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Abstract

In this paper, Lorentzian Euler-Savary Formula (giving the relation between
the curvatures of the trajectory curves drawn by the points of the moving plane in
the fixed plane) during one parameter Lorentzian planar motion is taken into con-
sideration. By using an original geometrical interpretation of Lorentzian Euler-
Savary Formula, Lorentzian Bobillier Formula is established.

However, another presentation is made in this paper without using the Euler-
Savary Formula. Then the Lorentzian Euler-Savary Formula will appear as a
particular case of Bobillier Formula and as a result of the direct way chosen, this
new Lorentzian formula (Bobillier) can be considered as a fundamental law in a
planar Lorentzian motion in place of Euler-Savary’s.

1 Introduction

In 1988, M. Fayet presented a new formula relative to the curvatures in an one pa-
rameter planar Euclidean motion [1]. This formula is called Bobillier’s Formula which
analytically solves the problem that Bobillier’s construction solved graphically as given
in [2] and [3]. Bobillier’s well known theorem on the centers of curvature was the first
theorem concerning second order properties of general motion.

In [4] it is proved that the Bobillier Formula may also be obtained without using
the Euler-Savary Formula which is derived by Euler in 1765 and Savary in 1845 and
this relation (Euler-Savary Formula) is well documented in the literature [5] and [6].
In [7] the Bobillier Formula is proved and also illustrated by elementary tasks. Also in
[8] Bobillier Formula which is concerned with second order properties of one parameter
planar motions in the complex plane is established.

By taking the Lorentzian plane instead of the Euclidean plane, Ergin introduced
one parameter planar motion and gave the relations between the velocities, accelera-
tions and pole curves of this Lorentzian motion. In the Lorentzian plane Euler-Savary
Formula is studied in references [9-13].

To the best of authors’ knowledge Bobillier Formula for the Lorentzian planar mo-
tion is not studied yet. Thus, the study is proposed to serve such a need.
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26 Lorentzian Bobillier Formula

2 Lorentzian Planar Motions and Lorentzian Euler-

Savary Formula

Let P0 and P1 be fixed and moving planes in Lorentzian space respectively. The perpen-
dicular coordinate system of the planes P0 and P1 are {O0; ~p01, ~p02} and {O1; ~p11, ~p12},
respectively. If we suppose that M , M ′ and M ′′ are nonnull (timelike or spacelike)
points linked to moving plane P1, then the conjugate points γ, γ′ and γ′′ of these
nonnull points are curvature centers of the trajectory drawn by M , M ′ and M ′′ in the
fixed plane P0.

The normals of this trajectory pass from an instantaneous center of rotation denoted
by I and called as pole point. At each t moment there is a rotation pole and the
geometric locus of the pole points is called fixed pole curve C0 in the plane P0 and
moving pole curve C1 in the plane P1 during the one-parameter Lorentzian motion
P1\P0(see Figures 2.1 and 2.2).

Figure 2.1 Timelike
−−→
IM,

−−→

IM ′ vectors Figure 2.2 Spacelike
−−→
IM,

−−→

IM ′ vectors

If θ is a hyperbolic angle of Lorentzian motion of P1 with respect to P0 at each
t moment, then each nonnull point M linked to P1 makes a rotation motion with θ̇

angular velocity at the center I. The pole curves C0 and C1 roll upon each other
without sliding during the one parameter Lorentzian planar motion, namely, C0 and
C1 pole curves are always tangent to each other and have the same velocity at each t

moment.

Since the causal character of a curve is determined with respect to the causal char-
acter of the tangent of this curve in Lorentzian plane, C0 and C1 are timelike if the
common tangent of these curves is timelike (see Figure 2.1) or C0 and C1 are spacelike
if the common tangent of these curves is spacelike (see Figure 2.2).

It is seen from Figure 2.1 that γ, γ′ and γ′′ are timelike curvature centers of a
trajectory drawn by the timelike points M , M ′ and M ′′ linked to the moving plane P1

in the fixed plane P0. Also, ~x and ~y are, respectively, common normal and common
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tangent of timelike pole curves C0 and C1. In Figure 2.2, it is indicated that γ, γ′ and
γ′′ are spacelike curvature centers of a trajectory in the fixed plane and this trajectory
is drawn by spacelike points M , M ′ and M ′′ linked to moving plane P1. The common
tangent and the common normal of the spacelike pole curves C0 and C1 are ~x and ~y,
respectively.

From now on, we will investigate these two different situations together.

Let
−→
X,

−→
X′ and

−→
X′′ be timelike (spacelike) unit vectors, then these unit vectors can

be given as follows:

−→
X =

−−→
IM

‚

‚

‚

−−→
IM

‚

‚

‚

,
−→
X′ =

−−→

IM ′

‚

‚

‚

−−→

IM ′

‚

‚

‚

,
−→
X′′ =

−−−→

IM ′′

‚

‚

‚

−−−→

IM ′′

‚

‚

‚

, (1)

see Figure 2.3 (resp. see Figure 2.4).

Figure 2.3 Timelike
−→
X,

−→

X′ and
−→

X′′ vectors

Figure 2.4 Spacelike
−→
X,

−→

X′ and
−→

X′′ vectors

If the abscissa of γ and M timelike (spacelike) points on the axis (I, X) are ρ1 and
ρ0, respectively, then there are the relationships

〈−→
Iγ,

−→
X

〉

= ερ0,
〈−−→
IM,

−→
X

〉

= ερ1 (2)

where ε = −1 if the pole curves are timelike or ε = +1 if the pole curves are spacelike.
Similarly, we can give

〈−→
Iγ′,

−→
X ′

〉

= ερ′0,
〈−−→
IM ′,

−→
X ′

〉

= ερ′1

and
〈−−→
Iγ′′,

−→
X ′′

〉

= ερ′′0 ,
〈−−→
IM ′′,

−→
X ′′

〉

= ερ′′1 .

3 Inflection Points and Inflection Circle

An inflection point may be defined to be a point whose trajectory momentarily has
an infinite radius of curvature [14]. Such points also have zero acceleration normal to
their trajectory. Let the inflection points, by referring to Figure 2.3 and Figure 2.4 be
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M∗, M ′∗ and M ′′∗. The locus of such points is a circle in the Lorentzian plane called
as an inflection circle. The abscissae of the inflection points can be written:

〈−−→
IM∗,

−→
X

〉

= ερ,
〈−−−→
IM ′∗,

−→
X ′

〉

= ερ′,
〈−−−→
IM ′′∗,

−→
X ′′

〉

= ερ′′ (3)

Let h be a distance from a timelike (spacelike) point M0 on the hyperbolic (re-
spectively Lorentzian) inflection circle at the direction of the common normal to the
instantaneous rotation center I, see Figure 2.3 (Figure 2.4). Then there is a relationship
between h and ρ as follows

h sinh θ = ρ

where θ is a hyperbolic angle of the motion P1\P0. If the canonical relative systems of
a plane with respect to other planes are taken into consideration then the Lorentzian
Euler-Savary Formula can be constructed for timelike and spacelike pole curves, sepa-
rately. In [9] it is proved that this formula remains unchanged whether the pole curves
are spacelike or timelike.

The Lorentzian Euler-Savary Formula, which gives the relation between the curva-
tures of the trajectory curves drawn by the points of the moving plane in fixed plane,
is

(

1
ρ1

− 1
ρ0

)

sinh θ = 1
R1

− 1
R0

(4)

where R0 and R1 are the abscissa (ordinates) on (O, ~x) (on (O, ~y) ) of the curvature
centers of the timelike (spacelike) pole curves C0 and C1, respectively. Also, ρ0 and
ρ1 are the distance from the timelike (spacelike) points γ and M to the center I,
respectively, see Figure 3.1 (see Figure 3.2).

Figure 3.1 R0 and R1 lengths Figure 3.2 R0 and R1 lengths

Since there is the relation 1
ρ

= 1
ρ1

− 1
ρ0

the formula given by the equation (4) is

(

1

ρ1
−

1

ρ0

)

sinh θ =
1

R1
−

1

R0
=

1

h
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in which 1
h

= 1
R1

− 1
R0

(first form) or 1
h

= ± ω
V

(second form) where ω is the angular
velocity of the motion of the plane P1 with respect to P0 and V is the common velocity
of I on the pole curves C0 and C1.

4 Lorentzian Bobillier Formula from the Lorentzian

Euler-Savary Formula

If we consider the timelike (spacelike) points Q, Q′, Q′′ and Q0 defined by

−→
IQ = ε

1

ρ

−→
X,

−−→
IQ′ = ε

1

ρ′

−→
X′,

−−→
IQ′′ = ε

1

ρ′′

−→
X′′,

−−→
IQ0 = ε

1

h
−→x (5)

where ε = −1 if C0 and C1 are timelike and ε = +1 if C0 and C1 are spacelike pole
curves, the timelike (spacelike) points Q, Q′ Q′′ and Q0 are images of the timelike
(spacelike) points M∗, M ′∗, M ′′∗ and M0 of hyperbolic (Lorentzian) inflection circle

which respectively belong to
(

I,
−→
X

)

,
(

I,
−→
X′

)

,
(

I,
−→
X′′

)

and (I,−→x ). Hence, the follow-

ing equations are obtained as follows,

〈−→
IQ,

−→
X

〉

=
1

ρ
,

〈−−→
IQ′,

−→
X ′

〉

=
1

ρ′
,

〈−−→
IQ′′,

−→
X ′′

〉

=
1

ρ′′
,

〈−−→
IQ0,−→x

〉

=
1

h
,

see Figure 4.1 (see Figure 4.2).

Figure 4.1 Timelike Q points Figure 4.2 Spacelike Q points

From the equations (5) and hsinhθ = ρ, the relationship

−→
IQ sinh θ =

1

ρ

−→
X sinh θ =

1

h

−→
X
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is obtained. Similarly,
−−→
IQ′ sinh θ′ =

1

ρ′

−→
X′ sinh θ′ =

1

h

−→
X′

and
−−→
IQ′′ sinh θ′′ =

1

ρ′′

−→
X′′ sinh θ′′ =

1

h

−→
X′′

are given. If the last three equations are taken into consideration it is easily seen that

〈−→
IQ,

−→
X

〉

sinh θ =
〈−−→
IQ′,

−→
X′

〉

sinh θ′ =
〈−−→
IQ′′,

−→
X′′

〉

sinh θ′′ =
1

h
.

This means that the set of the timelike (spacelike) points Q is a straight line D parallel
to axis ~y (axis ~x). Thus the line D is an image of the hyperbolic (Lorentzian) inflection
circle by this inversion at the rotation center I, see Figure 3.1 (Figure 3.2).

Since the timelike (spacelike) vectors
(−→
IQ −

−−→
IQ′

)

and
(−−→
IQ′ −

−−→
IQ′′

)

are linearly

dependent, the Lorentzian cross product of these vectors is

(
−→
IQ ×

−−→
IQ′) − (

−−→
IQ′ ×

−−→
IQ′) − (

−→
IQ ×

−−→
IQ′′) + (

−−→
IQ′ ×

−−→
IQ′′) =

−→
0 .

See Figure 4.3 (Figure 4.4).

Figure 4.3
−→
IQ −

−−→

IQ′ and
−−→

IQ′
−

−−→

IQ′′ vectors Figure 4.4
−→
IQ −

−−→

IQ′ and
−−→

IQ′
−

−−→

IQ′′ vectors

Then from the last equation, we obtain

ε2

(

1

ρ

−→
X ×

1

ρ′

−→
X′

)

+ ε2

(

1

ρ′′

−→
X′′ ×

1

ρ

−→
X

)

+ ε2

(

1

ρ′

−→
X′ ×

1

ρ′′

−→
X′′

)

=
−→
0 .

Since ρρ′ρ′′ 6= 0 and ε2 = 1, we write

ρ′′
(−→
X ×

−→
X′

)

+ ρ′
(−→
X ×

−→
X′′

)

+ ρ
(−→
X′ ×

−→
X′′

)

= ~0.
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If the definition of Lorentzian cross product is taken into consideration, then the last
equation becomes

ρ sinh
(−→
X′,

−→
X′′

)

+ ρ′ sinh
(−→
X′′,

−→
X

)

+ ρ′′ sinh
(−→
X,

−→
X′

)

= 0

where 1
ρ

= 1
ρ1

− 1
ρ0

, 1
ρ′

= 1
ρ′

1

− 1
ρ′

0

and 1
ρ′′

= 1
ρ′′

1

− 1
ρ′′

0

.

This last equation is called Lorentzian Bobillier Formula which is totally based on
Lorentzian Euler-Savary Formula.

5 Direct Approach Towards the Lorentzian Bobillier

Formula

The following approach allows us to obtain the Lorentzian Bobillier Formula, directly.
Then the Lorentzian Euler-Savary Formula appears as a particular case of this formula.

Let
−→
V 0 (M) and

−→
J 0 (M) be absolute velocity vector and absolute acceleration

vector of the timelike (spacelike) point M , respectively. If ω is the angular velocity of
the motion P1\P0 then ω = ∆θ

∆t
where θ is the rotation angle. By taking a unit vector ~z

which is orthogonal to the planes P0 and P1 the angular velocity vector can be defined
by ~ω = ω~z . On the other hand the sliding velocity vector of the point M is

−→
V 1 (M) = −→ω ×

−−→
IM.

During one parameter Lorentzian planar motion the relationship

−→
V 0 (M) =

−→
V 0

1 (I) +
−→
V 1 (M) (6)

holds where
−→
V 0 (M) ,

−→
V 0

1 (I) and
−→
V 1 (M) denote the absolute, relative and sliding

velocity vectors of the motion, P1\P0 respectively [14]. If we substitute the equation
(6) into the last equation we obtain

−→
V 0 (M) =

−→
V 0

1 (I) + (−→ω ×
−−→
IM). (7)

The differentiation of the equation (7) with respect to time t is

−→
J 0 (M) =

−→
J 0

1 (I) +
(

ω̇−→z ×
−−→
IM

)

+
(

ω−→z ×
(

ω−→z ×
−−→
IM

))

(8)

where
−→
J 0

1 (I) is the acceleration vector of the point M on P1 that coincides instanta-
neously with I. Here the first term is the trajectorywise invariant acceleration com-
ponent, the second term is tangential acceleration component, and the third term is
centripetal component.

If the Lagrange identity in the sense of Lorentz is taken into consideration, then
the equation (8) becomes

−→
J 0 (M) =

−→
J 0

1 (I) +
(

ω̇−→z ×
−−→
IM

)

+ 〈ω~z, ω−→z 〉
−−→
IM −

〈−−→
IM, ω−→z

〉

ω−→z .
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Since
−−→
IM is orthogonal to the angular velocity vector,

〈−−→
IM, ω−→z

〉

= 0. On the other

hand 〈ω−→z , ω−→z 〉 = −εω2 where ε = −1 if −→z is spacelike or ε = 1 if ~z is timelike.
Therefore we get

−→
J 0 (M) =

−→
J 0

1 (I) +
(

ω̇−→z ×
−−→
IM

)

− εω2−−→IM. (9)

By considering the analysis of the equation (9) for the inflection points whose ac-
celeration normal is zero then the absolute velocity and acceleration vector of the point
M∗ on the hyperbolic (Lorentzian) circle become linearly dependent, that is

−→
V 0(M∗) ×

−→
J 0(M∗) =

−→
0 .

If we substitute the equations (7) and (9) into the last equation, we find the following
equation

(−→
V 0

1(I) +
(

ω−→z ×
−−→
IM∗

))

×
(−→

J 0
1(I) +

(

ω̇−→z ×
−−→
IM∗

)

− εω2−−→IM∗

)

= ~0.

By applying the Lorentzian cross product and considering
−→
V 0

1 (I) = ~0, we obtain

−ω
〈

−→z ,
−→
J 0

1(I)
〉−−→

IM∗ + ω
〈−−→
IM∗,

−→
J 0

1(I)
〉

−→z + ωω̇
((

−→z ×
−−→
IM∗

)

×
(

−→z ×
−−→
IM∗

))

+ω3ε
〈

−→z ,
−−→
IM∗

〉−−→
IM∗ − εω3

〈−−→
IM∗,

−−→
IM∗

〉

−→z = ~0.
.

It is known that the relationships

〈

−→z ,
−→
J 0

1(I)
〉

= 0,
〈

−→z ,
−−→
IM∗

〉

= 0,
∥

∥

∥

−−→
IM∗

∥

∥

∥

2

= ε
〈−−→
IM∗,

−−→
IM∗

〉

and
(

−→z ×
−−→
IM∗

)

×
(

−→z ×
−−→
IM∗

)

= ~0

hold. Then we find that

〈−−→
IM∗,

−→
J 0

1(I)
〉

−→z − ε2ω2
∥

∥

∥

−−→
IM∗

∥

∥

∥

2 −→z = ~0.

There is always a constant hyperbolic angle between the timelike (spacelike)vector
−→
J 0

1(I) and the timelike (spacelike) normal vector
−−→
IM∗. These vectors are on the same

branch of the Lorentzian (hyperbolic) circle. Let us denote this angle by α. So, the
last equation becomes

ε
∥

∥

∥

−−→
IM∗

∥

∥

∥
J0

1 (I) cosh α − ω2
∥

∥

∥

−−→
IM∗

∥

∥

∥

2

= 0.

where ε2 = 1. From equation (3),

ερJ0
1 (I) cosh α − ω2ρ2 = 0,
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is obtained. After some rearrangements it becomes

ρ = ε
J0

1 (I) cosh α

ω2
.

Since the hyperbolic angle α is also an angle between the timelike (spacelike) vectors
−→
J 0

1(I) and
−→
X on the same branch of the Lorentzian (hyperbolic) circle, it is found that

ρ =

〈−→
J 0

1(I),
−→
X

〉

ω2
. (10)

The analogous equations can be written for points M ′ and M ′′ as

ρ′ =

〈−→
J 0

1 (I) ,
−→
X′

〉

ω2
, (11)

and

ρ′′ =

〈−→
J 0

1 (I) ,
−→
X′′

〉

ω2
. (12)

So, from the equations (10), (11), (12), ρ, ρ′ and ρ′′ may be seen as the Lorentzian

orthogonal projections of the same timelike (spacelike) vector
−→
J 0

1
(I)

ω2 on the timelike
(spacelike) unit vectors X, X′ and X′′ which are linearly dependent. The dependence
between X, X′ and X′′ may be written as follows;

λ
−→
X + µ

−→
X′ + ϑ

−→
X′′ = ~0. (13)

By successive Lorentzian cross products with X and X′, the quantities λ, µ and ϑ are
obtained as follows

λ = sinh
(−→
X′,

−→
X′′

)

, µ = sinh
(−→
X′′,

−→
X

)

, ϑ = sinh
(−→
X,

−→
X′

)

. (14)

Substituting the equation (14) into the (13) the linear combination becomes

sinh
(−→
X′,

−→
X′′

)−→
X + sinh

(−→
X′′,

−→
X

)−→
X′ + sinh

(−→
X,

−→
X′

)−→
X′′ = 0.

The Lorentzian scalar product of the previous equation with the vector
−→
J 0

1
(I)

ω2 is

sinh

„

−→

X
′

,
−→

X
′′

«

D

−→
X,

−→
J 0

1
(X)

E

ω2
+ sinh

„

−→

X
′′

,
−→
X

«

D−→

X′,
−→
J 0

1
(X)

E

ω2
+ sinh

„

−→
X,

−→

X
′

«

D−→

X′′,
−→
J 0

1
(X)

E

ω2
= 0. (15)

Finally, taking into account (10), (11) and (12) Lorentzian Bobillier Formula is obtained
again, but using a direct way without the use of Lorentzian Euler-Savary Formula,

ρ sinh
(−→
X′,

−→
X′′

)

+ ρ′ sinh
(−→
X′′,

−→
X

)

+ ρ′′ sinh
(−→
X,

−→
X′

)

= 0. (16)

Therefore, the following theorem can be given.
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THEOREM 1. In one parameter Lorentzian planar motion of moving plane P1 with
respect to fixed plane P0, the relationship between the centers of curvatures concerning
second order instantaneous properties is given by the Lorentzian Bobillier Formula
given in the equation (16).

From this point of view, we obtained the Lorentzian form of Bobillier Formula given
in [4] and [8].

Let us investigate a particular case of Theorem 1. If a timelike (spacelike) point
K linked to moving plane P1 be coincident with instantaneous pole center I, then
−→
V 0 (K) = 0 and similarly

−→
J 0 (K) = 0. Under this condition the length ρ′ is equal to

zero. For timelike pole curves and spacelike pole curves Lorentzian Bobillier Formula
becomes

ρ sinh (~y, ~x) + ρ′′ sinh
(−→
X,−→y

)

= 0

and
ρ sinh (~x, ~y) + ρ′′ sinh

(−→
X,−→x

)

= 0,

respectively. In addition to this by taking a hyperbolic angle θ between X and the axis
y (axis x) for timelike (spacelike) pole curves, x and y are orthogonal in the sense of
Lorentzian. So we can give the following corollary.

COROLLARY 1. Let a point K linked to moving plane P1 be coincident with
instantaneous pole center I. In that case Bobillier Formula becomes

ρ − ρ′′ sinh θ = 0.

As announced, it is simply a particular case of Bobillier formula in sense of Lorentz.
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