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Abstract

Based on the properties of the non-univalent conformal mapping ez = s a
causal connection has been established between the Laurent expansion theorem
and the Fourier trigonometric series expansion of functions. This connection
combined with two highly significant results proved in the form of lemmas is a
foundation stone of the theory. The main result is in the form of a theorem that
is a natural generalization of the Laurent expansion theorem. The paper ends
with a few examples that illustrate the theory.

1 Introduction

A trigonometric series is a series of the form

a0
2
+

+∞∑
k=1

[ak cos (kζ) + bk sin (kζ)] (1)

where the real coeffi cients a0, a1, ..., b1, b2, ... are independent of the real variable ζ.
Applying Euler’s formulae to cos (kζ) and sin (kζ), we may write (1) in the complex
form

+∞∑
k=−∞

cke
ikζ (2)

where 2ck = ak − ibk and for k ∈ ℵ (ℵ is the set of natural numbers) and 2c0 = a0.
Here c−k is conjugate to ck [8].

Let z = ξ+ iζ be a complex variable. Suppose that series (2) converges at all points
ζ of the interval (−π, π) to a real valued point function f (ζ). If f (−iz) is integrable
on the interval =π−π = {z | ξ = 0, ζ ∈ [−π, π]}, then the Fourier coeffi cients ck of f (ζ)
are determined uniquely as

ck =
1

2πi

∫
=π−π

f (−iz) e−kzdz (k = 0,±1,±2, ...). (3)
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Similarly, if for ξ = 0 a trigonometric series
∑+∞
k=−∞ ĉk (e

z)
k converges in (−π, π) to a

complex valued point function f (ez), which is integrable on =π−π, then

ĉk =
1

2πi

∫
=π−π

f (ez) e−kzdz (k = 0,±1,±2, ...). (4)

As is well-known, progress in Fourier analysis has gone hand in hand with progress
in theories of integration. Perhaps this can be best exemplified by using the so-called
total value of the generalized Riemann integrals [5, 6]. This brand new theory of
integration, which takes the notion of residues of real valued functions into account,
gives us the opportunity to integrate real valued functions that was not integrable in
any of the known integration methods until now. All of this leads to the following very
important problem. Let C be a simple closed contour in the z-plane, which consists of
=π−π and any regular curve Qπ−π connecting the endpoints of =π−π, inside and on which
a complex valued point function f (z) is analytic except for a finite number of isolated
singular points z1, z2, ..., zn belonging to the interior (int) of =π−π. Chose ρ > 0 to be
small enough so that Qπ−π and the semi-circumferences γ

+
ν = {z | |z − zν | = ρ, ξ > 0}

and γ−ν = {z | |z − zν | = ρ, ξ < 0} (ν = 1, 2, ..., n) are disjoint. Having formed the
numbers ĉk by means of

ĉk =
1

2πi
vt

∫
=π−π

f (z) e−kzdz

=
1

2πi
lim
ρ→0+

[
n∑
ν=0

∫
lν

f (z) e−kzdz +

n∑
ν=1

{ ∫y
γ−ν
f (z) e−kzdz∫x

γ+ν
f (z) e−kzdz

]
(5)

for k = 0,±1,±2, ... where vt denotes the total value of an improper integral, l0 =
[−iπ, z1 − iρ], lν = [zν + iρ, zν+1 − iρ] (ν = 1, 2, ..., n − 1) and ln = [zn + iρ, iπ], we
may call the series

∑+∞
k=−∞ ĉke

ikζ the Fourier series of f (z) on =π−π. This means that
the numbers ĉk are connected with f (z) by the formula (5). Clearly, in this case, the
numbers ĉk, which are the Fourier coeffi cients of f (z), are not determined uniquely
since on account of Cauchy’s residue theorem

vt

∫
=π−π

f (z) e−kzdz =

∫ y

Qπ−π

f (z) e−kzdz +

{
0

2πi
∑n
ν=1Resz=zν [f (z) e

−kz]
(6)

whenever Qπ−π is in the left half plane of the z-plane. A question that arises is whether
this Fourier series of f (z) does in fact converge and if it does not whether it is
summable in any other sense and under what conditions is its sum equal to f (z)
in int=π−π\{z1, z2, ..., zn}. As we shall see, in what follows, the answer to this question
is closely related to the Laurent expansion theorem.

2 Main Results

By the Laurent expansion theorem, a single-valued complex function f (s) of a complex
variable s, analytic in an arbitrary punctured disc {s | 0 < |s| < R} of the s-plane,
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has a Laurent series expansion f (s) =
∑+∞
k=−∞ ĉks

k. The Laurent coeffi cients ĉk are
determined uniquely as

ĉk =
1

2πi

∫ 	

Cr

f (s)

sk+1
ds (k = 0,±1,±2, ...) (7)

where Cr = {s : |s| = r, 0 < r < R} [3]. On the other hand, it is well-known that
the horizontal strip D = {z = ξ + iζ : ξ ∈ (−∞, ρ) , ζ ∈ [−π, π]} of the z-plane is
mapped onto the punctured disc D? = {s : 0 < |s| < eρ} in the s-plane by the non-
univalent conformal mapping s = ez. Accordingly, if a single-valued complex function
f (s) is analytic in D? and ρ > 0, then, on account of the Laurent expansion theorem,
the Fourier series

∑+∞
k=−∞ ĉk (e

z)
k with the Fourier coeffi cients (4) converges in D to

f (ez). Furthermore, it follows from (7) that for any real number σ < ρ

ĉk =
1

2πi

∫ σ+iπ

σ−iπ
f (ez) e−kzdz (k = 0,±1,±2, ...). (8)

Here a single-valued complex function f (s) is taken to be the function f (ez) of period
2π with respect to ζ in the z-plane.

Generally, a complex valued point function f (z) is said to be integrable, of bounded
variation and the like, with respect to either ξ or ζ, in the strip D, if its real and
imaginary parts satisfy separately the aforementioned properties for all fixed values of
the second variable in D.

As is well known, the first theorem, chronologically, in the theory of Fourier trigono-
metric series, is as follows [8].

THEOREM 1. If a real valued point function f is of bounded variation, then the
Fourier series of f converges at every point ζ to the value

1

2
lim
τ→0+

[f (ζ + τ) + f (ζ − τ)] . (9)

If f is in addition continuous at every point on an interval I = [a, b], then the Fourier
series of f is uniformly convergent in I.

The result of the preceding theorem implies the following result.

THEOREM 2. If a single valued complex function f (s) is of bounded variation
with respect to arg s in a punctured disc D = {s : 0 < |s| < eρ} of the s-plane, then
the Laurent series

∑+∞
k=−∞ ĉks

k, with the coeffi cients

ĉk =
1

2πi

∫ 	

Cξ

f (s)

sk+1
ds (k = 0,±1,±2, ...), (10)

where Cξ = {s : |s| = eξ, ξ < ρ}, converges at every point s ∈ Cξ to the value

1

2
lim
τ→0+

[
f
(
seiτ

)
+ f

(
se−iτ

)]
. (11)
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If f is in addition continuous on Cξ, then the Laurent series of f is uniformly convergent
on Cξ.

This result strongly suggests that single valued complex functions having isolated
singularities inside =π−π may be expanded in the Fourier trigonometric series, too.
Let’s show this works. Let w be a complex parameter independent of z = ξ+ iζ. As is
well known, if a real valued point function f (ζ) is of bounded variation in the interval
[−π, π], then for ζ̂ ∈ (−π, π) and Re(w) ≥ 0 there exist finite limits, [3],

lim
|w|→+∞

w

∫
=ζ̂−π

eiw(iζ̂−z)f (−iz) dz = i lim
τ→0+

f(ζ̂ − τ)

and

lim
|w|→+∞

w

∫
=π
ζ̂

e−iw(iζ̂−z)f (−iz) dz = −i lim
τ→0+

f(ζ̂ + τ) (12)

where =ζ̂−π = {z = ξ + iζ : ξ = 0, ζ ∈ [−π, ζ̂]} and =π
ζ̂
= {z = ξ + iζ : ξ = 0, ζ ∈ [ζ̂, π]}.

Since the above conditions play a key role in the proof of Theorem 1 based on the
Cauchy calculus of residues, see [3], it follows that all functions that satisfy these
conditions have a Fourier series expansion

lim
τ→0+

f (ζ + τ) + f (ζ − τ)
2

=

+∞∑
k=−∞

ĉke
ikζ ,

with the Fourier coeffi cients (4). Furthermore, pursuing the matter in the proof of
Theorem 1, one easily comes to a conclusion that conditions (12) cannot be satisfied
for Re(w) ≥ 0 but only for Re(w) > 0. This is an immediate consequence of the result
presented in the following form.

LEMMA 1. For w ∈ C, let a single valued complex function f (w) be analytic
in the w-plane with the exception of an infinite but countable number of isolated
singularities wk (k = 1, 2, ...) on the half-straight lines {w = |w| eiθ : |w| > 0, θ = θ̂} and
{w = |w| eiθ : |w| > 0, θ = π+θ̂} by which the w-plane is divided into two open adjacent
regions R = {w = |w| eiθ : |w| > 0,−π + θ̂ < θ < θ̂} and L = {w = |w| eiθ : |w| > 0,
θ̂ < θ < π+ θ̂}. If lim|w|→+∞ wf (w) = CR, whenever w ∈ R and lim|w|→+∞ wf (w) =
CL, whenever w ∈ L, then

+∞∑
k=1

Resw=wkf(w) =
CR + CL

2
. (13)

PROOF. By definition, the residue of f (w) at the point at infinity is equal to the
residue of the function −f (1/w) /w2 at the point w = 0. In symbols,

Res|w|=+∞ f (w) = −Resw=0 f (1/w) /w2.
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Since −f (1/w) /w2 has no singularity at infinity, it follows from

+∞∑
k=1

Resw=wk f (1/w) /w
2 = −Resw=0 f (1/w) /w2

that
+∞∑
k=1

Resw=wkf(w) = −Res|w|=+∞ f (w) . (14)

For γR (w) = wf (w) − CR and γL (w) = wf (w) − CL let MR = max{|γR (w)| |
w ∈ R} and ML = max{|γL (w)| | w ∈ L}, respectively. By means of an arc length
parametrization for the circular arcs

CRρ = {w = |w| eiθ : |w| = ρ,−π + θ̂ + α (ρ) ≤ θ ≤ θ̂ − α (ρ)}

and
CLρ = {w = |w| eiθ : |w| = ρ, θ̂ + α (ρ) ≤ θ ≤ π + θ̂ − α (ρ)}

where α (ρ) is an angular function, which can be made as small as one desires, such
that limρ→+∞ α (ρ) = 0, we obtain∫ x

CRρ
f (w) dw +

∫ x

CLρ
f (w) dw

= i

[∫ θ̂−α(ρ)

−π+θ̂+α(ρ)
ρeiθf

(
ρeiθ

)
dθ +

∫ π+θ̂−α(ρ)

θ̂+α(ρ)

ρeiθf
(
ρeiθ

)
dθ

]

= i

{∫ θ̂−α(ρ)

−π+θ̂+α(ρ)

[
CR + γR

(
ρeiθ

)]
dθ +

∫ π+θ̂−α(ρ)

θ̂+α(ρ)

[
CL + γL

(
ρeiθ

)]
dθ}
}

= i[π − 2α (ρ)] (CR + CL) +GR +GL

where GR = i
∫ θ̂−α(ρ)
−π+θ̂+α(ρ) γR

(
ρeiθ

)
dθ and GL = i

∫ π+θ̂−α(ρ)
θ̂+α(ρ)

γL
(
ρeiθ

)
dθ, that is,

|GR| ≤ [π − 2α (ρ)]MR and |GL| ≤ [π − 2α (ρ)]ML. Therefore, the lemma condi-
tions: lim|w|→+∞ wf (w) = CR (w ∈ R) and lim|w|→+∞ wf (w) = CL (w ∈ L), lead us
to GR → 0 and GL → 0, as ρ→ +∞. This implies that limρ→+∞

∫x
CRρ

f (w) dw = iπCR

and limρ→+∞
∫x
CLρ

f (w) dw = iπCL so that

1

2πi

∫ 	

C∞
f (w) dw =

1

2πi
lim

ρ→+∞

[∫ x

CRρ
f (w) dw +

∫ x

CLρ
f (w) dw

]
=
CR + CL

2

where C∞ = {w | |w| = +∞}. Since
∫ 	
C∞ f (w) dw = −2πiRes|w|=+∞f (w), it follows

from (14) that
+∞∑
k=1

Resw=wkf(w) =
CR + CL

2
.
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REMARK: Clearly, the circular arcs CRρ and CLρ form the circular path not until at

infinity. Thus, if the limit limρ→+∞
∫ 	
Cρ f (w) dw, where Cρ = {w : |w| = ρ} is a cir-

cumference that encloses the n singularities of f (w) in its interior, does not exist, then
it is more convenient to use the partial limits limρ→+∞

∫x
CRρ

f (w) dw and limρ→+∞
∫x
CLρ

f (w) dw, as was done above.

So, if the limits (12) do not exist on the straight-line Re(w) = 0, but only strongly
in the open right half-plane Re(w) > 0, then the infinite sum of all residues of g(w, ζ̂) =∫
=π−π

e−iw(iζ̂−z)f (−iz) dz/(1−e−2πw), which is a meromorphic function with countably
infinite set of isolated simple poles wk = ik (k = 0,±1,±2, ...) in the w-plane, does
exist in some sense more general than the Cauchy one. In symbols, for any ζ̂ ∈ (−π, π),
for which the conditions (12) are satisfied in the half plane Re(w) > 0,

+∞∑
k=−∞

1

2πi

∫
=π−π

ek(iζ̂−z)f (−iz) dz = lim
τ→0+

f(ζ̂ + τ) + f(ζ̂ − τ)
2

. (15)

Clearly, if f (ζ) satisfies the Riemann-Lebesgue lemma condition, more precisely if the
Fourier coeffi cients (3) for k → +∞ tend to 0, the region of convergence of (12) extends
to Re(w) ≥ 0. Now, to answer affi rmatively the question from the introductory part
of the paper, it is suffi cient to prove the result in the following form.

LEMMA2. For z = ξ + iζ let a single valued complex function f (z) be analytic in
the z-plane with the exception of a finite number of isolated poles z1, z2, ..., zn inside
=π−π. If ζ̂ ∈ int=π−π is not a singular point of f (z), then for Re(w) > 0 there holds

lim
|w|→+∞

w

[
vt

∫
=ζ̂−π

eiw(iζ̂−z)f (z) dz

]
= if(iζ̂)

where =ζ̂−π = {z : ξ = 0, ζ ∈ [−π, ζ̂]}.

PROOF. Suppose, without loss of generality, that ζ̂ > 0 and all poles z1, ..., zn
of f (z) lie in the interval (−iπ, iζ̂). Chose ρ > 0 to be small enough so that the

endpoints of =ζ̂−π and the semi-circumferences γ+ν = {z : |z − zν | = ρ, ξ > 0} and
γ−ν = {z : |z − zν | = ρ, ξ < 0} (ν = 1, 2, ..., n) are disjoint. If we apply the rule
for integration by parts to the integrals

∫
lν
eiw(iζ̂−z)df (z), where l0 = [−iπ, z1 − iρ],

lν = [zν + iρ, zν+1 − iρ] (ν = 1, 2, ..., n − 1) and ln = [zn + iρ, iζ̂], as well as to the
integrals

∫y
γ−ν
eiw(iζ̂−z)df (z) and

∫x
γ+ν
eiw(iζ̂−z)df (z), then (5) yields

lim
ρ→0+

[
n∑
ν=0

∫ x

lν

eiw(iζ̂−z)df (z) +

n∑
ν=1

{ ∫y
γ−ν
eiw(iζ̂−z)df (z)∫x

γ+ν
eiw(iζ̂−z)df (z)

]

= [f(iζ̂)− e−w(ζ̂+π)f(−iπ)] + iw
[
vt

∫
=ζ̂−π

eiw(iζ̂−z)f (z) dz

]
. (16)
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It is easy to prove, by the complex mean value theorem [1], that

lim
|w|→+∞

n∑
ν=0

∫ x

lν

eiw(iζ̂−z)df (z) = 0

whenever Re(w) > 0, and

lim
|w|→+∞

n∑
ν=1

{ ∫x
γ−ν
eiw(iζ̂−z)df (z)∫x

γ+ν
eiw(iζ̂−z)df (z)

= 0

in the region of w-plane in which Re(w) 6= 0 and

Re[iw(iζ̂ − ρeiθ)] = −Re(w)
[
(ζ̂ − ρ sin θ)− ρIm(w)

Re(w)
cos θ

]
< 0.

In view of the fact that ζ̂ > ρ > 0 there exists a positive real number k such that
ζ̂ = (1 + k) ρ. Hence, the previous condition reduces to the condition

Re(w)[(1− sin θ) + k − tanϕ cos θ] > 0

where tanϕ = Im (w)/Re (w). As |sin θ| ≤ 1 and |cos θ| ≤ 1, then Re(w)[(1− sin θ) +
k − tanϕ cos θ] > 0, whenever ϕ ∈ (−π/2, arctan k). Since k tends to +∞ (arctan k
tends to π/2) as ρ tends to 0+, it follows finally that both sums of integrals converge
to zero in the region Re(w) > 0 of the w-plane. This last result combined with (16)
implies that for Re(w) > 0 there holds

lim
|w|→+∞

w

[
vt

∫
=ζ̂−π

eiw(iζ̂−z)f (z) dz

]
= if(iζ̂).

By using the results of Lemmas 1 and 2 we are now able to extend an existing class
of functions which can be represented by a Fourier series, as follows.

THEOREM 3. For z ∈ C, let a single valued complex function f (z) be analytic
in the strip D = {z = ξ + iζ : ξ ∈ (−∞,+∞) , ζ ∈ [−π, π]} of the z-plane, with the
exception of a finite number of isolated poles inside =π−π. If ζ̂ ∈ int=π−π is not a singular
point of f (z), then its Fourier series

∑+∞
k=−∞ ĉke

ikζ̂ , with the coeffi cients

ĉk =
1

2πi
vt

∫
=π−π

f (z) e−kzdz =
1

2πi


∫ ξ̂+iπ
ξ̂−iπ f (z) e

−kzdz for any ξ̂ < 0∫ ξ̃+iπ
ξ̃−iπ f (z) e

−kzdz for any ξ̃ > 0
(17)

for k = 0,±1,±2, ..., is summable and has a sum equal to the function value at the
point ζ̂. In symbols,

+∞∑
k=−∞

ĉke
ikζ̂ = f(ζ̂).
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Furthermore, this still holds for all points ζ̂ ∈ intD on either the right or the left
of =π−π, in addition to the fact that if ζ̂ lies to the right of =π−π, then

ĉk =

∫ ξ̃+iπ

ξ̃−iπ
f (z) e−kzdz (k = 0,±1,±2, ...) for any ξ̃ > 0, (18)

and if ζ̂ lies to the left of =π−π, then

ĉk =

∫ ξ̂+iπ

ξ̂−iπ
f (z) e−kzdz (k = 0,±1,±2, ...) for any ξ̂ < 0. (19)

The theorem proof, see [4], is omitted because it is an immediate consequence of
Lemmas 1 and 2 as well as a formula for the expansion of functions into an infinite
series derived from the Cauchy calculus of residues, see [3]. In view of the non-univalent
conformal mapping ez = s the result of the preceding theorem implies the result in the
form of the following theorem representing the extended Laurent expansion theorem.

THEOREM 4. Suppose that a single valued complex function f (s) is analytic in the
s-plane with the exception of a finite number of isolated poles on the unit circumference
C1. Then f (s) has a Laurent series expansion

f (s) =

+∞∑
k=−∞

ĉks
k,

at all regular points of f (s) lying on the unit circumference with the coeffi cients

ĉk =
1

2πi
vt

∫ 	

C1

f (s)

sk+1
ds =

1

2πi

{ ∫ 	
CR

f(s)
sk+1

ds for any R > 1∫ 	
Cr

f(s)
sk+1

ds for any r < 1
(k = 0,±1,±2, ...) (20)

where Cr and CR are circumferences with center at the origin and radius r and R,
respectively.
Furthermore, this still holds for all points s inside and outside the unit circle, in

addition to the fact that if s lies inside C1, then

ĉk =
1

2πi

∫ 	

Cr

f (s)

sk+1
ds (k = 0,±1,±2, ...) for any r < 1, (21)

and if s lies outside C1, then

ĉk =
1

2πi

∫ 	

CR

f (s)

sk+1
ds (k = 0,±1,±2, ...) for any R > 1. (22)
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3 Examples

We consider an expansion of sin ζ/ (1− cos ζ) in a Fourier trigonometric series on the
interval [−π, π].
As f (ζ) = sin ζ/ (1− cos ζ) is an odd function, the Cauchy principal value of∫ π

−π f (ζ) cos (kζ) dζ is equal to 0, for each k ∈ ℵ0, where ℵ0 is the set of natural
numbers plus the number zero.
In addition, since

∫ π
0
[sin [(k + 1/2)ζ] / sin (ζ/2)]dζ = π and

∫ π
−π cos (kζ) dζ = 0, as

well as limz→0 zf (z) cos (kz) = 2, for each k ∈ ℵ0, it follows that

a0 =
1

2π
vt

∫ π

−π
f (ζ) dζ =

1

2π
vp

∫ π

−π
f (ζ) dζ+

1

2π
lim
ρ→0+

{ ∫x
γ+
f (z) dz∫y

γ−
f (z) dz

=

{
i
−i (23)

and

ak =
1

π
vt

∫ π

−π
f (ζ) cos (kζ) dζ

=
1

π
vp

∫ π

−π
f (ζ) cos (kζ) dζ +

1

π
lim
ρ→0+

{ ∫x
γ+
f (z) cos (kz) dz∫y

γ−
f (z) cos (kz) dz

=

{
2i
−2i (24)

for k ∈ ℵ where γ+ and γ− are semi-circumferences centered at the origin and of a
small enough radius ρ in the right and the left half plane of the z-plane, respectively,
as well as that

bk =
1

π
vt

∫ π

−π

sin ζ sin (kζ)

1− cos ζ dζ =
1

π

∫ π

−π
cot

(
ζ

2

)
sin (kζ) dζ = 2 (k ∈ ℵ). (25)

Accordingly, a Fourier trigonometric series of f (ζ) can be expressed by the following
functional form

sin ζ

1− cos ζ = 2
+∞∑
k=1

sin (kζ)± i
[
1 + 2

+∞∑
k=1

cos (kζ)

]
for every ζ ∈ [−π, π] and ζ 6= 0. Separating the real and imaginary parts in the
preceding equation, we finally obtain that for every ζ ∈ [−π, π] and ζ 6= 0

sin ζ

1− cos ζ = 2
+∞∑
k=1

sin (kζ) and
+∞∑

k=−∞
cos (kζ) = 0. (26)

In the complex form, for every ζ ∈ [−π, π] and ζ 6= 0,{
1 + 2

∑+∞
k=1 e

−ikζ

−1− 2
∑+∞
k=1 e

ikζ =
eiζ + 1

eiζ − 1 . (27)

At the endpoints of [−π, π] there holds
∑+∞
k=−∞ cos (kπ) = 0. This implies that

+∞∑
k=1

(−1)k = −1/2.
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The complex form (27) points out the fact that we may use the Laurent expansion
of the single valued complex function f (s) = (s+ 1) / (s− 1) to get the same result.
Namely, since

1

2πi
vt

∫ 	

C1

s+ 1

s− 1
ds

sk+1
=



{
2
0
, if k < 0{

1
−1 , if k = 0{
0
−2 , if k > 0

,

where C1 is the unit circumference in the s-plane, it follows from Theorem 4 that for
every |s| = 1 and s 6= 1 {

1 + 2
∑+∞
k=1 s

−k

−1− 2
∑+∞
k=1 s

k =
s+ 1

s− 1 .

Clearly, this is the same as (27). Furthermore,
∑+∞
k=1 s

−k = 1/ (s− 1) for |s| > 1 and∑+∞
k=1 s

k = s/ (1− s) for |s| < 1.
An expansion of 1/ (1− cos ζ) in a Fourier trigonometric series on the interval

[−π, π].
On the one hand,

a0 = vt

∫ π

−π

dζ

1− cos ζ

= lim
ρ→0+

[

∫ −ρ
−π

dζ

1− cos ζ +
{ ∫x

γ+0

dz
(1−cos z)∫y

γ−0

dz
(1−cos z)

+

∫ π

ρ

dζ

1− cos ζ ]

= lim
ρ→0+

[
sin ρ

1− cos ρ −
2 sin ρ

1− cos ρ +
sin ρ

1− cos ρ ] = 0 (28)

where γ+0 = {z = |z| eiθ : |z| = ρ and θ ∈ [−π, 0]} and γ−0 = {z = |z| eiθ : |z| = ρ and
θ ∈ [0, π]} are circular arcs bypassing the second order pole at the point z = 0 as a
singularity of f (z) = 1/ (1− cos z).
On the other hand, for each k ∈ ℵ the function f (s) = sk/ (s− 1) is a mero-

morphic function having at the point s = 1 a simple pole as singularity. Since
lims→1 (s− 1) f (s) = 1, it follows from the Jordan lemmas that for any k ∈ ℵ

2

πi
vp

∫ 	

C1

sk

s− 1ds =
2

πi
vp

∫ π

−π

ieikθ

1− e−iθ dθ

=
1

π
vp[

∫ π

−π

cos (kθ)

1− cos θdθ −
∫ π

−π

cos [(k + 1) θ]

1− cos θ dθ]

= 2

where C1 is a unit circumference in the s-plane. Similarly, as the functions z cos (kz)
and z sin (kz) sin z/ (1− cos z) tend to 0 as z → 0, then for any k ∈ ℵ

1

2πi
lim
ρ→0+

{ ∫x
γ+0

cos(kz)−cos[(k+1)z]
1−cos z dz∫y

γ−0

cos(kz)−cos[(k+1)z]
1−cos z dz

=
1

2πi
lim
ρ→0+

{ ∫x
γ+0
[cos (kz)− sin(kz) sin z

1−cos z ]dz∫y
γ−0
[cos (kz)− sin(kz) sin z

1−cos z ]dz
= 0
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From the preceding two results it follows further that

1

π
vt[

∫ π

−π

cos [(k + 1) θ]

1− cos θ dθ −
∫ π

−π

cos (kθ)

1− cos θdθ] = −2.

Since
1

π
vt

∫ π

−π

cos θ

1− cos θdθ = −2 +
1

π
vt

∫ π

−π

dθ

1− cos θ = −2,

we obtain finally that

ak =
1

π
vt

∫ π

−π

cos (kζ)

1− cos ζ dζ = −2k (k ∈ ℵ) . (29)

As sin (kζ) / (1− cos ζ) is an odd function, the Cauchy principal value (vp) of the
improper integral

∫ π
−π[sin (kζ) / (1− cos ζ)]dt vanishes, so that for each k ∈ ℵ,

vt

∫ π

−π

sin (kζ)

1− cos ζ dζ = lim
ρ→0+

{ ∫x
γ+0

sin(kz)
1−cos zdz∫y

γ−0

sin(kz)
1−cos zdz

.

Since limz→0 sin (kz) / (1− cos z) = k for each k ∈ ℵ, it follows finally that

bk =
1

π
vt

∫ π

−π

sin (kζ)

1− cos ζ dζ =
{
ik
−ik (k ∈ ℵ) . (30)

Therefore, a Fourier trigonometric series expansion of 1/ (1− cos ζ) on the segment
[−π, π] (ζ 6= 0) is as follows

1

1− cos ζ = −2
+∞∑
k=1

k cos (kζ)± i
+∞∑
k=1

k sin (kζ) . (31)

Separating the real and imaginary parts in the preceding equation, we finally obtain
that for each ζ ∈ [−π, π] and ζ 6= 0

1

1− cos ζ = −2
+∞∑
k=1

k cos (kζ) and
+∞∑

k=−∞
k sin (kζ) = 0. (32)

In the complex form, for each ζ ∈ [−π, π] and ζ 6= 0,

+∞∑
k=1

ke∓ikζ =
eiζ

(1− eiζ)2 .

At the endpoints of [−π, π] there holds
∑+∞
k=1 k cos (kπ) = −1/4. Therefore,

+∞∑
k=1

k (−1)k+1 = 1/4.
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As in the previous examples, the Laurent expansion of the single valued complex func-
tion s/ (1− s)2 comes to the same result. Namely, since

1

2πi
vt

∫ 	

C1

1

(1− s)2
ds

sk
=



{
k
0

, if k < 0

0, if k = 0{
0
k

, if k > 0

,

where C1 is the unit circumference in the s-plane, it follows from Theorem 4 that for
every |s| = 1 and s 6= 1

+∞∑
k=1

ks∓k =
s

(1− s)2
.

Furthermore,
∑+∞
k=1 ks

−k = s/ (1− s)2 for |s| > 1 and
∑+∞
k=1 ks

k = s/ (1− s)2 for
|s| < 1.

4 Remark

Fourier expansions of real-valued functions

f (t) =

{ sin ζ
1−cos ζ , if τ0 ≤ |ζ| ≤ π
0, if |ζ| < τ0

and g (t) =

 b, if τ0 ≤ ζ ≤ π
0, if |ζ| < τ0
a, if − π ≤ ζ ≤ −τ0

,

where τ0 > 0, satisfying Dirichlet’s conditions in the closed interval [−π, π], are as
follows. For every |ζ| ∈ (τ0, π) ,

f (ζ) = 2

+∞∑
k=1

1

π
[

∫ π

τ0

sin τ

1− cos τ sin (kτ) dτ ] sin (kζ)

and

g (ζ) =
1

2π

(∫ −τ0
−π

adτ +

∫ π

τ0

bdτ

)
+

+∞∑
k=1

1

π

{[∫ −τ0
−π

a sin (kτ) dτ

+

∫ π

τ0

b sin (kτ) dτ

]
sin (kζ) +

[∫ −τ0
−π

a cos (kτ) dτ +

∫ π

τ0

b cos (kτ) dτ

]
cos (kζ)

}
.

Using of the fundamental trigonometric identities we obtain the following recurrent
formula for the Fourier coeffi cients of f (ζ)

1

π

∫ π

τ0

sin ζ sin [(k + 1) ζ]

1− cos ζ dζ =
1

π

∫ π

τ0

sin ζ sin [(k − 1) ζ]
1− cos ζ dζ − 2 sin (kτ0)

kπ

− sin [(k + 1) τ0]
(k + 1)π

− sin [(k − 1) τ0]
(k − 1)π (k ∈ ℵ) .
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Since
1

π

∫ π

τ0

(sin ζ)
2

1− cos ζ dζ =
1

π

∫ π

τ0

(1 + cos ζ) dζ = 1− τ0
π
− sin τ0

π

and

1

π

∫ π

τ0

sin (2ζ) sin ζ

1− cos ζ dζ =
2

π

∫ π

τ0

(1 + cos ζ) cos ζdζ = 1− τ0
π
− 2sin τ0

π
− sin (2τ0)

2π

it follows finally that for every |ζ| ∈ (τ0, π)

f (ζ) = 2

+∞∑
k=1

[
1 +

τ0
π
− 2

k−1∑
κ=0

sin (κτ0)

κπ
− sin (kτ0)

kπ

]
sin (kζ)

and

g (ζ) =
a+ b

2
− a+ b

2π

[
1

2
+

+∞∑
k=1

sin (kτ0)

kτ0
cos (kζ)]τ0

+
b− a
π

+∞∑
k=1

[cos (kτ0)− (−1)k
]
sin (kζ)

k
. (33)

Based on the expansion of g (ζ) if a = b, then for every |ζ| ∈ (τ0, π) and τ0 > 0

+∞∑
k=1

sin (kτ0) cos (kζ)

kτ0
= −1

2
. (34)

Thus, for every ζ ∈ (τ0, π) and τ0 > 0

+∞∑
k=1

[cos (kτ0)− (−1)k]
sin (kζ)

k
=
π

2
. (35)

This implies that for every ζ ∈ (τ0, π)

+∞∑
k=1

cos (kτ0)
sin (kζ)

k
=
π

2
− ζ

2
(36)

since
∑+∞
k=1 (−1)

k
sin (kζ) /k = −ζ/2 for every ζ ∈ (−π, π). In view of the fact that

lim
k→+∞

[
1 +

τ0
π
− 2

k−1∑
κ=0

sin (κτ0)

κπ
− sin (kτ0)

kπ

]
= 0,

it follows finally that for every τ0 ∈ (0, π)

+∞∑
k=0

sin (kτ0)

k
=
π

2
+
τ0
2
. (37)
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Since τ0 ∈ (0, π), it would be natural to ask whether functional expressions (34), (35)
and (36), hold in the limit as τ0 → 0+? In other words, is the limit of a sum equal to a
sum of the limit, as τ0 → 0+. Based on the results of the previous examples, as well as
on the well-known result of the series theory π/4 =

∑+∞
k=1 sin [(2k − 1) ζ] / (2k − 1) for

ζ ∈ (0, π), we may give an affi rmative answer to the former questions. However, the
problem of generalization of the preceding conclusion stays open and can be a subject
of a separate analysis.
Similarly, if we already know that d [sin ζ/ (1− cos ζ)] /dζ = −1/ (1− cos ζ) and

d ln (1− cos ζ) /dζ = sin ζ/ (1− cos ζ) for |ζ| ∈ (0, π), then closely related to results
(26) and (32) of the paper, as well as to the well-known result of the series theory
− ln (1− cos ζ) /2 =

∑+∞
k=1 cos (kζ) /k for |ζ| ∈ (0, 2π) [7], is the following question,

is the derivative of a sum of Fourier series equal to a sum of the derivative of series
members, separately. This question also stays open for a separate analysis.
Some of the paper results have been predictable. So, the alternative numerical series∑+∞
k=0 (−1)

k has a sum, more precisely it is (C, 1) summable and its sum is equal to 1/2
[2], just as it has been assumed yet by Euler and Leibniz. By using this assumption they
obtained absolutely exact results. It is nothing other to be left than to prove the validity
of this assumption. As for result (32) from Example 2, one can say that it is causality
related to result (26) from Example 1. Namely, since

∑+∞
k=1 k sin (kζ) = 0 for ζ = π/2, it

follows from
∑+∞
k=0 (2k + 1) (−1)

k
= 0 that 2

∑+∞
k=0 k (−1)

k
= −

∑+∞
k=0 (−1)

k
= −1/2.
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