Third-Order BVP With Advanced Arguments And Stieltjes Integral Boundary Conditions*

Jian-Ping Sun ${ }^{\dagger}$, Ping Yan ${ }^{\ddagger}$, Fang-Di Kong ${ }^{\S}$

Received 3 January 2013

Abstract

A class of third-order boundary value problem with advanced arguments and Stieltjes integral boundary conditions is discussed. Some existence criteria of at least three positive solutions are established. The main tool used is a fixed point theorem due to Avery and Peterson.

1 Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics and physics, e.g., in the deflection of a curved beam having a constant or varying cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [6].

Recently, third-order boundary value problems (BVPs for short) with integral boundary conditions, which cover third-order multi-point BVPs as special cases, have attracted much attention from many authors, see $[1,3,4,5,9,10,11]$ and the references therein. In particular, in 2012, Jankowski [9] studied the existence of multiple positive solutions to the following BVP

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)+h(t) f(t, u(\alpha(t)))=0, t \in(0,1), \tag{1}\\
u(0)=u^{\prime \prime}(0)=0, u(1)=\beta u(\eta)+\lambda[u]
\end{array}\right.
$$

where λ denoted a linear functional on $C[0,1]$ given by

$$
\begin{equation*}
\lambda[u]=\int_{0}^{1} u(t) d \Lambda(t) \tag{2}
\end{equation*}
$$

involving a Stieltjes integral with a suitable function Λ of bounded variation. The measure $d \Lambda$ could be a signed one. The situation with a signed measure $d \Lambda$ was first

[^0]discussed in $[12,13]$ for second-order differential equations; it was also discussed in [7, 8] for second-order impulsive differential equations.

Among the boundary conditions in (1), only $u(1)$ is related to a Stieltjes integral. A natural question is that whether we can obtain similar results when $u(0)$ is also related to a Stieltjes integral. To answer this question, in this paper, we are concerned with the following third-order BVP with advanced arguments and Stieltjes integral boundary conditions

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)+f(t, u(\alpha(t)))=0, t \in(0,1) \tag{3}\\
u(0)=\gamma u(\eta)+\lambda[u], u^{\prime \prime}(0)=0, u(1)=\beta u(\eta)+\lambda[u]
\end{array}\right.
$$

Throughout this paper, we always assume that $\alpha:[0,1] \rightarrow[0,1]$ is continuous and $\alpha(t) \geq t$ for $t \in[0,1], 0<\eta<1,0 \leq \gamma<\beta<1, \Lambda$ is a suitable function of bounded variation and $\lambda[u]$ is defined as in (2). It is important to indicate that it is not assumed that $\lambda[u]$ is positive to all positive u.

In order to obtain our main results, we need the following concepts and Avery and Peterson fixed point theorem [2].

Let E be a real Banach space and K be a cone in E.
A map Θ is said to be a nonnegative continuous convex functional on K if $\Theta: K \rightarrow$ $[0, \infty)$ is continuous and

$$
\Theta(t u+(1-t) v) \leq t \Theta(u)+(1-t) \Theta(v)
$$

for all $u, v \in K$ and $t \in[0,1]$.
Similarly, A map Φ is said to be a nonnegative continuous concave functional on K if $\Phi: K \rightarrow[0, \infty)$ is continuous and

$$
\Phi(t u+(1-t) v) \geq t \Phi(u)+(1-t) \Phi(v)
$$

for all $u, v \in K$ and $t \in[0,1]$.
Let φ and Θ be nonnegative continuous convex functionals on K, Φ be a nonnegative continuous concave functional on K and Ψ be a nonnegative continuous functional on K. For positive numbers a, b, c, d, we define the following sets:

$$
\begin{gathered}
K(\varphi, d)=\{u \in K: \varphi(u)<d\} \\
K(\varphi, \Phi, b, d)=\{u \in K: b \leq \Phi(u), \varphi(u) \leq d\} \\
K(\varphi, \Theta, \Phi, b, c, d)=\{u \in K: b \leq \Phi(u), \Theta(u) \leq c, \varphi(u) \leq d\}
\end{gathered}
$$

and

$$
R(\varphi, \Psi, a, d)=\{u \in K: a \leq \Psi(u), \varphi(u) \leq d\}
$$

THEOREM 1 (Avery and Peterson fixed point theorem). Let E be a real Banach space and K be a cone in E. Let φ and Θ be nonnegative continuous convex functionals on K, Φ be a nonnegative continuous concave functional on K, and Ψ be a nonnegative continuous functional on K satisfying $\Psi(k u) \leq k \Psi(u)$ for $0 \leq k \leq 1$, such that for some positive numbers M and d,

$$
\Phi(u) \leq \Psi(u) \text { and }\|u\| \leq M \varphi(u)
$$

for all $u \in \overline{K(\varphi, d)}$. Suppose $S: \overline{K(\varphi, d)} \rightarrow \overline{K(\varphi, d)}$ is completely continuous and there exist positive numbers a, b, c with $a<b$, such that
(C1) $\{u \in K(\varphi, \Theta, \Phi, b, c, d): \Phi(u)>b\} \neq \phi$ and $\Phi(S u)>b$ for $u \in K(\varphi, \Theta, \Phi, b, c, d)$;
(C2) $\Phi(S u)>b$ for $u \in K(\varphi, \Phi, b, d)$ with $\Theta(S u)>c$; and
(C3) $\theta \notin R(\varphi, \Psi, a, d)$ and $\Psi(S u)<a$ for $u \in R(\varphi, \Psi, a, d)$ with $\Psi(u)=a$.
Then S has at least three fixed points $u_{1}, u_{2}, u_{3} \in \overline{K(\varphi, d)}$, such that

$$
\begin{gathered}
b<\Phi\left(u_{1}\right), \\
a<\Psi\left(u_{2}\right) \text { with } \Phi\left(u_{2}\right)<b
\end{gathered}
$$

and

$$
\Psi\left(u_{3}\right)<a
$$

2 Main Results

Let $\Delta=1-\gamma-(\beta-\gamma) \eta$. Then $\Delta>0$.
LEMMA 1. For any $y \in C[0,1]$, the BVP

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)=-y(t), t \in(0,1) \tag{4}\\
u(0)=\gamma u(\eta)+\lambda[u], u^{\prime \prime}(0)=0, u(1)=\beta u(\eta)+\lambda[u]
\end{array}\right.
$$

has the unique solution

$$
\begin{aligned}
u(t)= & \frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta} \lambda[u]+\frac{\gamma+(\beta-\gamma) t}{\Delta} \int_{0}^{1} k(\eta, s) y(s) d s \\
& +\int_{0}^{1} k(t, s) y(s) d s
\end{aligned}
$$

for $t \in[0,1]$ where

$$
k(t, s)=\frac{1}{2}\left\{\begin{array}{l}
(1-t)\left(t-s^{2}\right), 0 \leq s \leq t \leq 1 \\
t(1-s)^{2}, 0 \leq t \leq s \leq 1
\end{array}\right.
$$

PROOF. By integrating the differential equation in (4) three times from 0 to t and using the boundary condition $u^{\prime \prime}(0)=0$, we get

$$
\begin{equation*}
u(t)=u(0)+u^{\prime}(0) t-\frac{1}{2} \int_{0}^{t}(t-s)^{2} y(s) d s, t \in[0,1] \tag{5}
\end{equation*}
$$

So,

$$
\begin{equation*}
u^{\prime}(0)=u(1)-u(0)+\frac{1}{2} \int_{0}^{1}(1-s)^{2} y(s) d s \tag{6}
\end{equation*}
$$

In view of (5), (6) and the boundary conditions $u(0)=\gamma u(\eta)+\lambda[u]$ and $u(1)=$ $\beta u(\eta)+\lambda[u]$, we have

$$
\begin{equation*}
u(t)=[\gamma+(\beta-\gamma) t] u(\eta)+\lambda[u]+\int_{0}^{1} k(t, s) y(s) d s, t \in[0,1] \tag{7}
\end{equation*}
$$

So,

$$
\begin{equation*}
u(\eta)=\frac{1}{\Delta} \lambda[u]+\frac{1}{\Delta} \int_{0}^{1} k(\eta, s) y(s) d s \tag{8}
\end{equation*}
$$

Substituting (8) into (7), we get

$$
\begin{aligned}
u(t)= & \frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta} \lambda[u]+\frac{\gamma+(\beta-\gamma) t}{\Delta} \int_{0}^{1} k(\eta, s) y(s) d s \\
& +\int_{0}^{1} k(t, s) y(s) d s
\end{aligned}
$$

for $t \in[0,1]$.
LEMMA $2[9] .0 \leq k(t, s) \leq \frac{1}{2}(1+s)(1-s)^{2}$ for $(t, s) \in[0,1] \times[0,1]$.
Throughout, we assume that the following conditions are fulfilled:
(H1) $f \in C([0,1] \times[0,+\infty),[0,+\infty))$;
(H2)

$$
\int_{0}^{1} d \Lambda(t) \geq 0, \int_{0}^{1} t d \Lambda(t) \geq 0, \kappa(s)=\int_{0}^{1} k(t, s) d \Lambda(t) \geq 0, s \in[0,1]
$$

For convenience, we denote

$$
\rho=[1-(\beta-\gamma) \eta] \int_{0}^{1} d \Lambda(t)+(\beta-\gamma) \int_{0}^{1} t d \Lambda(t)
$$

and

$$
\rho^{\prime}=\gamma \int_{0}^{1} d \Lambda(t)+(\beta-\gamma) \int_{0}^{1} t d \Lambda(t)
$$

Obviously, $\rho, \rho^{\prime} \geq 0$. In the remainder of this paper, we always assume that $\rho<\Delta$.
Let $C[0,1]$ be equipped with the maximum norm. Then $C[0,1]$ is a Banach space. Define

$$
K=\left\{u \in C[0,1]: u(t) \geq 0, t \in[0,1], \min _{t \in[\eta, 1]} u(t) \geq \Gamma\|u\|, \quad \lambda[u] \geq 0\right\}
$$

where

$$
\Gamma=\min \left\{\frac{\beta(1-\eta)}{1-\beta \eta}, \frac{\beta \eta}{1-\gamma(1-\eta)}\right\}
$$

Then K is a cone in $C[0,1]$.

Now, we define operators T and S on K by

$$
(T u)(t)=\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta} \lambda[u]+(F u)(t), t \in[0,1]
$$

and

$$
(S u)(t)=\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta-\rho} \lambda[F u]+(F u)(t), t \in[0,1],
$$

where

$$
(F u)(t)=\frac{\gamma+(\beta-\gamma) t}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} k(t, s) f(s, u(\alpha(s))) d s
$$

for $t \in[0,1]$.
LEMMA 3. $T, S: K \rightarrow K$.
PROOF. Let $u \in K$. Then it is easy to verify that

$$
(T u)^{\prime \prime}(t)=-\int_{0}^{t} f(s, u(\alpha(s))) d s \leq 0, t \in[0,1],
$$

which shows that $T u$ is concave down on $[0,1]$. In view of

$$
(F u)(0)=\frac{\gamma}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s \geq 0
$$

and

$$
(F u)(1)=\frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s \geq 0,
$$

we have

$$
(T u)(0)=\frac{1-(\beta-\gamma) \eta}{\Delta} \lambda[u]+(F u)(0) \geq 0
$$

and

$$
(T u)(1)=\frac{1+(\beta-\gamma)(1-\eta)}{\Delta} \lambda[u]+(F u)(1) \geq 0 .
$$

So, $(T u)(t) \geq 0, t \in[0,1]$.
Now, we prove that $\min _{t \in[\eta, 1]}(T u)(t) \geq \Gamma\|T u\|$. To do it we consider two cases:
Case 1. Let $(T u)(\eta) \leq(T u)(1)$. Then $\min _{t \in[\eta, 1]}(T u)(t)=(T u)(\eta)$ and there exists $\bar{t} \in[\eta, 1]$ such that $\|T u\|=(T u)(\bar{t})$. Moreover,

$$
\frac{(T u)(\bar{t})-(T u)(0)}{\bar{t}-0} \leq \frac{(T u)(\eta)-(T u)(0)}{\eta-0} .
$$

So,

$$
\|T u\| \leq \frac{1}{\eta}(T u)(\eta)-\frac{1-\eta}{\eta}(T u)(0),
$$

which together with

$$
\begin{equation*}
(T u)(0)=\gamma(T u)(\eta)+\lambda[u] \tag{9}
\end{equation*}
$$

implies that

$$
\|T u\| \leq \frac{1-\gamma(1-\eta)}{\eta}(T u)(\eta)
$$

i.e.,

$$
\begin{equation*}
\min _{t \in[\eta, 1]}(T u)(t) \geq \frac{\eta}{1-\gamma(1-\eta)}\|T u\| \tag{10}
\end{equation*}
$$

Case 2. Let $(T u)(\eta)>(T u)(1)$ and $\|T u\|=(T u)(\bar{t})$. Note that in this case $\min _{t \in[\eta, 1]}(T u)(t)=(T u)(1)$.

If $\bar{t} \in[0, \eta]$, then

$$
\frac{(T u)(1)-(T u)(\bar{t})}{1-\bar{t}} \geq \frac{(T u)(1)-(T u)(\eta)}{1-\eta}
$$

So,

$$
\|T u\| \leq \frac{1}{1-\eta}(T u)(\eta)-\frac{\eta}{1-\eta}(T u)(1)
$$

which together with

$$
\begin{equation*}
(T u)(\eta)=\frac{1}{\beta}((T u)(1)-\lambda[u]) \tag{11}
\end{equation*}
$$

implies that

$$
\|T u\| \leq \frac{1-\beta \eta}{\beta(1-\eta)}(T u)(1)
$$

i.e.,

$$
\begin{equation*}
\min _{t \in[\eta, 1]}(T u)(t) \geq \frac{\beta(1-\eta)}{1-\beta \eta}\|T u\| . \tag{12}
\end{equation*}
$$

If $\bar{t} \in(\eta, 1)$, then

$$
\frac{(T u)(\bar{t})-(T u)(\eta)}{\bar{t}-\eta} \leq \frac{(T u)(\eta)-(T u)(0)}{\eta-0}
$$

So,

$$
\|T u\| \leq \frac{1}{\eta}(T u)(\eta)-\frac{1-\eta}{\eta}(T u)(0)
$$

which together with (9) and (11) implies that

$$
\|T u\| \leq \frac{1-\gamma(1-\eta)}{\beta \eta}(T u)(1)
$$

i.e.,

$$
\begin{equation*}
\min _{t \in[\eta, 1]}(T u)(t) \geq \frac{\beta \eta}{1-\gamma(1-\eta)}\|T u\| \tag{13}
\end{equation*}
$$

It follows from (10), (12) and (13) that

$$
\min _{t \in[\eta, 1]}(T u)(t) \geq \Gamma\|T u\|
$$

Finally, we need to show that $\lambda[T u] \geq 0$. In view of

$$
\begin{aligned}
\lambda[F u]= & \int_{0}^{1} \frac{\gamma+(\beta-\gamma) t}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s d \Lambda(t) \\
& +\int_{0}^{1} \int_{0}^{1} k(t, s) f(s, u(\alpha(s))) d s d \Lambda(t) \\
= & \frac{\rho^{\prime}}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} \kappa(s) f(s, u(\alpha(s))) d s \\
\geq & 0
\end{aligned}
$$

we have

$$
\lambda[T u]=\frac{\rho}{\Delta} \lambda[u]+\lambda[F u] \geq 0
$$

This shows that $T: K \rightarrow K$. Similarly, we can prove that $S: K \rightarrow K$.
LEMMA 4. The operators T and S have the same fixed points in K.
PROOF. Suppose that $u \in K$ is a fixed point of S. Then

$$
\begin{aligned}
\lambda[u] & =\int_{0}^{1}\left(\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta-\rho} \lambda[F u]+(F u)(t)\right) d \Lambda(t) \\
& =\frac{\Delta}{\Delta-\rho} \lambda[F u]
\end{aligned}
$$

which shows that

$$
\lambda[F u]=\frac{\Delta-\rho}{\Delta} \lambda[u] .
$$

So,

$$
\begin{aligned}
u(t) & =(S u)(t) \\
& =\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta-\rho} \lambda[F u]+(F u)(t) \\
& =\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta} \lambda[u]+(F u)(t) \\
& =(T u)(t), t \in[0,1],
\end{aligned}
$$

which indicates that u is a fixed point of T. Suppose that $u \in K$ is a fixed point of T. Then

$$
\begin{aligned}
\lambda[u] & =\int_{0}^{1}\left(\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta} \lambda[u]+(F u)(t)\right) d \Lambda(t) \\
& =\frac{\rho}{\Delta} \lambda[u]+\lambda[F u]
\end{aligned}
$$

which shows that

$$
\lambda[u]=\frac{\Delta}{\Delta-\rho} \lambda[F u] .
$$

So,

$$
\begin{aligned}
u(t) & =(T u)(t) \\
& =\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta} \lambda[u]+(F u)(t) \\
& =\frac{1-(\beta-\gamma) \eta+(\beta-\gamma) t}{\Delta-\rho} \lambda[F u]+(F u)(t) \\
& =(S u)(t), t \in[0,1]
\end{aligned}
$$

which indicates that u is a fixed point of S.

LEMMA 5. $T, S: K \rightarrow K$ is completely continuous.

PROOF. First, by LEMMA 3, we know that $T(K) \subset K$. Next, we show that T is compact. Let $D \subset K$ be a bounded set. Then there exists $M_{1}>0$ such that $\|u\| \leq M_{1}$ for any $u \in D$. Since Λ is a function of bounded variation, there exists $M_{2}>0$ such that $v_{\Delta^{\prime}}=\sum_{i=1}^{n}\left|\Lambda\left(t_{i}\right)-\Lambda\left(t_{i-1}\right)\right| \leq M_{2}$ for any partition $\Delta^{\prime}: 0=t_{0}<t_{1}<\cdots<$ $t_{n-1}<t_{n}=1$. Let

$$
M_{3}=\sup \left\{f(t, u):(t, u) \in[0,1] \times\left[0, M_{1}\right]\right\}
$$

Then for any $u \in D$,

$$
\begin{aligned}
\|T u\|= & \max _{t \in[0,1]}(T u)(t) \\
\leq & \frac{1+(\beta-\gamma)(1-\eta)}{\Delta} \lambda[u]+\frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s \\
& +\frac{1}{2} \int_{0}^{1}(1+s)(1-s)^{2} f(s, u(\alpha(s))) d s \\
\leq & \frac{1+(\beta-\gamma)(1-\eta)}{\Delta} M_{1} M_{2}+\frac{\beta M_{3}}{\Delta} \int_{0}^{1} k(\eta, s) d s+\frac{5}{24} M_{3}
\end{aligned}
$$

which shows that $T(D)$ is uniformly bounded.
On the other hand, for any $\varepsilon>0$, since $k(t, s)$ is uniformly continuous on $[0,1] \times$ $[0,1]$, there exists $\delta_{1}(\varepsilon)>0$ such that for any $t_{1}, t_{2} \in[0,1]$ with $\left|t_{1}-t_{2}\right|<\delta_{1}(\varepsilon)$,

$$
\left|k\left(t_{1}, s\right)-k\left(t_{2}, s\right)\right|<\frac{\varepsilon}{3 M_{3}}, s \in[0,1] .
$$

Let $\delta=\min \left\{\delta_{1}(\varepsilon), \frac{\varepsilon \Delta}{3(\beta-\gamma) M_{1} M_{2}}, \frac{\varepsilon \Delta}{3(\beta-\gamma) M_{3} \int_{0}^{1} k(\eta, s) d s}\right\}$. Then for any $u \in D, t_{1}, t_{2} \in$
$[0,1]$ with $\left|t_{1}-t_{2}\right|<\delta$, we have

$$
\begin{aligned}
& \left|(T u)\left(t_{1}\right)-(T u)\left(t_{2}\right)\right| \\
= & \left\lvert\, \frac{(\beta-\gamma)\left(t_{1}-t_{2}\right)}{\Delta} \lambda[u]+\frac{(\beta-\gamma)\left(t_{1}-t_{2}\right)}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s\right. \\
& +\int_{0}^{1}\left(k\left(t_{1}, s\right)-k\left(t_{2}, s\right)\right) f(s, u(\alpha(s))) d s \mid \\
\leq & \frac{(\beta-\gamma)\left|t_{1}-t_{2}\right|}{\Delta} \lambda[u]+\frac{(\beta-\gamma)\left|t_{1}-t_{2}\right|}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s \\
& +\int_{0}^{1}\left|k\left(t_{1}, s\right)-k\left(t_{2}, s\right)\right| f(s, u(\alpha(s))) d s \\
\leq & \frac{(\beta-\gamma)\left|t_{1}-t_{2}\right| M_{1} M_{2}}{\Delta}+\frac{(\beta-\gamma)\left|t_{1}-t_{2}\right| M_{3}}{\Delta} \int_{0}^{1} k(\eta, s) d s \\
& +M_{3} \int_{0}^{1}\left|k\left(t_{1}, s\right)-k\left(t_{2}, s\right)\right| d s \\
< & \varepsilon
\end{aligned}
$$

which shows that $T(D)$ is equicontinuous. It follows from Arzela-Ascoli theorem that $T(D)$ is relatively compact. Thus, we have shown that T is a compact operator.

Finally, we prove that T is continuous. Suppose that $u_{n}, u \in K$ and $\lim _{n \rightarrow \infty} u_{n}=u$. Then there exists $M_{4}>0$ such that $\|u\| \leq M_{4}$ and $\left\|u_{n}\right\| \leq M_{4}(n=1,2, \cdots)$. For any $\varepsilon>0$, since $f(s, x)$ is uniformly continuous on $[0,1] \times\left[0, M_{4}\right]$, there exists $\delta>0$ such that for any $x_{1}, x_{2} \in\left[0, M_{4}\right]$ with $\left|x_{1}-x_{2}\right|<\delta$,

$$
\begin{equation*}
\left|f\left(s, x_{1}\right)-f\left(s, x_{2}\right)\right|<\frac{\varepsilon}{\frac{2 \beta}{\Delta} \int_{0}^{1} k(\eta, s) d s+\frac{5}{12}}, s \in[0,1] . \tag{14}
\end{equation*}
$$

At the same time, since $\lim _{n \rightarrow \infty} u_{n}=u$, there exists positive integer N such that for any $n>N$,

$$
\begin{equation*}
\left\|u_{n}-u\right\|<\min \left\{\delta, \frac{\varepsilon \Delta}{2[1+(\beta-\gamma)(1-\eta)]|\Lambda(1)-\Lambda(0)|}\right\} \tag{15}
\end{equation*}
$$

It follows from (14) and (15) that for any $n>N$,

$$
\begin{aligned}
& \left\|T u_{n}-T u\right\| \\
= & \max _{t \in[0,1]}\left|\left(T u_{n}\right)(t)-(T u)(t)\right| \\
\leq & \frac{1+(\beta-\gamma)(1-\eta)}{\Delta}\left|\lambda\left[u_{n}\right]-\lambda[u]\right|+\frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s)\left|f\left(s, u_{n}(\alpha(s))\right)-f(s, u(\alpha(s)))\right| d s \\
& +\frac{1}{2} \int_{0}^{1}(1+s)(1-s)^{2}\left|f\left(s, u_{n}(\alpha(s))\right)-f(s, u(\alpha(s)))\right| d s \\
\leq & \frac{1+(\beta-\gamma)(1-\eta)}{\Delta}\left\|u_{n}-u\right\||\Lambda(1)-\Lambda(0)| \\
& +\int_{0}^{1}\left(\frac{\beta}{\Delta} k(\eta, s)+\frac{1}{2}(1+s)(1-s)^{2}\right)\left|f\left(s, u_{n}(\alpha(s))\right)-f(s, u(\alpha(s)))\right| d s \\
< & \varepsilon
\end{aligned}
$$

which indicates that T is continuous. Therefore, $T: K \rightarrow K$ is completely continuous. Similarly, we can prove that $S: K \rightarrow K$ is also completely continuous.

For convenience, we denote

$$
\begin{aligned}
D_{1} & =\frac{\rho^{\prime}}{\Delta} \int_{0}^{1} k(\eta, s) d s+\int_{0}^{1} \kappa(s) d s, D_{2}=\frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s) d s+\frac{5}{24} \\
D_{3} & =\frac{\rho^{\prime}}{\Delta} \int_{\eta}^{1} k(\eta, s) d s+\int_{\eta}^{1} \kappa(s) d s \text { and } D_{4}=\frac{1}{\Delta} \int_{\eta}^{1} k(\eta, s) d s
\end{aligned}
$$

Let

$$
\mu>\frac{1+(\beta-\gamma)(1-\eta)}{\Delta-\rho} D_{1}+D_{2} \text { and } 0<L<\beta\left(\frac{D_{3}}{\Delta-\rho}+D_{4}\right)
$$

THEOREM 2. Assume that there exist positive constants a, b and d with $a<b<$ $\frac{b}{\Gamma} \leq d$ such that
(A1) $f(t, u) \leq \frac{d}{\mu}$ for $(t, u) \in[0,1] \times[0, d]$,
(A2) $f(t, u) \geq \frac{b}{L}$ for $(t, u) \in[\eta, 1] \times\left[b, \frac{b}{\Gamma}\right]$, and
(A3) $f(t, u) \leq \frac{a}{\mu}$ for $(t, u) \in[0,1] \times[0, a]$.
Then the BVP (3) has at least three positive solutions u_{1}, u_{2}, u_{3} satisfying $\left\|u_{i}\right\| \leq$ $d(i=1,2,3)$ and

$$
\min _{t \in[\eta, 1]} u_{1}(t)>b,\left\|u_{2}\right\|>a \text { with } \min _{t \in[\eta, 1]} u_{2}(t)<b,\left\|u_{3}\right\|<a
$$

PROOF. For $u \in K$, we define

$$
\Phi(u)=\min _{t \in[\eta, 1]} u(t) \text { and } \varphi(u)=\Theta(u)=\Psi(u)=\|u\|
$$

Then it is easy to know that Φ is a nonnegative continuous concave functional on K and φ, Θ and Ψ are nonnegative continuous convex functionals on K. In order to apply Theorem 1 to prove our main results, we use the operator S and take $c=b / \Gamma$.

We first assert that $S: \overline{K(\varphi, d)} \rightarrow \overline{K(\varphi, d)}$. Indeed, if $u \in \overline{K(\varphi, d)}$, then $0 \leq u(t) \leq$ $d, t \in[0,1]$, which together with (A1) implies that

$$
\begin{align*}
\lambda[F u] & =\frac{\rho^{\prime}}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} \kappa(s) f(s, u(\alpha(s))) d s \\
& \leq \frac{D_{1} d}{\mu} \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& \|F u\| \\
= & \max _{t \in[0,1]}\left(\frac{\gamma+(\beta-\gamma) t}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} k(t, s) f(s, u(\alpha(s))) d s\right) \\
\leq & \frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\frac{1}{2} \int_{0}^{1}(1+s)(1-s)^{2} f(s, u(\alpha(s))) d s \\
\leq & \frac{D_{2} d}{\mu} \tag{17}
\end{align*}
$$

In view of (16) and (17), we have
$\varphi(S u)=\|S u\| \leq \frac{1+(\beta-\gamma)(1-\eta)}{\Delta-\rho} \lambda[F u]+\|F u\| \leq\left(\frac{1+(\beta-\gamma)(1-\eta)}{\Delta-\rho} D_{1}+D_{2}\right) \frac{d}{\mu} \leq d$.
This indicates that $S: \overline{K(\varphi, d)} \rightarrow \overline{K(\varphi, d)}$.
Next, we assert that $\{u \in K(\varphi, \Theta, \Phi, b, c, d): \Phi(u)>b\} \neq \phi$ and $\Phi(S u)>b$ for $u \in K(\varphi, \Theta, \Phi, b, c, d)$. In fact, the constant function $\frac{b+c}{2} \in\{u \in K(\varphi, \Theta, \Phi, b, c, d):$ $\Phi(u)>b\}$. Moreover, for $u \in K(\varphi, \Theta, \Phi, b, c, d)$, we know that $b \leq u(\alpha(t)) \leq c$ for $t \in[\eta, 1]$, which together with (A2) implies that

$$
\begin{align*}
\lambda[F u] & =\frac{\rho^{\prime}}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} \kappa(s) f(s, u(\alpha(s))) d s \\
& \geq \frac{\rho^{\prime}}{\Delta} \int_{\eta}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{\eta}^{1} \kappa(s) f(s, u(\alpha(s))) d s \\
& \geq \frac{D_{3} b}{L} \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
(F u)(\eta) & =\frac{1}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s \\
& \geq \frac{1}{\Delta} \int_{\eta}^{1} k(\eta, s) f(s, u(\alpha(s))) d s \\
& \geq \frac{D_{4} b}{L} \tag{19}
\end{align*}
$$

In view of (18) and (19), we see that

$$
\begin{aligned}
\Phi(S u) & =\min _{t \in[\eta, 1]}(S u)(t) \\
& =\min ((S u)(\eta),(S u)(1)) \\
& =\min \left((S u)(\eta), \beta(S u)(\eta)+\frac{\Delta}{\Delta-\rho} \lambda[F u]\right) \\
& \geq \beta(S u)(\eta) \\
& =\beta\left(\frac{1}{\Delta-\rho} \lambda[F u]+(F u)(\eta)\right) \\
& \geq \beta\left(\frac{D_{3}}{\Delta-\rho}+D_{4}\right) \frac{b}{L} \\
& >b
\end{aligned}
$$

as required.
Thirdly, we assert that $\Phi(S u)>b$ for $u \in K(\varphi, \Phi, b, d)$ with $\Theta(S u)>c$. To see this, we suppose $u \in K(\varphi, \Phi, b, d)$ and $\Theta(S u)=\|S u\|>c$. Then

$$
\Phi(S u)=\min _{t \in[\eta, 1]}(S u)(t) \geq \Gamma\|S u\|>\Gamma c=b
$$

Finally, we assert that $\theta \notin R(\varphi, \Psi, a, d)$ and $\Psi(S u)<a$ for $u \in R(\varphi, \Psi, a, d)$ with $\Psi(u)=a$. Indeed, it follows from $\Psi(\theta)=0<a$ that $\theta \notin R(\varphi, \Psi, a, d)$. Moreover, for $u \in R(\varphi, \Psi, a, d)$ and $\Psi(u)=a$, we know that $0 \leq u(t) \leq a$ for $t \in[0,1]$, which together with (A3) implies that

$$
\begin{align*}
\lambda[F u] & =\frac{\rho^{\prime}}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} \kappa(s) f(s, u(\alpha(s))) d s \\
& \leq \frac{D_{1} a}{\mu} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \|F u\| \\
= & \max _{t \in[0,1]}\left(\frac{\gamma+(\beta-\gamma) t}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\int_{0}^{1} k(t, s) f(s, u(\alpha(s))) d s\right) \\
\leq & \frac{\beta}{\Delta} \int_{0}^{1} k(\eta, s) f(s, u(\alpha(s))) d s+\frac{1}{2} \int_{0}^{1}(1+s)(1-s)^{2} f(s, u(\alpha(s))) d s \\
\leq & \frac{D_{2} a}{\mu} \tag{21}
\end{align*}
$$

In view of (20) and (21), we have

$$
\begin{aligned}
\Psi(S u) & =\|S u\| \\
& \leq \frac{1+(\beta-\gamma)(1-\eta)}{\Delta-\rho} \lambda[F u]+\|F u\| \\
& \leq\left(\frac{1+(\beta-\gamma)(1-\eta)}{\Delta-\rho} D_{1}+D_{2}\right) \frac{a}{\mu} \\
& <a
\end{aligned}
$$

as required.
To sum up, all the hypotheses of Theorem 1 are satisfied. Hence, the BVP (3) has at least three positive solutions u_{1}, u_{2}, u_{3} satisfying $\left\|u_{i}\right\| \leq d(i=1,2,3)$ and

$$
\min _{t \in[\eta, 1]} u_{1}(t)>b,\left\|u_{2}\right\|>a \text { with } \min _{t \in[\eta, 1]} u_{2}(t)<b,\left\|u_{3}\right\|<a .
$$

Acknowledgment. This paper is supported by the Natural Science Foundation of Gansu Province of China (1208RJZA240).

References

[1] D. R. Anderson and C. C. Tisdell, Third-order nonlocal problems with signchanging nonlinearity on time scales, Electronic Journal of Differential Equations, $2007(19)(2007), 1-12$.
[2] R. I. Avery and A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42(2001), 313-322.
[3] J. R. Graef and L. Kong, Positive solutions for third order semipositone boundary value problems, Appl. Math. Lett., 22(2009), 1154-1160.
[4] J. R. Graef and J. R. L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal., 71(2009), 1542-1551.
[5] J. R. Graef and B. Yang, Positive solutions for a third-order nonlocal boundaryvalue problem, Discrete Contin. Dyn. Syst., Series S, 1(2008), 89-97.
[6] M. Gregus, Third Order Linear Differential Equations, Reidel, Dordrecht, The Netherlands, 1987.
[7] G. Infante, P. Pietramala and M. Zima, Positive solutions for a class of nonlocal impulsive BVPs via fixed point index, Topol. Methods Nonlinear Anal., 36(2010), 263-284.
[8] T. Jankowski, Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions, Nonlinear Anal., 74(2011), 3775-3785.
[9] T. Jankowski, Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions, Nonlinear Anal., 75(2012), 913-923.
[10] J. P. Sun and H. B. Li, Monotone positive solution of nonlinear third-order BVP with integral boundary conditions, Boundary Value Problems, 2010(2010), 1-12.
[11] Y. Wang and W. Ge, Existence of solutions for a third order differential equation with integral boundary conditions, Comput. Math. Appl., 53(2007), 144-154.
[12] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. Lond. Math. Soc., 74(2006), 673-693.
[13] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differential Equations Appl., 15(2008), 45-67.

[^0]: *Mathematics Subject Classifications: 34B10, 34B18.
 \dagger Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
 \ddagger Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
 §Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China

