The Norm Attainability Of Some Elementary Operators*

Nyaare Benard Okelo ${ }^{\dagger}$

Received 28 March 2012

Abstract

In this note, we present new results on necessary and sufficient conditions for norm-attainability for Hilbert space operators. Moreover, norm-attainability conditions for elementary operators and generalized derivations are also established. The main results shows that if we let $S \in B(H), \beta \in W_{0}(S)$ and $\alpha>0$, then there exists an operator $Z \in B(H)$ such that $\|S\|=\|Z\|$, with $\|S-Z\|<\alpha$. Furthermore, there exists a vector $\eta \in H,\|\eta\|=1$ such that $\|Z \eta\|=\|Z\|$ with $\langle Z \eta, \eta\rangle=\beta$.

1 Introduction

Let H be an infinite dimensional complex Hilbert space and $B(H)$ the algebra of all bounded linear operators on H. Let both S and T belong $B(H)$ and consider $\mathcal{T}: B(H) \rightarrow B(H) . \mathcal{T}$ is called an elementary operator if it is represented as $\mathcal{T}(X)=$ $\sum_{i=1}^{n} S_{i} X T_{i}, \forall X \in B(H)$, where $S_{i}, \quad T_{i}$ are fixed in $B(H)$ or $\mathcal{M}(B(H))$ where $\mathcal{M}(B(H))$ is the multiplier algebra of $B(H)$. For $S, T \in B(H)$ we have the following examples of elementary operators: (i) the left multiplication operator $L_{S}(X)=$ $S X$, (ii) the right multiplication operator $R_{T}(X)=X T$, (iii) the inner derivation $\delta_{S}=S X-X S$, (iv) the generalized derivation $\delta_{S, T}=S X-X T$, (v) the basic elementary operator $M_{S, T}(X)=S X T$, (vi) the Jordan elementary operator and $\mathcal{U}_{S, T}(X)=S X T+T X S, \forall X \in B(H)$. Stampfli [3] characterized the norm of the generalized derivation by obtaining that $\left\|\delta_{S, T}\right\|=\inf _{\beta \in \mathbb{C}}\{\|S-\beta\|+\|T-\beta\|\}$, where \mathbb{C} is the complex plane. Other studies on derivations and elementary operators have also been carried out with nice results obtained, see [1] and [2] and the references there in.

DEFINITION 1.1. An operator $S \in B(H)$ is said to be norm-attainable if there exists a unit vector $x_{0} \in H$ such that $\left\|S x_{0}\right\|=\|S\|$.

DEFINITION 1.2. For an operator $S \in B(H)$ we define a numerical range by $W(S)=\{\langle S x, x\rangle: x \in H,\|x\|=1\}$ and the maximal numerical range by $W_{0}(S)=$ $\left\{\beta \in \mathbb{C}:\left\langle S x_{n}, x_{n}\right\rangle \rightarrow \beta\right.$, where $\left.\left\|x_{n}\right\|=1,\left\|S x_{n}\right\| \rightarrow\|S\|\right\}$.

The main result in the next section is Theorem 2.1 which deals with the necessary and sufficient conditions for a Hilbert space operator to be norm-attainable.

[^0]
2 Main Results

The following is the main theorem.
THEOREM 2.1. Let $S \in B(H), \beta \in W_{0}(S)$ and $\alpha>0$. There exists an operator $Z \in B(H)$ such that $\|S\|=\|Z\|$, with $\|S-Z\|<\alpha$. Furthermore, there exists a vector $\eta \in H,\|\eta\|=1$ such that $\|Z \eta\|=\|Z\|$ with $\langle Z \eta, \eta\rangle=\beta$.

PROOF. Without loss of generality, we may assume that $\|S\|=1$ and also that $0<\alpha<2$. Let $x_{n} \in H(n=1,2, \ldots)$ be such that $\left\|x_{n}\right\|=1,\left\|S x_{n}\right\| \rightarrow 1$ and also $\lim _{n \rightarrow \infty}\left\langle S x_{n}, x_{n}\right\rangle=\beta$. Let $S=G L$ be the polar decomposition of S. Here G is a partial isometry and we write $L=\int_{0}^{1} \beta d E_{\beta}$, the spectral decomposition of $L=\left(S^{*} S\right)^{\frac{1}{2}}$. Since L is a positive operator with norm 1 , for any $x \in H$ we have that $\left\|L x_{n}\right\| \rightarrow 1$ as n tends to ∞ and $\lim _{n \rightarrow \infty}\left\langle S x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle G L x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle L x_{n}, G^{*} x_{n}\right\rangle$. Now for $H=\overline{\operatorname{Ran}(L)} \oplus \operatorname{Ker} L$, we can choose x_{n} such that $x_{n} \in \overline{\operatorname{Ran(L)}}$ for large n. Indeed, let

$$
x_{n}=x_{n}^{(1)} \oplus x_{n}^{(2)}, n=1,2, \ldots
$$

Then we have that

$$
L x_{n}=L x_{n}^{(1)} \oplus L x_{n}^{(2)}=L x_{n}^{(1)}
$$

and that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}^{(1)}\right\|=1, \lim _{n \rightarrow \infty}\left\|x_{n}^{(2)}\right\|=0
$$

since

$$
\lim _{n \rightarrow \infty}\left\|L x_{n}\right\|=1
$$

Replacing x_{n} with $\frac{x_{n}^{(1)}}{\left\|x_{n}^{(1)}\right\|}$, we obtain

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left\|L \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}\right\|=\lim _{n \rightarrow \infty}\left\|S \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}\right\|=1, \\
\lim _{n \rightarrow \infty}\left\langle S \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}, \frac{1}{\left\|x_{n}^{(1)}\right\|} x_{n}^{(1)}\right\rangle=\beta .
\end{gathered}
$$

Now assume that $x_{n} \in \overline{\operatorname{RanL}}$. Since G is a partial isometry from $\overline{\operatorname{RanL}}$ onto $\overline{\operatorname{RanS}}$, we have that $\left\|G x_{n}\right\|=1$ and $\lim _{n \rightarrow \infty}\left\langle L x_{n}, G^{*} x_{n}\right\rangle=\beta$. Since L is a positive operator, $\|L\|=1$ and for any $x \in H$,

$$
\langle L x, x\rangle \leq\langle x, x\rangle=\|x\|^{2} .
$$

Replacing x with $L^{\frac{1}{2}} x$, we get that $\left\langle L^{2} x, x\right\rangle \leq\langle L x, x\rangle$, where $L^{\frac{1}{2}}$ is the positive square root of L. Therefore we have that $\|L x\|^{2}=\langle L x, L x\rangle \leq\langle L x, x\rangle$. It is obvious that $\lim _{n \rightarrow \infty}\left\|L x_{n}\right\|=1$ and that

$$
\left\|L x_{n}\right\|^{2} \leq\left\langle L x_{n}, x_{n}\right\rangle \leq\left\|L x_{n}\right\|^{2}=1
$$

Hence, $\lim _{n \rightarrow \infty}\left\langle L x_{n}, x_{n}\right\rangle=1=\|L\|$. Moreover, Since $I-L \geq 0$, we have $\lim _{n \rightarrow \infty}\langle(I-$ $\left.L) x_{n}, x_{n}\right\rangle=0$. thus $\lim _{n \rightarrow \infty}\left\|(I-L)^{\frac{1}{2}} x_{n}\right\|=0$. Indeed,

$$
\lim _{n \rightarrow \infty}\left\|(I-L) x_{n}\right\| \leq \lim _{n \rightarrow \infty}\left\|(I-L)^{\frac{1}{2}}\right\| \cdot\left\|(I-L)^{\frac{1}{2}} x_{n}\right\|=0
$$

For $\alpha>0$, let $\gamma=\left[0,1-\frac{\alpha}{2}\right]$ and let $\rho=\left(1-\frac{\alpha}{2}, 1\right]$. We have

$$
\begin{aligned}
L & =\int_{\gamma} \mu d E_{\mu}+\int_{\rho} \mu d E_{\mu} \\
& =L E(\gamma) \oplus L E(\rho)
\end{aligned}
$$

Next we show that $\lim _{n \rightarrow \infty}\left\|E(\gamma) x_{n}\right\|=0$. If there exists a subsequence $x_{n_{i}},(i=$ $1,2, \ldots$,$) such that \left\|E(\gamma) x_{n_{i}}\right\| \geq \epsilon>0,(i=1,2, \ldots$,$) , then since \lim _{i \rightarrow \infty}\left\|x_{n_{i}}-L x_{n_{i}}\right\|=$ 0 , it follows that

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-L x_{n_{i}}\right\|^{2} & =\lim _{i \rightarrow \infty}\left(\left\|E(\gamma) x_{n_{i}}-L E(\gamma) x_{n_{i}}\right\|^{2}+\left\|E(\rho) x_{n_{i}}-L E(\rho) x_{n_{i}}\right\|^{2}\right) \\
& =0
\end{aligned}
$$

Hence we have that $\lim _{i \rightarrow \infty}\left\|E(\gamma) x_{n_{i}}-L E(\gamma) x_{n_{i}}\right\|^{2}=0$. Now it is clear that

$$
\begin{aligned}
\left\|E(\gamma) x_{n_{i}}-L E(\gamma) x_{n_{i}}\right\| & \geq\left\|E(\gamma) x_{n_{i}}\right\|-\|L E(\gamma)\| \cdot\left\|E(\gamma) x_{n_{i}}\right\| \\
& \geq(I-\|L E(\gamma)\|)\left\|E(\gamma) x_{n_{i}}\right\| \\
& \geq \frac{\alpha}{2} \epsilon \\
& >0
\end{aligned}
$$

This is a contradiction. Therefore,

$$
\lim _{n \rightarrow \infty}\left\|E(\gamma) x_{n}\right\|=0
$$

Since

$$
\lim _{n \rightarrow \infty}\left\langle L x_{n}, x_{n}\right\rangle=1
$$

we have that

$$
\lim _{n \rightarrow \infty}\left\langle L E(\rho) x_{n}, E(\rho) x_{n}\right\rangle=1
$$

and

$$
\lim _{n \rightarrow \infty}\left\langle E(\rho) x_{n}, G^{*} E(\rho) x_{n}\right\rangle=\beta
$$

It is easy to see that

$$
\lim _{n \rightarrow \infty}\left\|E(\rho) x_{n}\right\|=1, \lim _{n \rightarrow \infty}\left\langle L \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}, \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}\right\rangle=1
$$

and

$$
\lim _{n \rightarrow \infty}\left\langle L \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}, G^{*} \frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}\right\rangle=\beta
$$

Replacing x with $\frac{E(\rho) x_{n}}{\left\|E(\rho) x_{n}\right\|}$, we can assume that $x_{n} \in E(\rho) H$ for each n and $\left\|x_{n}\right\|=1$. Let

$$
\begin{aligned}
J & =\int_{\gamma} \mu d E_{\mu}+\int_{\rho} \mu d E_{\mu} \\
& =J_{1} \oplus E(\rho)
\end{aligned}
$$

Then it is evident that

$$
\|J\|=\|S\|=\|L\|=1, J x_{n}=x_{n}
$$

and $\|J-L\| \leq \frac{\alpha}{2}$. If we can find a contraction V such that $V-G \leq \frac{\alpha}{2}$ and $\left\|V x_{n}\right\|=1$ and $\left\langle V x_{n}, x_{n}\right\rangle=\beta$, for a large n then letting $Z=V J$, we have that $\left\|Z x_{n}\right\|=\left\|V J x_{n}\right\|=$ 1 , and that

$$
\begin{aligned}
\left\langle Z x_{n}, x_{n}\right\rangle & =\left\langle V J x_{n}, x_{n}\right\rangle=\left\langle V x_{n}, x_{n}\right\rangle=\beta \\
\|S-Z\| & =\|G L-V J\| \\
& \leq\|G L-G J\|+\|G J-V J\| \\
& \leq\|G\| \cdot\|L-J\|+\|G-V\| \cdot\|J\| \\
& \leq \frac{\alpha}{2}+\frac{\alpha}{2} \\
& =\alpha
\end{aligned}
$$

To finish the proof, we now construct the desired contraction V. Clearly,

$$
\lim _{n \rightarrow \infty}\left\langle x_{n}, G^{*} x_{n}\right\rangle=\beta
$$

because $\lim _{n \rightarrow \infty}\left\langle L x_{n}, G^{*} x_{n}\right\rangle=\beta$ and

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-L x_{n}\right\|=0
$$

Let $G x_{n}=\phi_{n} x_{n}+\varphi_{n} y_{n},\left(y_{n} \perp x_{n},\left\|y_{n}\right\|=1\right)$ then $\lim _{n \rightarrow \infty} \phi_{n}=\beta$, because

$$
\lim _{n \rightarrow \infty}\left\langle G x_{n}, x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, G^{*} x_{n}\right\rangle=\beta
$$

but $\left\|G x_{n}\right\|^{2}=\left|\phi_{n}\right|^{2}+\left|\varphi_{n}\right|^{2}=1$, so we have that $\lim _{n \rightarrow \infty}\left|\varphi_{n}\right|=\left.\sqrt{1-\mid \beta}\right|^{2}$. Now for without loss of generality, there exists an integer M such that $\left|\phi_{M}-\beta\right|<\frac{\alpha}{8}$. Choose φ_{M}^{0} such that $\left|\varphi_{M}^{0}\right|=\left.\sqrt{1-\mid \beta}\right|^{2},\left|\varphi_{M}-\varphi_{M}^{0}\right|<\frac{\alpha}{8}$. We have that

$$
\begin{aligned}
G x_{M} & =\phi_{M} x_{M}+\varphi_{M} y_{M}-\beta x_{M}+\beta x_{M}-\varphi_{M}^{0} y_{M}+\varphi_{M}^{0} y_{M} \\
& =(\phi-\beta) x_{M}+\left(\varphi_{M}-\varphi_{M}^{0}\right) y_{M}+\beta x_{M}+\varphi_{M}^{0} y_{M}
\end{aligned}
$$

Let $q_{M}=\beta x_{M}+\varphi_{M}^{0} y_{M}$,

$$
G x_{M}=(\phi-\beta) x_{M}+\left(\varphi_{M}-\varphi_{M}^{0}\right) y_{M}+q_{M}
$$

Suppose that $y \perp x_{M}$, then

$$
\begin{aligned}
\left\langle G x_{M}, G y\right\rangle & =(\phi-\beta)\left\langle x_{M}, G y\right\rangle+\left(\varphi_{M}-\varphi_{M}^{0}\right)\left\langle y_{M}, G y\right\rangle+\left\langle q_{M}, G y\right\rangle \\
& =0,
\end{aligned}
$$

because $G^{*} G$ is a projection from H to RanL. It follows that

$$
\left|\left\langle q_{M}, G y\right\rangle\right| \leq\left|\phi_{M}-\beta\right| \cdot\|y\|+\left|\varphi_{M}-\varphi_{M}^{0}\right| \cdot\|y\| \leq \frac{\alpha}{4}\|y\|
$$

If we suppose that $G y=\phi q_{M}+y^{0},\left(y^{0} \perp q_{M},\right)$ then y^{0} is uniquely determined by y. Hence we can define V as follows

$$
V: x_{M} \rightarrow q_{M}, y \rightarrow y^{0}, \phi x_{M}+\varphi_{M} y \rightarrow \phi q_{M}+\varphi_{M} y^{0}
$$

with both ϕ, φ being complex numbers. V is a linear operator. We prove that V is a contraction. Now,

$$
\begin{gathered}
\left\|V x_{M}\right\|^{2}=\left\|q_{M}\right\|^{2}=|\beta|^{2}=\left|\varphi_{M}^{0}\right|^{2}=1 \\
\|V y\|^{2}=\|G y\|^{2}-|\phi y|^{2} \leq\|G y\|^{2} \leq\|y\|^{2}
\end{gathered}
$$

It follows that

$$
\|V \phi\|^{2}=\|\phi\|^{2}\left\|V x_{M}\right\|^{2}+|\varphi|^{2}\|V y\|^{2} \leq|\phi|^{2}+|\varphi|^{2}=1
$$

for each $x \in H$ satisfying that $x=\phi x_{M}+\varphi_{M} y,\|x\|=1, x_{M} \perp y$, which is equivalent to that V is a contraction. From the definition of V, we can show that

$$
\left\|G x_{M}-V x_{M}\right\|^{2}=|\phi-\beta|^{2}+\left|\varphi_{M}-\varphi_{M}^{0}\right|^{2} \leq \frac{2 \alpha^{2}}{16}=\frac{1}{8} \alpha^{2}
$$

If $y \perp x_{M},\|y\| \leq 1$ then obtain

$$
\|G y-V y\|=|\phi|\left\|V x_{M}\right\|=\left|\left\langle G y, V x_{M}\right\rangle\right|=\left|\left\langle q_{M}, G y\right\rangle\right|<\frac{\alpha}{4}
$$

Hence for any $x \in H, x=\phi x_{M}+\varphi_{M} y,\|x\|=1$,

$$
\begin{aligned}
\|G x-V x\|^{2} & =\left\|\phi(G-V) x_{M}+\varphi(G-V) y\right\|^{2} \\
& =|\phi|^{2}\left\|(G-V) x_{M}\right\|^{2}+|\varphi|^{2}\|(G-V) y\|^{2} \\
& <|\phi|^{2} \frac{\alpha^{2}}{16}+|\varphi|^{2} \frac{\alpha^{2}}{16} \\
& <\frac{\alpha^{2}}{8}
\end{aligned}
$$

which implies that

$$
\|(G-V) x\|<\frac{\alpha}{2}, \quad\|x\|=1
$$

and hence $\|(G-V)\|<\frac{\alpha}{2}$. Let $Z=V J$. Then Z is what we want and this completes the proof.

3 Norm Attainability for Elementary Operators

In this section we consider norm-attainability for inner derivation, generalized derivations and general elementary operators. We utilize the technique and the conditions in Theorem 2.1 in our work in this section. We start with the inner derivation in the lemma below.

LEMMA 3.1. Let $S \in B(H) . \delta_{S}$ is norm-attainable if there exists a vector $\zeta \in H$ such that $\|\zeta\|=1, \quad\|S \zeta\|=\|S\|, \quad\langle S \zeta, \zeta\rangle=0$.

PROOF. For any x satisfying that $x \perp\{\zeta, S \zeta\}$, define X as follows

$$
X: \zeta \rightarrow \zeta, \quad S \zeta \rightarrow-S \zeta, \quad x \rightarrow 0
$$

Since X is a bounded operator on H and $\|X \zeta\|=\|X\|=1$,

$$
\|S X \zeta-X S \zeta\|=\|S \zeta-(-S \zeta)\|=2\|S \zeta\|=2\|S\|
$$

It follows that $\left\|\delta_{S}\right\|=2\|S\|$ via the result in [3, Theorem 1], because $\langle S \zeta, \zeta\rangle=0 \in$ $W_{0}(S)$. Hence we have that $\|S X-X S\|=2\|S\|=\left\|\delta_{S}\right\|$. Therefore, δ_{S} is normattainable.

THEOREM 3.2. Let $S, T \in B(H)$ If there exists vectors $\zeta, \eta \in H$ such that $\|\zeta\|=\|\eta\|=1, \quad\|S \zeta\|=\|S\|,\|T \eta\|=\|T\|$ and $\frac{1}{\|S\|}\langle S \zeta, \zeta\rangle=-\frac{1}{\|T\|}\langle T \eta, \eta\rangle$, then $\delta_{S, T}$ is norm-attainable.

PROOF. By linear dependence of vectors, if η and $T \eta$ are linearly dependent, i.e., $T \eta=\phi\|T\| \eta$, then it is true that $|\phi|=1$ and $|\langle T \eta, \eta\rangle|=\|T\|$. It follows that $|\langle S \zeta, \zeta\rangle|=\|S\|$ which implies that $S \zeta=\varphi\|S\| \zeta$ and $|\varphi|=1$. Hence $\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle=\varphi=$ $-\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle=-\phi$. Defining X as $X: \eta \rightarrow \zeta, \quad\{\eta\}^{\perp} \rightarrow 0$, we have $\|X\|=1$ and $(S X-X T) \eta=\varphi(\|S\|+\|T\|) \zeta$, which implies that $\|S X-X T\|=\|(S X-X T) \eta\|=$ $\|S\|+\|T\|$. By [3], it follows that

$$
\|S X-X T\|=\|S\|+\|T\|=\left\|\delta_{S, T}\right\|
$$

That is $\delta_{S, T}$ is norm-attainable. If η and $T \eta$ are linearly independent, then $\left|\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle\right|<$ 1, which implies that $\left|\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle\right|<1$. Hence ζ and $S \zeta$ are also linearly independent. Let us redefine X as follows: $X: \eta \rightarrow \zeta, \frac{T \eta}{\|T\|} \rightarrow-\frac{S \zeta}{\|S\|}, x \rightarrow 0$, where $x \in\{\eta, T \eta\}^{\perp}$. We show that X is a partial isometry. Let

$$
\frac{T \eta}{\|T\|}=\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle \eta+\tau h, \quad\|h\|=1, h \perp \eta
$$

Since η and $T \eta$ are linearly independent, $\tau \neq 0$. So we have that

$$
X \frac{T \eta}{\|T\|}=\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle X \eta+\tau X h=-\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle \zeta+\tau X h
$$

which implies that $\left\langle X \frac{T \eta}{\|T\|}, \zeta\right\rangle=-\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle+\tau\langle X h, \zeta\rangle=-\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle$. It follows then that $\langle X h, \zeta\rangle=0$ i.e., $X h \perp \zeta(\zeta=X \eta)$. Hence we have that

$$
\left\|\left\langle\frac{S \zeta}{\|S\|}, \zeta\right\rangle \zeta\right\|^{2}+\|\tau X h\|^{2}=\left\|X \frac{T \eta}{\|T\|}\right\|^{2}=\left|\left\langle\frac{T \eta}{\|T\|}, \eta\right\rangle\right|^{2}+|\tau|^{2}=1
$$

which implies that $\|X h\|=1$. Now it is evident that X a partial isometry and $\|(S X-$ $X T) \zeta\|=\| S X-X T\|=\| S\|+\| T \|$, which is equivalent to $\left\|\delta_{S, T}(X)\right\|=\|S\|+\|T\|$. By Lemma 3.1 and [3], $\left\|\delta_{S, T}\right\|=\|S\|+\|T\|$. Hence $\delta_{S, T}$ is norm-attainable.

THEOREM 3.3. Let $S, T \in B(H)$ If both S and T are norm-attainable then the basic elementary operator $M_{S, T}$ is also norm-attainable.

PROOF. For any pair (S, T) it is known that $\left\|M_{S, T}\right\|=\|S\|\|T\|$. We can assume that $\|S\|=\|T\|=1$. If both S and T are norm-attainable, then there exists unit vectors ζ and η with $\|S \zeta\|=\|T \eta\|=1$. We can therefore define an operator X by $X=\langle\cdot, T \eta\rangle \zeta$. Clearly, $\|X\|=1$. Therefore, we have $\|S X T\| \geq\|S X T \eta\|=\| \| T \eta\left\|^{2} S \zeta\right\|=1$. Hence, $\left\|M_{S, T}(X)\right\|=\|S X T\|=1$, that is $M_{S, T}$ is also norm-attainable.

Acknowledgement. The author's appreciations go to National Council for Science and Technology (NCST) of Kenya and DAAD-Germany for financial support towards this research.

References

[1] N. B. Okelo, J. O. Agure and D. O. Ambogo, Norms of elementary operators and characterization of norm-attainable operators, Int. J. Math. Anal., 24(2010), 687693.
[2] A. Seddik, On the numerical range and norm of elementary operators, Linear Multilinear Algebra, 52(2004), 293-302.
[3] J. G. Stampfli, The norm of a derivation, Pacific J. Math., 33(3)(1970), 737-747.

[^0]: *Mathematics Subject Classifications: 47B47, 47A30.
 ${ }^{\dagger}$ School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya. Email: bnyaare@yahoo.com

