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Abstract

In this paper, an existence criterion for triple positive solutions of the sup-
ported beam problem�

u(4) + �u00 � �u = f(t; u(t)); t 2 (0; 1)
u(0) = u(1) = u00(0) = u00(1) = 0

is established by using the Leggett-Williams �xed point theorem, where f : [0; 1]�
R+ ! R+ is continuous, �; � 2 R and satisfy � < 2�2; � � ��2

4
; �
�4
+ �

�2
< 1:

An example is also included to demonstrate the result we obtained.

1 Introduction

There are good reasons for studying fourth-order ordinary di¤erential equations. One
reason is that a horizontally supported beam of �nite length under loading can be
modeled by such equations. One particular equation studied in several recent papers
is of the form

u(4) + �u00 � �u = f(t; u(t)); t 2 (0; 1); (1)

where �; � are real parameters, and u(t) stands for the displacement of the beam
from the equilibrium position. In real situations, beams are subject to various side
conditions. In one situation, both ends of the �nite beam are supported. Then the
corresponding boundary value conditions are

u(0) = u(1) = u00(0) = u00(1) = 0: (2)

There are now several studies which provide existence of nontrivial solutions of the
supported beam problem stated above. In particular, in [1], by transforming the beam
problem into a �xed point problem, the author uses the �xed point index theory to
obtain the existence of positive solutions. In [2], the authors use the critical point
theory to establish the existence of at least two nontrivial solutions.
However, there are other basic �xed point theorems which may provide existence

of multiple solutions as well. One such theorem is the Leggett-Williams �xed-point
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176 Supported Beam Problem

theorem [3] which has been used quite extensively in recent studies related to boundary
value problems [4, 5]. Therefore, a short note using such a result may provide additional
insight and information to the solution space of our boundary value problem.
For the sake of completeness, we �rst recall some basic de�nitions and results. LetK

be a cone in a real Banach space E with norm k�k. A map � is said to be a nonnegative
continuous concave functional onK if �mapsK into [0;+1); is continuous and satis�es

�(tx+ (1� t)y) � t�(x) + (1� t)�(y); x; y 2 K; t 2 [0; 1]:

Let � be a nonnegative continuous concave functional on K. For �xed numbers a; b
such that 0 < a < b; the sets Ka = fx 2 K : kxk < ag and K(�; a; b) = fx 2 K : a �
�(x); kxk � bg are both convex sets.
THEOREM 1.1 (Leggett-Williams, see e.g. [3] ). Let A : �Kc ! �Kc be a completely

continuous operator and � is a nonnegative continuous concave functional on K such
that �(x) � kxk for all x 2 �Kc. If there exist positive numbers a; b; c; d such that
0 < d < a < b � c and

(i) fx 2 K(�; a; b) : �(x) > ag 6= ; and �(Ax) > a for x 2 K(�; a; b);

(ii) kAxk < d for kxk � d;

(iii) �(Ax) > a for x 2 K(�; a; c) with kAxk > b.

Then A has at least three �xed points x1; x2; x3 in �Kc satisfying kx1k < d; a <
�(x2); �(x3) < a and kx3k > d.
As noted in [1] , we may transform our supported beam problem into a �xed point

problem. Let �1; �2 be the roots of the polynomial P (�) = �
2 + �� � �: If �; � 2 R

satisfy � < 2�2; � � ��2

4 and �
�4 +

�
�2 < 1; then �1 =

��+
p
�2+4�

2 �2 =
���

p
�2+4�

2
satisfy �1 � �2 > ��2: Furthermore, let Gi(t; s); i = 1; 2; be the Green�s function of
the homogeneous boundary-value problem

�u00(t) + �iu(t) = 0; t 2 (0; 1); u(0) = u(1) = 0:

Then (i) Gi(t; s) > 0 for t; s 2 (0; 1); (ii) Gi(t; s) � DiGi(s; s) for t; s 2 [0; 1]; and
(iii) Gi(t; s) � �iGi(t; t)Gi(s; s) for t; s 2 [0; 1]; where Di = 1 and �i = !i

sinh!i
if

�i > 0; Di = 1 and �i = 1 if �i = 0; Di = 1
sin!i

and �i = !i sin!i if ��2 < �i < 0; and
!i =

p
j�ij: In addition, if

Ni = max
s2[0;1]

Gi(s; s);

ni = min
s2[ 14 ;

3
4 ]
Gi(s; s);

and

D0 =

Z 1

0

G1(� ; �)G2(� ; �)d� :

then Ni; ni; D0 > 0:
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Let f : [0; 1]� (0;1)! (0;1) be a continuous function. Then our beam problem
(1)-(2), by means of the Green�s functions G1 and G2, is transformed into the integral
equation (see [6, 7])

u(t) =

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)f(s; u(s))ds; t 2 [0; 1]:

Let E = C[0; 1] be endowed with the usual maximum norm kuk = maxt2[0;1] ju(t)j
and let C+[0; 1] be the cone of all nonnegative functions in C[0; 1].

LEMMA 1.2. If h 2 C+[0; 1], then the function

v(t) =

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)h(s)ds; t 2 [0; 1];

satis�es
min
t2[ 14 ;

3
4 ]
v(t) � �kvk;

where

� =
�1�2D0n1
D1D2N1

2 (0; 1):

PROOF. In view of the property (ii) of the Green�s function Gi; it is not dif-
�cult to see that v(t) � D1D2N1

R 1
0
G2(s; s)h(s)ds for t 2 [0; 1]: Therefore, kvk �

D1D2N1
R 1
0
G2(s; s)h(s)ds: By property (iii) of Gi; we have

v(t) � �1�2

Z 1

0

Z 1

0

G1(t; t)G1(� ; �)G2(� ; �)G2(s; s)h(s)dsd�

= �1�2D0G1(t; t)

Z 1

0

G2(s; s)h(s)ds

� �1�2D0
D1D2N1

G1(t; t)kvk

for t 2 [0; 1]: Therefore,

min
t2[ 14 ;

3
4 ]
v(t) � �1�2D0

D1D2N1
min

t2[ 14 ;
3
4 ]
G1(t; t)kvk = �kvk:

By means of the de�nitions of �1; �2; D0; D1; D2 and n1; we may easily check that
� 2 (0; 1): The proof is complete.
De�ne a mapping A : C+[0; 1]! C+[0; 1] by

Au(t) =

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)f(s; u(s))dsd� :

It is easy to check that A : C+[0; 1]! C+[0; 1]; under the continuity condition on f; is
completely continuous, and its �xed points are (four times continuously di¤erentiable)



178 Supported Beam Problem

solutions of our supported beam problem. To �nd its �xed points, we let K be a subset
of C+[0; 1] de�ned by

K =

(
u 2 C+[0; 1] : min

t2[ 14 ;
3
4 ]
u(t) � �kuk

)

Then we may check that K is a cone in E. For u 2 K, we de�ne �(u) = mint2[ 14 ; 34 ] u(t):
It is easy to check that � is a nonnegative continuous concave functional on K with
�(u) � kuk for u 2 K.

2 Main Result

In this section, in order to state and prove the main result of this paper, we impose
growth conditions on f which allow us to apply Theorem 1.1 to establish the existence
criterion of triple positive solutions of (1)-(2).

THEOREM 2.1. Suppose �; � 2 R satisfy � < 2�2; � � ��2

4 and �
�4 +

�
�2 < 1 and

f : [0; 1]�R+ ! R+ is continuous. Suppose further that there exist positive numbers
a; b; c such that 0 < a < b � �c and

f(t; u) <
c

M0
; (t; u) 2 [0; 1]� [0; c]; (3)

f(t; u) <
a

M0
; (t; u) 2 [0; 1]� [0; a]; (4)

f(t; u) >
b

m0
; (t; u) 2 [1=4; 3=4]� [b; b=�]; (5)

where

M0 = max
t2[0;1]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)dsd� and m0 = min
t2[ 14 ;

3
4 ]

Z 3
4

1
4

Z 1

0

G1(t; �)G2(� ; s)dsd� :

ThenA has at least three �xed points u1; u2 and u3 satisfying ku1k < a; b < �(u2); �(u3) <
b and ku3k > a.
PROOF. If u 2 K, from the positivity of Gi; we know Au � 0. By Lemma 1.2, it

is easy to check that mint2[ 14 ; 34 ]Au(t) � �kAuk. Therefore A(K) � K: The complete
continuity of A is explained before. Next, we need to check the conditions in Theorem
1.1. First, if u 2 �Kc, then kuk � c: By (3), we have

kAuk = max
t2[0;1]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)f(s; u(s))dsd�

<
c

M0
max
t2[0;1]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)dsd� =
c

M0
�M0 = c
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Thus, Au 2 Kc; i.e. A : �Kc ! Kc: On the other hand, if (4) holds, i.e. 0 � u(t) � a
for t 2 [0; 1]; then

kAu(t)k = max
t2[0;1]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)f(s; u(s))dsd�

<
a

M0
max
t2[0;1]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)dsd� =
a

M0
�M0 = a:

Therefore, assumption (ii) of Theorem 1.1 holds.
Second, since 1

2

�
b+ b

�

�
2 fK(�; b; b� )j�(u) > bg; so fu 2 K(�; b;

b
� )j�(u) > bg 6= ;:

Moreover, for u 2 K(�; b; b=�); we have

b � �(u) = min
t2[ 14 ;

3
4 ]
u(t) � u(t) � kuk � b

�

for all t 2 [ 14 ;
3
4 ]: Thus, by (5), we see that

�(Au) = min
t2[ 14 ;

3
4 ]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)f(s; u(s))dsd�

> min
t2[ 14 ;

3
4 ]

Z 3
4

1
4

Z 1

0

G1(t; �)G2(� ; s)f(s; u(s))dsd�

>
b

m0
min

t2[ 14 ;
3
4 ]

Z 3
4

1
4

Z 1

0

G1(t; �)G2(� ; s)dsd� =
b

m0
�m0 = b;

i.e. �(Au) > b: That is to say, assumption (i) of Theorem 1.1 holds.
Finally, we check that assumption (iii) of Theorem 1.1. If u 2 K(�; b; c) with

kAuk > d = b=�, then

�(Au) = min
t2[ 14 ;

3
4 ]
Au(t) � �kAuk > � � b

�
= b

as required.
As a consequence, our supported beam problem has at least three positive solutions

u1; u2 and u3 satisfying ku1k < a; b < �(u2); �(u3) < b; ku3k > a: The proof is
complete.

Next, let us consider an example which shows our result is nonvacuous.

EXAMPLE 2.2. Consider the following boundary value problem�
u(4)(t) = f(t; u(t)); t 2 (0; 1)
u(0) = u(1) = u00(0) = u00(1) = 0

Then

G1(t; s) = G2(t; s) = G(t; s) =

�
t(1� s) 0 � t � s � 1
s(1� t) 0 � s � t � 1 ;
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�1 = �2 = D1 = D2 = 1; and D0 =
R 1
0
G(� ; �)G(� ; �)d� =

R 1
0
�2(1� �)2d� = 1

30 ;

n1 = min
s2[ 14 ;

3
4 ]
G(s; s) = min

s2[ 14 ;
3
4 ]
s(1� s) = 3

16

N1 = max
s2[0;1]

G(s; s) = max
s2[0;1]

s(1� s) = 1

4
:

Thus

� =
�1�2D0n1
D1D2N1

=
D0n1
N1

=
3

4
D0 =

1

40
:

We may also calculate M0 and m0 as follows. First,Z 1

0

G(� ; s)ds =

Z �

0

s(1� �)ds+
Z 1

�

�(1� s)ds = (1� �)�2
2

+
�(1� �)2

2
=
�(1� �)

2
:

Hence Z 1

0

Z 1

0

G(t; �)G(� ; s)dsd� =

Z 1

0

G(t; �)
�(1� �)

2
d� =

1

24
t4 � 1

12
t3 +

1

24
t;

Z 3=4

1=4

Z 1

0

G(t; �)G(� ; s)dsd� =

Z 3=4

1=4

G(t; �)
�(1� �)

2
d� =

1

24
t4 � 1

12
t3 � 13

6144
+
1

24
t:

As a consequence, we see that

M0 = max
t2[0;1]

Z 1

0

Z 1

0

G1(t; �)G2(� ; s)dsd� = max
t2[0;1]

�
1

24
t4 � 1

12
t3 +

1

24
t

�
=

5

384
;

m0 = min
t2[ 14 ;

3
4 ]

Z 3
4

1
4

Z 1

0

G1(t; �)G2(� ; s)dsd� = min
t2[ 14 ;

3
4 ]

�
1

24
t4 � 1

12
t3 � 13

6144
+
1

24
t

�
=

11

1536
;

Therefore, if we take positive numbers a; b; c such that 0 < a < b; c � 40b and

384

5
c > max

�
384

5
a;
1536

11
b

�
;

then we may easily construct a piecewise linear, positive and continuous function f(t; u)
such that

f(t; u) <
c

M0
=
384

5
c; (t; x) 2 [0; 1]� [0; c]:

f(t; x) >
a

M0
=
384

5
a; (t; x) 2 [0; 1]� [0; a];

f(t; x) <
b

m0
=
1536

11
b; (t; x) 2

�
1

4
;
3

4

�
� [b; 40b]:

For such a function, our supported beam problem has at least three positive solutions
u1; u2 and u3 satisfying ku1k < a; b < �(u2); �(u3) < b and ku3k > a:
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