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Abstract
We provide an interesting way to obtain the linear generating function for the

classical discrete Charlier orthogonal polynomials by implementing what we enti-
tle the ‘Inverse Method’. This method transforms a given three-term recurrence
relation into a differential equation, the solution of which is a linear generating
function. To demonstrate the details of the procedure, we first apply the Inverse
Method to the three-term recurrence relation that defines the Charlier polynomi-
als. We then apply it to a new three-term recurrence relation, which is established
via a certain connection between the Charlier polynomials and a variation of the
Laguerre polynomials. The solution to each of these differential equations is the
intended generating function.

1 Introduction

In this paper, we ultimately construct and solve two different differential equations that
both admit the linear generating function (see (4)) for the classical discrete Charlier
orthogonal polynomial sequences {Cn(x; a)}∞n=0 (refer to (1)) as their solution. The
analysis leading to the second of these differential equations does not appear in the
current literature. For other papers related to developing characterizations for linear
generating functions via differential equations consider [1, 8, 10, 15].
In order to effi ciently discuss the details of this paper, we first address some pre-

liminary definitions, nomenclature and concepts. We begin with the definition of the
Charlier polynomials:

Cn(x; a) := 2F0

(
−n,−x
− − 1

a

)
=

n∑
k=0

(−n)k(−x)k
k!

(
−1

a

)k
, (1)

which we have written in hypergeometric form, adhering to the following definition.

DEFINITION 1 ([16]). A generalized classical Hypergeometric Function (rFs)
has the form

rFs

(
a1, ..., ar
b1, ..., bs

x

)
=

∞∑
k=0

(a1, ..., ar)k
(b1, ..., bs)k

xk

k!
, (2)
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where the Pochhammer Symbol (a)k is defined as

(a)k := a (a+ 1) (a+ 2) · · · (a+ k − 1) , (a)0 := 1,

and
(a1, . . . , aj)k := (a1)k · · · (aj)k.

The sum (2) terminates if one of the numerator parameters is a negative integer, e.g.,
consider −n as in (1).

It is worth mentioning that the Charlier polynomials are classified as a classical
Sheffer B-Type 0 orthogonal polynomial sequence (cf. [6, 17]) and satisfy the discrete
orthogonality relation

∞∑
n=0

ax

x!
Cm(x; a)Cn(x; a) = a−nean!δm,n, a > 0.

Moreover, the Charlier polynomials are very important in various applications, includ-
ing; statistical planning and inference [7], quantum mechanics [5, 14, 18], difference
equations [4], combinatorics [12] and lattices [9] (e.g., the semi-infinite Toda lattice).
An indispensable structure in the theory and applications of orthogonal polynomials

is the linear generating function, which we define next.

DEFINITION 2 ([16]). A Linear Generating Function for a polynomial se-
quence {Pn(x)}∞n=0 has the form∑

Λ

ζnPn(x)tn = F (x, t), (3)

with Λ ⊆ {0, 1, 2, 3, . . .} and {ζn}
∞
n=0 a sequence in n that is independent of x and t.

Moreover, we say that the function F (x, t) generates the set {Pn(x)}∞n=0.

The Charlier polynomials (1) have the linear generating function:
∞∑
n=0

1

n!
Cn(x; a)tn = et

(
1− t

a

)x
. (4)

The relation (4) can be derived from first principles. To demonstrate this, we take the
left-hand side of (4) and substitute (1), which leads to

∞∑
n=0

1

n!
Cn(x; a)tn =

∞∑
n=0

n∑
k=0

(−1)k(−n)k(−x)k
k!n!ak

tn

=

∞∑
n=0

n∑
k=0

(−x)k
k!(n− k)!ak

tn

=

∞∑
n=0

tn

n!

∞∑
k=0

(−x)k
k!ak

tk

= et
(

1− t

a

)x
,
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where we first used (−n)k = (−1)kn!/(n− k)!, then the relation (cf. p.57 of [16]):

∞∑
n=0

n∑
k=0

B(k, n) =

∞∑
n=0

∞∑
k=0

B(k, n+ k)

and binomial expansion.
Interestingly, (4) is the only known linear generating function for the Charlier poly-

nomials (1) of the form (3). In fact, various papers have been published on obtaining
other types of generating functions for the Charlier polynomials, e.g., [3, 13], and even
more recently, [2, 7].
Lastly, we utilize the following necessary and suffi cient condition for orthogonality

throughout this work.

DEFINITION 3 ([16]). Every orthogonal polynomial sequence {Pn(x)}∞n=0 satisfies
a Three-Term Recurrence Relation of the form

Pn+1(x) = (Anx+Bn)Pn(x)− CnPn−1(x), AnAn−1Cn > 0

where
P−1(x) = 0 and P0(x) = 1. (5)

The three-term recurrence relation for the Charlier polynomials is

−xCn(x; a) = aCn+1(x; a)− (n+ a)Cn(x; a) + nCn−1(x; a). (6)

We can now discuss the details of this paper. Namely, we develop and implement an
appealing way to obtain the linear generating function (4) for the Charlier polynomials
(1) other than the first principles approach. To accomplish this, we utilize what we
have deemed the ‘Inverse Method’, which transforms a three-term recurrence relation
of the form (5) into a differential equation that has a generating function of the form
(3) as its unique solution. In Section 2, we explain the details of the Inverse Method
and then apply it to (6) in order to obtain (4) as a solution. Our main result is
developed in Section 3, wherein we construct a certain relationship between the Charlier
polynomials and a variation of the Laguerre polynomials, which results in a new three-
term recurrence relation. The Inverse Method is then applied to this relation yielding
(4) as a solution.

2 The Inverse Method

In this section, we demonstrate the details of the Inverse Method by applying it to
(6) in order to obtain (4) as a solution. We use the term ‘Inverse Method’due to the
relation our approach has to the Inverse Problems as defined in Chapter 5 of [11], for
example. This method is again utilized in Section 3.
We begin by describing the general idea behind the Inverse Method. First, we

multiply both sides of the given three-term recurrence relation of the form (5) by
cnt

n, where cn is a function in n that is independent of x and t, and sum the result
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for n = 0, 1, 2, . . .. We then define F (t) :=
∑∞
n=0 cnPn(x)tn, whence it follows that

∂
∂tF (t) =

∑∞
n=1 ncnPn(x)tn−1. From there, we use algebraic manipulations to obtain

a differential equation1 , with the initial condition F (0) = P0(x) = 1. The unique
solution to this differential equation will have the form

∑∞
n=0 cnPn(x)tn = f(x, t). We

now apply this method to (6).
To begin, we note that from examining (4), cn, as described above, must be 1/n!.

Thus, we multiply (6) by tn/n! and sum the result for n = 0, 1, 2, . . ., which yields

−x
∞∑
n=0

Cn(x; a)

n!
tn = a

∞∑
n=0

Cn+1(x; a)

n!
tn −

∞∑
n=1

Cn(x; a)

(n− 1)!
tn

− a
∞∑
n=0

Cn(x; a)

n!
tn +

∞∑
n=1

Cn−1(x; a)

(n− 1)!
tn.

We then define F := F (t;x, a) =
∑∞
n=0

Cn(x;a)
n! tn and it therefore immediately follows

that Ḟ := ∂
∂tF (t;x, a) =

∑∞
n=1

Cn(x;a)
(n−1)! t

n−1. Then, we see that our relation directly
above leads to the first-order differential equation below

Ḟ −
(

1 +
x

t− a

)
F = 0; F (0;x, a) = 1. (7)

The integrating factor for (7) is µ = exp
(
−
∫

1 + x
t−adt

)
= e−t(t − a)−x and

therefore, a general solution is

F (t;x, a) = c(x; a)et(t− a)x,

where c(x; a) is an arbitrary function of x. From the initial condition, it is immediate
that c(x; a) = (−a)−x and thus, the unique solution to (7) turns out to be (4):

F (t;x, a) =

∞∑
n=0

Cn(x; a)

n!
tn = et

(
1− t

a

)x
.

REMARK. It is worth discussing the ramifications of attempting to find a linear gen-
erating function for the Charlier polynomials of the form

∑∞
n=0 Cn(x; a)tn = g(x, t) via

the Inverse Method. Following suit to the analysis above leads to the non-homogeneous
differential equation

Ġ+

(
a+ (x− a+ t)t

(t− 1)t2

)
G =

a

(t− 1)t2
; G(0;x; a) = 1. (8)

The integrating factor for this equation is µ = ea/t(t − 1)x+1t−x and therefore the
general solution is

G(t;x; a) = d(x; a)
ae−a/ttx

(t− 1)x+1

∫
ea/t

t2

(
1− 1

t

)x
dt.

1For some orthogonal polynomial sequences, e.g., the Chebyshev polynomials, the resulting equation
is algebraic.
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This solution can be manipulated in various ways. For example, we can equivalently
write

G(t;x; a) = d(x; a)
e−a/ttx

(t− 1)x+1

x∑
k=0

(−1)k+1(−x)k
akk!

Γ(k + 1,−a/t),

where Γ(α, z) :=
∫∞
z
τα−1e−τdτ is the Incomplete Gamma Function. However, due to

the discontinuity at t = 0 in the coeffi cients of (8), no solution exists that satisfies the
initial value problem.

3 The Main Result

We next derive a new three-term recurrence relation for a variation of the Laguerre
polynomials - these polynomials are in fact are equivalent to a multiple of the Charlier
polynomials. We then apply the Inverse Method to this relation in order to yield (4)
as a solution. The Laguerre polynomials are defined as

L(α)
n (x) =

(α+ 1)n
n!

1F1

(
−n
α+ 1

x

)
, α > −1. (9)

The restriction on α is essential, as {L(α)
n (x)}∞n=0 is undefined for all α ≤ −1. However,

taking into account that (α+ 1)n/(α+ 1)k = (α+ k + 1)n−k and expanding (9) as

L(α)
n (x) =

(α+ 1)n
n!

n∑
k=0

(−n)k
(α+ 1)kk!

xk

leads to the equivalent form

L(α)
n (x) =

1

n!

n∑
k=0

(−n)k
k!

(α+ k + 1)n−kx
k. (10)

Moreover, using relationship (10), we are able to define the Laguerre polynomials for
all α ∈ R. We can now establish the following statement.

LEMMA 1. The Charlier polynomials (1) and the Laguerre polynomials (10) are
related in the following way:

(−a)n

n!
Cn(x; a) = L(x−n)

n (a). (11)

PROOF. From (10), we see that

L(x−n)
n (a) =

1

n!

n∑
k=0

(−n)k
k!

(x− n+ k + 1)n−ka
k. (12)

Making use of the following relations

(x− (n− k) + 1)n−k = (−1)n+k(−x)n−k, (−n)k =
(−1)kn!

(n− k)!
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and

(−1)n+k n!

k!
= (−n)n−k,

we see that (12) becomes

L(x−n)
n (a) =

(−a)n

n!

n∑
k=0

(−n)n−k(−x)n−k
(n− k)!

(
−1

a

)n−k
=

(−a)n

n!

n∑
k=0

(−n)k(−x)k
k!

(
−1

a

)k
=

(−a)n

n!
Cn(x; a).

LEMMA 2. A three-term recurrence relation for {L(x−n)
n (a)}∞n=0 as in (11) is

(n+ 1)L
(x−n−1)
n+1 (a) = (x− a− n)L(x−n)

n (a)− aL(x−n+1)
n−1 (a). (13)

PROOF. From LEMMA 1 and (4), we obtain the linear generating function

∞∑
n=0

L(x−n)
n (a)tn = e−at(1 + t)x. (14)

From writing L(x−n)
n (a) = cn,0x

n + cn,1x
n−1 + cn,2x

n−2 + O(xn−3), it follows from
comparing the coeffi cients of xntn, xn−1tn and xn−2tn in (14) that

L(x−n)
n (a) =

1

n!
xn −

[
a

(n− 1)!
+

1

2(n− 2)!

]
xn−1

+
1

8

[
4a2

(n− 2)!
+

12a+ 8

3(n− 3)!
+

1

(n− 4)!

]
xn−2 +O(xn−3).

Putting this into the general three-term recurrence relation (5) and comparing coeffi -
cients of xn+1, xn and xn−1 yields the recurrence coeffi cients for {L(x−n)

n (a)}∞n=0:

An =
1

n+ 1
, Bn = −a+ n

n+ 1
and Cn =

a

n+ 1
,

from which (13) follows.

This leads us to our main result.

THEOREM 1. For H := H(t;x, a), the linear generating function (14) satisfies the
first-order differential equation

Ḣ +

(
a− x

1 + t

)
H = 0; H(0;x, a) = 1. (15)
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PROOF. We establish this result by applying the Inverse Method to (13), analogous
to deriving (4) via (6). We first multiply (13) by tn and sum for n = 0, 1, 2, . . .. From
defining H := H(t;x, a) =

∑∞
n=0 L

(x−n)
n (a)tn we obtain (15).

The integrating factor turns out to be µ = exp
(∫

a− x
1+tdt

)
= eat(1 + t)−x and it

follows that the solution to (15) is (14):

H(t;x, a) =

∞∑
n=0

L(x−n)
n (a)tn = e−at(1 + t)x.

Clearly, we see that H(−t/a;x, a) above gives us (4).
In conclusion, we have established our two distinct differential equations (7) and

(15), which characterize the only linear generating function for the Charlier polyno-
mials. As a byproduct of our analysis, we also derived the new three-term recurrence
relation (13).
Lastly, we state that an interesting future consideration is to develop the q-analogue

of this paper. That is, construct q-difference equations for the quantized Charlier (q-
Charlier) polynomials (see [19]):

Cn(q−x; a, q) := 2φ1

(
q−n, q−x

0
q;−q

n+1

a

)
,

with

rφs

(
a1, ..., ar
b1, ..., bs

q; z

)
:=

∞∑
k=0

(a1, ..., ar; q)k
(q, b1, ..., bs; q)k

zk
(
−q(k−1)/2

)k(s+1−r)

and
(a; q)k := (1− a)(1− aq)

(
1− aq2

)
· · ·
(
1− aqk−1

)
, (a; q)0 := 1,

that have the corresponding linear generating function(s) as solutions. Directly above,
rφs represents the Generalized q-Hypergeometric Series and (a; q)k the q-Pochhammer
Symbol.
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