Ul'yanov Type Inequalities For Moduli Of Smoothness*

Sadulla Jafarov ${ }^{\dagger}$

Received 8 May 2012

Abstract

Let T denote the interval $[-\pi, \pi]$. In this work we investigate the inequality of Ul'yanov type for moduli of smoothness of an integer order in the $L_{p}(T), p \geq 1$ spaces. In particular, we study (p, q) inequalities for moduli of smoothness of a derivative of a function via the modulus of smoothness of the function itself.

1 Introduction

Let f be 2π-periodic and let $f \in L_{p}[0,2 \pi]=L_{p}$ for $p \geq 1$. Throughout this work, $\|\cdot\|_{p}$ will denote the L_{p}-norm and will be defined by

$$
\|f\|_{p}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p}, f \in L_{p}, 1 \leq p<\infty
$$

The modulus of smoothness $\omega_{k}(f, \delta)_{p}$ of a function $f \in L_{p}, 1 \leq p \leq \infty$, of fractional order $k>0$ are defined by

$$
\begin{equation*}
\omega_{k}(f, \delta)_{p}=\sup _{|h| \leq \delta}\left\|\Delta_{h}^{k} f(x)\right\|_{p} \tag{1}
\end{equation*}
$$

where

$$
\Delta_{h}^{k} f(x)=\sum_{\nu=0}^{\infty}(-1)^{\nu}\binom{k}{\nu} f(x+(k-\nu) h), \quad k>0
$$

Note that, the following (p, q) inequalities between moduli of smoothness, nowadays called Ul'yanov-type inequalities, are known:

$$
\begin{equation*}
\omega_{k}\left(f^{(r)}, \delta\right)_{q} \leq C\left(\int_{0}^{\delta}\left(u^{-\theta} \omega_{k+r}(f, t)_{p}\right)^{q_{1}} \frac{d u}{u}\right)^{1 / q_{1}} \tag{2}
\end{equation*}
$$

[^0]where
\[

$$
\begin{gathered}
r \in N \cup\{0\}, \quad 0<p<q \leq \infty, \quad \theta=\frac{1}{p}-\frac{1}{q}, \\
q_{1}= \begin{cases}q & \text { if } q<\infty \\
1 & \text { if } q=\infty\end{cases}
\end{gathered}
$$
\]

In the case $r=0, p \geq 1$ the inequality (2) was proved by Ul'yanov [15]. In other cases, (p, q) estimates (the modulus of smoothness $\omega_{k}(f, \delta)_{p}$ of an integer order, the r-the derivative, $r \in N$ and the fractional derivative of order $r>0$ of the function) were obtained in references [3], [4], [14].

Note that the inequality between moduli of smoothness of various orders in different metrics was investigated by [6].

We denote by $E_{n}(f)_{p}$ the best approximation of $f \in L_{p}(T)$ by trigonometric polynomials of degree not exceeding n, i.e.,

$$
E_{n}(f)_{p}:=\inf _{T_{n} \in \Pi_{n}}\left\|f-T_{n}\right\|_{p}, \quad n=0,1,2, \ldots .
$$

where Π_{n} denotes the class of trigonometric polynomials of degree at most n.
Let $W_{p}^{r}[0,2 \pi]=W_{p}^{r},(r=1,2, \ldots)$ be the linear space of functions for which $f^{(r-1)}$ is absolutely continuous and $f^{(r)} \in L_{p}(T), p>1$. It becomes a Banach space with the norm

$$
\|f\|_{W_{p}^{r}}:=\|f\|_{p}+\left\|f^{(r)}\right\|_{p} .
$$

Let $f \in L_{p}$. For $\delta>0$, the K-functional is defined by

$$
K\left(\delta, f ; L_{p}, W_{p}^{r}\right):=\inf \left\{\|f-\psi\|_{p}+\delta\left\|\psi^{(r)}\right\|_{p}: \psi \in W_{p}^{r}\right\}
$$

Let $1<p<\infty$. We define an operator on $L_{p}(T)$ by

$$
\left(\sigma_{h} g\right)(x):=\frac{1}{2 h} \int_{-h}^{h} g(x+t) d t, \quad 0<h<\pi, x \in T
$$

The k-modulus of smoothness $\Omega_{k}(\cdot, g)_{p},(k=1,2, \ldots)$, of $g \in L_{p}(T)$ is defined by

$$
\begin{equation*}
\Omega_{k}(\delta, g)_{p}:=\sup _{\substack{0<h_{i}<\delta \\ 1 \leq i \leq k}}\left\|\prod_{i=1}^{k}\left(I-\sigma_{h_{i}}\right) g\right\|_{L_{p}(T)}, \quad \delta>0 \tag{3}
\end{equation*}
$$

where I is the identity operator [1], [5], [7].
In the case of $k=0$ we set $\Omega_{k}(\delta, g)_{p}:=\|g\|_{L_{p}(T)}$ and if $k=1$ we write $\Omega(\delta, g)_{p}:=$ $\Omega_{1}(\delta, g)_{p}$.

It can be shown easily that the modulus of smoothness $\Omega_{k}(\cdot, g)_{p}$ is a nondecreasing, nonnegative, continuous function satisfying the conditions

$$
\lim _{\delta \rightarrow 0} \Omega_{k}(\delta, g)_{p}=0
$$

$$
\Omega_{k}(\delta, f+g)_{p} \leq \Omega_{k}(\delta, f)_{p}+\Omega_{k}(\delta, g)_{p}
$$

for $f, g \in L_{p}(T)$,

$$
\begin{equation*}
f \sim \sigma(f):=\frac{a_{0}(f)}{2}+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right) \tag{4}
\end{equation*}
$$

is the Fourier series of the function $f \in L_{1}(T)$.
The n-th partial sums and de La Vallée-Poussin sum of the series (4) are defined, respectively, as

$$
S_{n}(x, f):=\frac{a_{0}(f)}{2}+\sum_{k=1}^{n}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right)
$$

and

$$
V_{n}(f):=V_{n}(x, f):=\frac{1}{n} \sum_{\nu=n}^{2 n-1} S_{\nu}(x, f)
$$

The following Lemma holds.
LEMMA 1. For $f \in L_{p}, 1 \leq p \leq \infty$; and $k=1,2, \ldots$ we have

$$
\begin{aligned}
c_{1}(p, k) \Omega_{k}\left(\frac{1}{n}, f\right)_{p} & \leq\left(n^{-2 k}\left\|V_{n}^{(2 k)}(f, x)\right\|_{p}+\left\|f(x)-V_{n}(f, x)\right\|_{p}\right) \\
& \leq c_{2}(p, k) \Omega_{k}\left(\frac{1}{n}, f\right)_{p} .
\end{aligned}
$$

PROOF. Considering reference [7], the inequality

$$
\begin{equation*}
\Omega_{k}\left(\frac{1}{n}, T_{n}\right)_{p} \leq c_{3}(p, k) n^{-2 k}\left\|T_{n}^{(2 k)}\right\|_{p} \tag{5}
\end{equation*}
$$

holds, where T_{n} is a trigonometric polynomial of order n. Using the properties of smoothness $\Omega_{k}(\cdot, f)_{p}[5],[7]$ and (5), we have

$$
\begin{aligned}
\Omega_{k}\left(\frac{1}{n}, f\right)_{p} & \leq c_{4}(p, k)\left(\Omega_{k}\left(\frac{1}{n}, T_{n}\right)_{p}+\left\|f-T_{n}\right\|_{p}\right) \\
& \leq c_{5}(p, k)\left(n^{-2 k}\left\|T_{n}^{(2 k)}\right\|_{p}+\left\|f-T_{n}\right\|_{p}\right)
\end{aligned}
$$

By reference [7] the Jackson inequality

$$
\begin{equation*}
E_{n}(f)_{p} \leq c_{6} \Omega_{k}\left(\frac{1}{n+1}, f\right)_{p}, \quad k=1,2, \ldots \tag{6}
\end{equation*}
$$

holds, with a constant $c_{6}>0$ independent of n.

Note that, to estimate $\Omega_{k}\left(\frac{1}{n}, f\right)_{p}$ from below we shall use the following inequality in [7]

$$
\begin{equation*}
n^{-2 k}\left\|T_{n}^{(2 k)}\right\|_{p} \leq c_{7}(p, k) \Omega_{k}\left(\frac{1}{n}, T_{n}\right) p . \tag{7}
\end{equation*}
$$

Let $V_{n}(f)$ be de La Vallée-Poussin sum of the series (4).
We denote by $T_{n}^{*}(x, f)$ the best approximating polynomial of degree at most n to f in $L_{p}(T)$. In this case, from the boundedness of V_{n} in $L_{p}(T)$, we obtain

$$
\begin{align*}
\left\|f-V_{n}(f)\right\|_{p} & \leq\left\|f(x)-T_{n}^{*}(x, f)\right\|_{p}+\left\|T_{n}^{*}(x, f)-V_{n}(x, f)\right\|_{p} \\
& \leq \leq c_{7}(p) E_{n}(f)_{p}+\left\|V_{n}\left(x, T_{n}^{*}(x, f)-f(x)\right)\right\|_{p} \\
& \leq c_{8}(p, k) E_{n}(f)_{p} \tag{8}
\end{align*}
$$

Using (7) and (8) we reach

$$
\begin{aligned}
& n^{-2 k}\left\|V_{n}^{(2 k)}(x, f)\right\|_{p}+\left\|f(x)-V_{n}(x, f)\right\|_{p} \\
\leq & c_{9}(p, k)\left(\Omega_{k}\left(\frac{1}{n}, V_{n}\right)_{p}+E_{n}(f)_{p}\right) \\
\leq & c_{10}(p, k)\left(\Omega_{k}\left(\frac{1}{n}, f\right)_{p}+\Omega_{k}\left(\frac{1}{n}, f-V_{n}\right)_{p}\right) \\
\leq & c_{11}(p, k) \Omega_{k}\left(\frac{1}{n}, f\right)_{p} .
\end{aligned}
$$

Thus the proof of Lemma 1 is completed.
In this work we study (p, q)-inequalities of Ul'yanov type for the modulus of smoothness $\Omega_{k}\left(f^{(r)}, \delta\right)_{p}, k=1,2, \ldots, r=1,2, \ldots$ defined in the form (3). To prove we use the method of the proof given in the study [14].

Main result in the present work is the following theorem.
THEOREM 1. Let $f \in L_{p}, 1<p<q<\infty, \theta=\frac{1}{p}-\frac{1}{q}$. Then for any $k=1,2, \ldots$, $r=1,2, \ldots$ the following estimate holds:

$$
\begin{equation*}
\Omega_{k}\left(\delta, f^{(r)}\right)_{q} \leq C\left(\int_{0}^{\delta}\left(u^{-(\theta+r)} \Omega_{r+k}(u, f)_{p}\right)^{q} \frac{d u}{u}\right)^{1 / q} \tag{9}
\end{equation*}
$$

2 Proof of the Main Result

According to reference [7] for $1<q<\infty$ the following equivalence holds:

$$
\begin{align*}
\Omega_{k}\left(\frac{1}{2^{n}}, f^{(r)}\right)_{q} & \approx K\left(\frac{1}{2^{n}}, f^{(r)}, L_{q}(T), W_{q}^{2 k}(T)\right) \\
& =\inf \left\{\left\|f^{(r)}-\psi\right\|_{q}+2^{-2 n k}\left\|\psi^{(2 k)}\right\|_{q}: \psi \in W_{q}^{2 k}(T)\right\} \tag{10}
\end{align*}
$$

If V_{n} is the de La Vallée-Poussin sum of the function f using Lemma 1 we get

$$
\begin{equation*}
K\left(\frac{1}{2^{n}}, f^{(r)}, L_{q}(T), W_{q}^{2 k}\right) \approx\left\|f^{(r)}-V_{2^{n}}\left(f^{(r)}\right)\right\|_{q}+2^{-2 n k}\left\|V_{2^{n}}^{(2 k)}\right\|_{q}:=I_{1}+I_{2} \tag{11}
\end{equation*}
$$

Taking account of (8) we have

$$
\begin{equation*}
\left\|f-V_{n}(f)\right\|_{p} \leq c_{12} E_{n}(f)_{p} \tag{12}
\end{equation*}
$$

Considering [16] and [4], the following (p, q)-inequality holds:

$$
\begin{equation*}
\left\|\left(V_{2^{l}}\right)^{(r)}-\left(V_{2^{n}}\right)^{(r)}\right\|_{q} \leq c_{13}\left(\sum_{m=n}^{l-1} 2^{m \theta q}\left\|\left(V_{2^{m+1}}\right)^{(r)}-\left(V_{2^{m}}\right)^{(r)}\right\|_{p}^{q}\right)^{q} \tag{13}
\end{equation*}
$$

Using the Bernstein-type inequality [7], [9], [14] we obtain

$$
\begin{equation*}
\left\|V_{2^{m+1}}^{(r)}-V_{2^{m}}^{(r)}\right\|_{p} \leq c_{14} 2^{m r}\left\|V_{2^{m+1}}-V_{2^{m}}\right\|_{p} \tag{14}
\end{equation*}
$$

Taking into account the relations (13), (14) and Jackson inequality [6] we have

$$
\begin{align*}
I_{1} & =\left\|f^{(r)}-V_{2^{n}}\left(f^{(r)}\right)\right\|_{q} \\
& \leq c_{15} \sum_{m=n}^{\infty} 2^{m \theta q} 2^{m q r} E_{2^{m}}^{q}(f) \\
& \leq c_{16}\left(\sum_{m=n}^{\infty} 2^{m \theta q} 2^{m q r} \Omega_{k+r}\left(\frac{1}{2^{m}}, f\right)_{p}^{q}\right)^{1 / q} \\
& \leq c_{17}\left(\int_{0}^{2^{-n}}\left(u^{-(\theta+r)} \Omega_{k+r}(u, f)_{p}\right)^{q} \frac{d u}{u}\right)^{1 / q} \tag{15}
\end{align*}
$$

On the order hand, for $\delta_{1} \approx \delta_{2}$ the following equivalence holds:

$$
\begin{equation*}
\Omega_{k}\left(\delta_{1}, f\right)_{p} \approx \Omega_{k}\left(\delta_{2}, f\right)_{p} \tag{16}
\end{equation*}
$$

It is known that for trigonometric polynomials of degree n the following Nikol'skii inequality holds [4], [8], [10] :

$$
\begin{equation*}
\left\|T_{n}\right\|_{q} \leq c_{18} n^{\frac{1}{p}-\frac{1}{q}}\left\|T_{n}\right\|_{p}, \quad 0<p \leq q \leq \infty \tag{17}
\end{equation*}
$$

Use of inequality (17) gives us

$$
\begin{align*}
I_{2} & =2^{-n k}\left\|\left(V_{2^{n}}^{(k)}\right)^{(r)}\right\|_{q} \\
& \leq c_{19} 2^{-n k} 2^{n \theta}\left\|V_{2^{n}}^{(k+r)}\right\|_{p} \\
& \leq c_{20} 2^{n \theta} 2^{n r} \Omega_{k+r}\left(\frac{1}{2^{n}}, f\right)_{p} \\
& \leq c_{21}\left(\int_{0}^{2^{-n}}\left(u^{-\theta} u^{-r} \Omega_{k+r}(u, f)_{p}\right)^{q} \frac{d u}{u}\right)^{1 / q} \\
& =c_{21}\left(\int_{0}^{2^{-n}}\left(u^{-(\theta+r)} \Omega_{k+r}(f, u)_{p}\right)^{q} \frac{d u}{u}\right)^{1 / q} . \tag{18}
\end{align*}
$$

Using (10), (11), (15) and (18), we have (9).
Acknowledgment. The author wishes to express deep gratitude to the referee for valuable suggestions.

References

[1] R. Akgun and D. M. Israfilov, Approximation in weighted Orlicz spaces, Math. Slovaca, 61(4)(2011), 601-618.
[2] P. L. Butzer, R. L. Stens and M. Wehrens, Approximation by algebraic convolution integrals, Approximation Theory and Functional Analysis, (Proc. Internat. Sympos. Approximation Theory, Univ, Estadual de Campinas, CityplaceCampinas, 1977), pp.71-120, North-Holland Math. Stud, 35, North-Holland, Amsterdam-New York, 1979.
[3] Z. Ditzian and S. Tikhonov, Moduli of smoothness of functions and their derivatives, Studia Math., 180(2007), 142-160.
[4] Z. Ditzian and S. M. Tikhonov, Ul'yanov and Nikol'skii-type inequalities, J. Approx. Theory, 133(2005), 100-133.
[5] E. A. Hadjieva, Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolskii-Besov spaces, author's summary of dissertation, Tbilisi, 1986 (in Russian).
[6] N. A. Il'yasov, On the inequality between moduli of smoothness of various orders in different metrics, Mat. Zametki, 50(2)(1991), 153-155. (in Russian).
[7] D. M. Israfilov and A. Guven, Approximation by trigonometric polynomials in weighted Orlicz spaces, Studia Mathematica, 174(2)(2006), 147-168.
[8] S. Z. Jafarov, S.M. Nikolskii type inequality and estimation between the best approximations of a functions in norms of different spaces, Math. Balkanica (N.S) $21(1-2)(2007), 173-182$.
[9] S. Z. Jafarov, The inverse theorem of approximation of the function in SmirnovOrlicz classes, Mathematical Inequalities and Applications, 12(4)(2012), 835-844.
[10] S. M. Nikol'skii, Inequalities for entire analytic functions of finite order and their application to the theory of differentiable functions of several variables, Trudy Math. Inst. Steklov, 38(1951), 244-278.
[11] B. V. Simonov and S. Tikhonov, Embedding theorems in the constructive theory of approximations, Sb. Math., 199(2008), 1365-1405.
[12] B. Simonov and S. Tikhonov, Sharp Ul'yanov-type inequalities using fractional smoothness, J. Approx. Theory, 162(2010), 1654-1684.
[13] S. Tikhonov, Weak type inequalities for moduli of smoothness: The case of limit value parameters, J. Fourier Anal. Applic., 16(2010), 590-608.
[14] S. Tikhonov and W. Trebels, Ul'yanov-type inequalities and generalized Liouville derivatives, Proceedings of the Royal Society of Edinburg, 141A(2011), 205-204.
[15] P. L. Ul'yanov, The imbedding of certain function classes H_{p}^{ω}, Izv. Akad. Nauk SSSR, 32(1968), 649-686 (in Russian).
[16] P. L. Ul'yanov, Imbedding theorems and relations between best approximation (moduli of continuity) in different metrics, Math. USSR Sb., 10(1970), 103-126.

[^0]: *Mathematics Subject Classifications: 26D15, 41A25, 41A63, 42B15.
 \dagger Department of Mathematics, Faculty of Art and Sciences, Pamukkale University, 20017, Denizli, Turkey; Mathematics and Mechanics Institute, Azerbaijan National Academy of Sciences, 9, B.Vahabzade St., Az-1141, Baku, Azerbaijan

