2| < \delta_1(\varepsilon)$,

$$|k(t_1, s) - k(t_2, s)| < \frac{\varepsilon}{3M_3}, \ s \in [0, 1].$$

Let
$$\delta = \min\left\{\delta_1(\varepsilon), \frac{\varepsilon\Delta}{3(\beta-\gamma)M_1M_2}, \frac{\varepsilon\Delta}{3(\beta-\gamma)M_3\int_0^1 k(\eta,s)ds}\right\}$$
. Then for any $u \in D, t_1, t_2 \in D$

[0,1] with $|t_1 - t_2| < \delta$, we have

$$\begin{split} &|(Tu)(t_{1}) - (Tu)(t_{2})| \\ = & \left| \frac{(\beta - \gamma)(t_{1} - t_{2})}{\Delta} \lambda[u] + \frac{(\beta - \gamma)(t_{1} - t_{2})}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) ds \right| \\ &+ \int_{0}^{1} (k(t_{1}, s) - k(t_{2}, s)) f(s, u(\alpha(s))) ds \Big| \\ &\leq & \frac{(\beta - \gamma)|t_{1} - t_{2}|}{\Delta} \lambda[u] + \frac{(\beta - \gamma)|t_{1} - t_{2}|}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) ds \\ &+ \int_{0}^{1} |k(t_{1}, s) - k(t_{2}, s)| f(s, u(\alpha(s))) ds \\ &\leq & \frac{(\beta - \gamma)|t_{1} - t_{2}|M_{1}M_{2}}{\Delta} + \frac{(\beta - \gamma)|t_{1} - t_{2}|M_{3}}{\Delta} \int_{0}^{1} k(\eta, s) ds \\ &+ M_{3} \int_{0}^{1} |k(t_{1}, s) - k(t_{2}, s)| ds \\ &< & \varepsilon, \end{split}$$

which shows that T(D) is equicontinuous. It follows from Arzela-Ascoli theorem that T(D) is relatively compact. Thus, we have shown that T is a compact operator.

Finally, we prove that T is continuous. Suppose that $u_n, u \in K$ and $\lim_{n\to\infty} u_n = u$. Then there exists $M_4 > 0$ such that $||u|| \leq M_4$ and $||u_n|| \leq M_4$ $(n = 1, 2, \cdots)$. For any $\varepsilon > 0$, since f(s, x) is uniformly continuous on $[0, 1] \times [0, M_4]$, there exists $\delta > 0$ such that for any $x_1, x_2 \in [0, M_4]$ with $|x_1 - x_2| < \delta$,

$$|f(s,x_1) - f(s,x_2)| < \frac{\varepsilon}{\frac{2\beta}{\Delta} \int_0^1 k(\eta,s) ds + \frac{5}{12}}, \ s \in [0,1].$$
(14)

At the same time, since $\lim_{n\to\infty} u_n = u$, there exists positive integer N such that for any n > N,

$$\|u_n - u\| < \min\left\{\delta, \frac{\varepsilon\Delta}{2[1 + (\beta - \gamma)(1 - \eta)]|\Lambda(1) - \Lambda(0)|}\right\}.$$
(15)

It follows from (14) and (15) that for any n > N,

$$\begin{split} \|Tu_{n} - Tu\| \\ &= \max_{t \in [0,1]} |(Tu_{n})(t) - (Tu)(t)| \\ &\leq \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta} |\lambda[u_{n}] - \lambda[u]| + \frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s) |f(s, u_{n}(\alpha(s))) - f(s, u(\alpha(s)))| ds \\ &+ \frac{1}{2} \int_{0}^{1} (1 + s)(1 - s)^{2} |f(s, u_{n}(\alpha(s))) - f(s, u(\alpha(s)))| ds \\ &\leq \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta} \|u_{n} - u\| |\Lambda(1) - \Lambda(0)| \\ &+ \int_{0}^{1} \left(\frac{\beta}{\Delta} k(\eta, s) + \frac{1}{2}(1 + s)(1 - s)^{2}\right) |f(s, u_{n}(\alpha(s))) - f(s, u(\alpha(s)))| ds \\ &< \varepsilon, \end{split}$$

which indicates that T is continuous. Therefore, $T: K \to K$ is completely continuous. Similarly, we can prove that $S: K \to K$ is also completely continuous.

For convenience, we denote

$$D_1 = \frac{\rho'}{\Delta} \int_0^1 k(\eta, s) ds + \int_0^1 \kappa(s) ds, \quad D_2 = \frac{\beta}{\Delta} \int_0^1 k(\eta, s) ds + \frac{5}{24},$$
$$D_3 = \frac{\rho'}{\Delta} \int_\eta^1 k(\eta, s) ds + \int_\eta^1 \kappa(s) ds \text{ and } D_4 = \frac{1}{\Delta} \int_\eta^1 k(\eta, s) ds.$$

Let

$$\mu > \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta - \rho} D_1 + D_2 \text{ and } 0 < L < \beta \left(\frac{D_3}{\Delta - \rho} + D_4\right).$$

THEOREM 2. Assume that there exist positive constants a, b and d with $a < b < \frac{b}{\Gamma} \le d$ such that

- (A1) $f(t,u) \le \frac{d}{\mu}$ for $(t,u) \in [0,1] \times [0,d]$,
- (A2) $f(t,u) \geq \frac{b}{L}$ for $(t,u) \in [\eta,1] \times [b,\frac{b}{\Gamma}]$, and
- (A3) $f(t,u) \le \frac{a}{\mu}$ for $(t,u) \in [0,1] \times [0,a]$.

Then the BVP (3) has at least three positive solutions u_1, u_2, u_3 satisfying $||u_i|| \le d$ (i = 1, 2, 3) and

$$\min_{t \in [\eta, 1]} u_1(t) > b, \ \|u_2\| > a \text{ with } \min_{t \in [\eta, 1]} u_2(t) < b, \ \|u_3\| < a.$$

PROOF. For $u \in K$, we define

$$\Phi(u) = \min_{t \in [\eta, 1]} u(t) \text{ and } \varphi(u) = \Theta(u) = \Psi(u) = \|u\|.$$

Then it is easy to know that Φ is a nonnegative continuous concave functional on K and φ , Θ and Ψ are nonnegative continuous convex functionals on K. In order to apply Theorem 1 to prove our main results, we use the operator S and take $c = b/\Gamma$.

We first assert that $S: \overline{K(\varphi, d)} \to \overline{K(\varphi, d)}$. Indeed, if $u \in \overline{K(\varphi, d)}$, then $0 \le u(t) \le d$, $t \in [0, 1]$, which together with (A1) implies that

$$\lambda[Fu] = \frac{\rho'}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 \kappa(s) f(s, u(\alpha(s))) ds$$

$$\leq \frac{D_1 d}{\mu}$$
(16)

and

$$\|Fu\| = \max_{t \in [0,1]} \left(\frac{\gamma + (\beta - \gamma)t}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 k(t, s) f(s, u(\alpha(s))) ds \right)$$

$$\leq \frac{\beta}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \frac{1}{2} \int_0^1 (1 + s)(1 - s)^2 f(s, u(\alpha(s))) ds$$

$$\leq \frac{D_2 d}{\mu}.$$
(17)

In view of (16) and (17), we have

$$\varphi(Su) = \|Su\| \le \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta - \rho} \lambda[Fu] + \|Fu\| \le \left(\frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta - \rho} D_1 + D_2\right) \frac{d}{\mu} \le d$$

This indicates that $S: \overline{K(\varphi, d)} \to \overline{K(\varphi, d)}$.

Next, we assert that $\{u \in K(\varphi, \Theta, \Phi, b, c, d) : \Phi(u) > b\} \neq \phi$ and $\Phi(Su) > b$ for $u \in K(\varphi, \Theta, \Phi, b, c, d)$. In fact, the constant function $\frac{b+c}{2} \in \{u \in K(\varphi, \Theta, \Phi, b, c, d) : \Phi(u) > b\}$. Moreover, for $u \in K(\varphi, \Theta, \Phi, b, c, d)$, we know that $b \leq u(\alpha(t)) \leq c$ for $t \in [\eta, 1]$, which together with (A2) implies that

$$\lambda[Fu] = \frac{\rho'}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 \kappa(s) f(s, u(\alpha(s))) ds$$

$$\geq \frac{\rho'}{\Delta} \int_\eta^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_\eta^1 \kappa(s) f(s, u(\alpha(s))) ds$$

$$\geq \frac{D_3 b}{L}$$
(18)

and

$$(Fu)(\eta) = \frac{1}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds$$

$$\geq \frac{1}{\Delta} \int_\eta^1 k(\eta, s) f(s, u(\alpha(s))) ds$$

$$\geq \frac{D_4 b}{L}.$$
(19)

In view of (18) and (19), we see that

$$\Phi(Su) = \min_{t \in [\eta, 1]} (Su)(t)$$

$$= \min\left((Su)(\eta), (Su)(1)\right)$$

$$= \min\left((Su)(\eta), \beta(Su)(\eta) + \frac{\Delta}{\Delta - \rho}\lambda[Fu]\right)$$

$$\geq \beta(Su)(\eta)$$

$$= \beta\left(\frac{1}{\Delta - \rho}\lambda[Fu] + (Fu)(\eta)\right)$$

$$\geq \beta\left(\frac{D_3}{\Delta - \rho} + D_4\right)\frac{b}{L}$$

$$> b,$$

as required.

Thirdly, we assert that $\Phi(Su) > b$ for $u \in K(\varphi, \Phi, b, d)$ with $\Theta(Su) > c$. To see this, we suppose $u \in K(\varphi, \Phi, b, d)$ and $\Theta(Su) = ||Su|| > c$. Then

$$\Phi(Su) = \min_{t \in [\eta, 1]} (Su)(t) \ge \Gamma ||Su|| > \Gamma c = b.$$

Finally, we assert that $\theta \notin R(\varphi, \Psi, a, d)$ and $\Psi(Su) < a$ for $u \in R(\varphi, \Psi, a, d)$ with $\Psi(u) = a$. Indeed, it follows from $\Psi(\theta) = 0 < a$ that $\theta \notin R(\varphi, \Psi, a, d)$. Moreover, for $u \in R(\varphi, \Psi, a, d)$ and $\Psi(u) = a$, we know that $0 \leq u(t) \leq a$ for $t \in [0, 1]$, which together with (A3) implies that

$$\lambda[Fu] = \frac{\rho'}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 \kappa(s) f(s, u(\alpha(s))) ds$$
$$\leq \frac{D_1 a}{\mu}$$
(20)

and

$$\begin{aligned} \|Fu\| \\ &= \max_{t \in [0,1]} \left(\frac{\gamma + (\beta - \gamma)t}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \int_0^1 k(t, s) f(s, u(\alpha(s))) ds \right) \\ &\leq \frac{\beta}{\Delta} \int_0^1 k(\eta, s) f(s, u(\alpha(s))) ds + \frac{1}{2} \int_0^1 (1 + s)(1 - s)^2 f(s, u(\alpha(s))) ds \\ &\leq \frac{D_2 a}{\mu}. \end{aligned}$$

$$(21)$$

In view of (20) and (21), we have

$$\Psi(Su) = \|Su\|$$

$$\leq \frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta - \rho} \lambda[Fu] + \|Fu\|$$

$$\leq \left(\frac{1 + (\beta - \gamma)(1 - \eta)}{\Delta - \rho} D_1 + D_2\right) \frac{a}{\mu}$$

$$< a,$$

as required.

To sum up, all the hypotheses of Theorem 1 are satisfied. Hence, the BVP (3) has at least three positive solutions u_1, u_2, u_3 satisfying $||u_i|| \le d$ (i = 1, 2, 3) and

$$\min_{t \in [\eta, 1]} u_1(t) > b, \ \|u_2\| > a \text{ with } \min_{t \in [\eta, 1]} u_2(t) < b, \ \|u_3\| < a.$$

Acknowledgment. This paper is supported by the Natural Science Foundation of Gansu Province of China (1208RJZA240).

References

- D. R. Anderson and C. C. Tisdell, Third-order nonlocal problems with signchanging nonlinearity on time scales, Electronic Journal of Differential Equations, 2007(19)(2007), 1–12.
- [2] R. I. Avery and A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42(2001), 313–322.
- [3] J. R. Graef and L. Kong, Positive solutions for third order semipositone boundary value problems, Appl. Math. Lett., 22(2009), 1154–1160.
- [4] J. R. Graef and J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal., 71(2009), 1542–1551.
- [5] J. R. Graef and B. Yang, Positive solutions for a third-order nonlocal boundaryvalue problem, Discrete Contin. Dyn. Syst., Series S, 1(2008), 89–97.
- [6] M. Gregus, Third Order Linear Differential Equations, Reidel, Dordrecht, The Netherlands, 1987.
- [7] G. Infante, P. Pietramala and M. Zima, Positive solutions for a class of nonlocal impulsive BVPs via fixed point index, Topol. Methods Nonlinear Anal., 36(2010), 263–284.
- [8] T. Jankowski, Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions, Nonlinear Anal., 74(2011), 3775–3785.

- [9] T. Jankowski, Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions, Nonlinear Anal., 75(2012), 913–923.
- [10] J. P. Sun and H. B. Li, Monotone positive solution of nonlinear third-order BVP with integral boundary conditions, Boundary Value Problems, 2010(2010), 1–12.
- [11] Y. Wang and W. Ge, Existence of solutions for a third order differential equation with integral boundary conditions, Comput. Math. Appl., 53(2007), 144–154.
- [12] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. Lond. Math. Soc., 74(2006), 673–693.
- [13] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differential Equations Appl., 15(2008), 45–67.