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Abstract

In this paper, we show how many bounds of the logarithmic mean, already
stated in the literature, can be obtained in a fast and nice way when simple
operations between means are conveniently introduced.

1 Introduction

Throughout this paper, we understand by mean a map m between two positive real
numbers such that

8a; b > 0 min(a; b) � m(a; b) � max(a; b):

From this, it is clear that every mean is with positive values and re�exive that is
m(a; a) = a for each a > 0. The maps (a; b) 7�! min(a; b) and (a; b) 7�! max(a; b)
are (trivial) means which will be denoted by min and max, respectively. Standard
examples of means are following (see [1]):

� Arithmetic Mean: A := A(a; b) = a+b
2 ;

� Geometric Mean: G := G(a; b) =
p
ab;

� Harmonic Mean: H := H(a; b) = 2ab
a+b ;

� Contra-harmonic Mean: C := C(a; b) = a2+b2

a+b ;
� Logarithmic Mean: L := L(a; b) = b�a

ln b�ln a ; L(a; a) = a;

� Identric Mean I := I(a; b) = e�1
�
bb=aa

�1=(b�a)
; I(a; a) = a.

The set of all means can be equipped with a partial ordering, called point-wise
order, de�ned by: m1 � m2 if and only if m1(a; b) � m2(a; b) for every a; b > 0. We
write m1 < m2 if and only if m1(a; b) < m2(a; b) for all a; b > 0 with a 6= b.
For a given mean m, we set m�(a; b) =

�
m
�
a�1; b�1

���1
; and it is easy to see that

m� is also a mean, called the dual mean of m. Every mean m satis�es m�� := (m�)� =
m and, if m1 and m2 are two means such that m1 < m2 then m�

1 > m
�
2. It is easy to

see that min� = max and max� = min. Further, the arithmetic and harmonic means
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170 Re�ning Bounds of the Logarithmic Mean

are mutually dual (i.e. A� = H; H� = A) and the geometric mean is self-dual (i.e.
G� = G).
The following inequalities are well known in the literature, see [2].

min < C� < H < I� < L� < G < L < I < A < C < max :

Let us denote by M the convex set of all means with two arguments. A given
map � : M �! M is called point-wise convex (in short p-convex) if the following
mean-inequality,

�
�
(1� t)m1 + tm2

�
� (1� t)�(m1) + t�(m2);

with respect to the above point-wise ordering, holds true for every real number t 2 [0; 1]
and all means m1;m2 2 M. We say that � is p-concave if the above inequality is
reversed. The p-increase and p-decrease monotonicity of � can be stated in a similar
manner.

EXAMPLE 1. Let us consider the map m 7�! m�, where m� is the dual of m.
Clearly, this map is p-increasing. Further, it is well known [4] that it is p-convex, that
is, the mean-inequality �

(1� t)m1 + tm2

��
� (1� t)m�

1 + tm
�
2

holds for all t 2 [0; 1] and all means m1 and m2. Furthermore, this mean-inequality is
strict whenever t 2 (0; 1) and m1 6= m2.

In the section below we will see a lot of p-convex (resp. p-concave,...) mean-maps.
Other examples, with some extensions, can be found in [4].

2 Some Operations for Means

As already pointed before, this section is focused to de�ne some operations for means
and study their properties. We start with the following simple de�nition.

DEFINITION 1. Let m1 and m2 be two means. For a; b > 0 de�ne

m1 �m2(a; b) = m1

�p
a;
p
b
�
m2

�p
a;
p
b
�
; (1)

which we call the mean-product of m1 and m2.

For � 2 [0; 1], we set

m1 �� m2 := (1� �)m1 + �m2:

If � = 1=2, we write m1 �m2 instead of m1 �1=2 m2 for the sake of simplicity.
The elementary properties of operations (m1;m2) 7�! m1 �m2 and (m1;m2) 7�!

m1 �� m2 are summarized in the next result.

PROPOSITION 1. With the above the following assertions are met:
(i) For all means m1;m2 and � 2 [0; 1], m1 �� m2 and m1 �m2 are means,
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(ii) m1 �� m2 = m2 �1�� m1 and m1 �m2 = m2 �m1, (commutativity axiom),

(iii)
�
m1 < m3 and m2 < m4

�
imply

�
m1 �� m2 < m3 �� m4 and m1 � m2 <

m3 �m4

�
, (monotonicity or compatibility axiom),

(iv)
�
m1 �� m2

��
� m�

1 �� m�
2 (�-sub-additivity axiom for ��),

(v)
�
m1 �m2

��
= m�

1 �m�
2 (self-duality axiom for �),

(vi) m�
�
m1 �� m2

�
=
�
m�m1

�
��

�
m�m2

�
(distributivity of � for ��).

The proof is straightforward and does not present any di¢ culties. We left the detail
for the reader.

Before stating some concrete examples illustrating the above, we state the following
de�nition which is naturally derived from the above one.

DEFINITION 2. For all mean m we de�ne

m�2�a; b� = �m�pa;pb��2; (2)

m�1=2�a; b� = �m�a2; b2��1=2; (3)

which we call the mean-square and the mean-root of m, respectively.

Clearly, m�2 and m�1=2 are means whenever m is a mean. It is easy to verify that
the operations m 7�! m�2 and m 7�! m�1=2 are mutually reverse in the sense that,
m�2
1 = m2 if and only if m1 = m

�1=2
2 , which justi�es the above chosen terminology.

Further, combining the two above de�nitions with Proposition 2 we immediately obtain
the following result.

PROPOSITION 2. With the above we have
(i) m1 < m2 implies m

�2
1 < m�2

2 and m�1=2 < m
�1=2
2 (monotonicity axiom),

(ii)
�
m�2�� = �m���2 and �m�1=2�� = �m���1=2 (self-duality axiom).

The following result gives another justi�cation for the above chosen terminology.

PROPOSITION 3. The mean-map m 7�! m�2 is p-convex and m 7�! m�1=2 is a
p-concave one.

PROOF. Let � 2 [0; 1] be a real number and m1;m2 be two means. By de�nition
we have�

(1� �)m1 + �m2

��2
(a; b) =

�
(1� �)m1

�p
a:
p
b
�
+ �m2

�p
a;
p
b
��2

:

By the convexity of the real function t 7�! t2 we deduce the desired result. The
p-concavity of m 7�! m�1=2 can be obtained in an analogous way.

Now we are in position to state the following examples.

EXAMPLE 2. It is easy to verify that
1)min�max = A, min�max = G, min�2 = min�1=2 = min, max�2 = max�1=2 =

max.

2) A� L = L, A� C = A, A�G =
�
AG+G2

2

�1=2
.
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3) For all mean m one has m�m� = G.

EXAMPLE 3. Elementary computations lead to

1) A�2 =
A+G

2
:= A�G, G�2 = G, H�2 =

2G2

A+G
, C�2 =

2A2

A+G
=

A2

A�G
2) L�2 =

2L2

A+G
=

L2

A�G , I
�2 =

1

e2
G exp

A+G

L
.

We end this section by stating another result which will be needed later for simpli-
fying some hard computations.

PROPOSITION 4. Let m1;m2 be two means and � 2 [0; 1] be a real number. The
following equalities hold true�

m1��
1 m�

2

��2
=
�
m�2
1

�1���
m�2
2

��
(4)

�
m1��
1 m�

2

��1=2
=
�
m
�1=2
1

�1���
m
�1=2
2

��
: (5)

The proof is very simple and we omit here the details.

3 Applications for Mean-Inequalities

In the present section, we investigate some applications of the above theoretical study
for obtaining a lot of mean-inequalities involving the logarithmic mean L. We notice
that some of these obtained inequalities are well known in the literature and some
other ones appear to us to be new. Our present approach stems its importance in
the strange fact that the above introduced elementary operations are good tool for
obtaining mean-inequalities in a fast and simple ways while certain of them have been
shown by di¤erent methods in a more or less long way. Let us observe this latter
situation in the next examples.

EXAMPLE 4. Starting from G < L < A we deduce, with Proposition 2 and
Example 2,

G�2 = G < L�2 =
2L2

A+G
< A�2 =

A+G

2
;

which, after all reduction with Example 2, yields the known inequalities, [7]

G <
�AG+G2

2

�1=2
< L <

A+G

2
< A: (6)

EXAMPLE 5. We can re�ne the bounds of L given in (6) by continuing the same
procedure. For instance, starting from L < A+G

2 := A�G we deduce, with Proposition
2 and Example 2,

A� L = L < A� (A�G) = A�2 � (A�G);

and again by Example 2 and Example 2 we deduce

L <
1

2

�A+G
2

�
+
1

2

�AG+G2
2

�1=2
:
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EXAMPLE 6. The following inequality L < (1=3)A + (2=3)G is well-known (see
[3]) and it re�nes L < A�G. Using our conventional writing L < A�2=3 G we obtain
by Proposition 2 and Example 2

A� L = L < A�
�
A�2=3 G

�
= A�2 �2=3 (A�G)

or again

L <
�A+G

2

�
�2=3

�AG+G2
2

�1=2
=
1

3

�A+G
2

�
+
2

3

�AG+G2
2

�1=2
;

which gives a re�nement of the initial inequality already obtained in [5, 7].

EXAMPLE 7. Starting from G < I < A we deduce, with Proposition 2 and
Example 2,

G <
1

e2
G exp

A+G

L
<
A+G

2
: (7)

The left-hand side of (7) gives the third inequality of (6) (i.e. L < (A + G)=2), while
the right-hand side of (7) yields, after all reduction,

L >
A+G

2� ln 2 + ln A+GG
: (8)

It is not hard to verify that (8) re�nes L >
�
AG+G2

2

�1=2
.

EXAMPLE 8. Starting from G < L < I we deduce, by Proposition 2 with Example
2,

G < L�2 =
2L2

A+G
< I�2 =

1

e2
G exp

A+G

L
: (9)

The left-hand side of (9) does not gives new information while the right-hand side
yields, after simple manipulation, the following implicit mean-inequality for L

L ln
eL�

AG+G2

2

�1=2 < A+G

2
; (10)

EXAMPLE 9. Starting from the known inequality A1=3G2=3 < L, [3], we deduce
by Proposition 2 �

A�2
�1=3

G2=3 < L�2:

This, with Example 2 and a simple reduction, yields

L >
�A+G

2

�2=3
G1=3; (11)

which is a re�nement of A1=3G2=3 < L already di¤erently obtained in [7]. If we repeat
the same procedure for (11) we obtain (by analogous arguments as in the above)

L > G1=6
�A+G

2

�1=2��A+G
2

��2�1=3
:
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We left to the reader the task for formulating other known mean-inequalities in the
aim to obtain related re�nements of L via our above approach.
The reader can perhaps remark the following: why the above introduced operations

are tool for bounding the logarithmic mean L, but not the identric mean I for example.
We can understand this situation after pointing the following.

REMARK 1. We notice that

m1 �m2 = R
�
m1;m2; G

�
;

where the notation of the right-hand side refers to the resultant mean-map introduced
by the author in [4]. The logarithm mean L is (A;G)-stabilizable, that is, A�L = L =
R(A;L;G). Following [6], the fact that A� L = L means that L is A-decomposable.

References

[1] P. S. Bullen, Handbook of Means and Their Inequalities (Mathematics and Its
Applications), Springer, Second edition, 1987.

[2] C. P. Chen, On some Inequalities for means and the second Gautschi-Kershaw�s
inequality, RGMIA, Vol. 11 Supplement (2008), Art. 6.

[3] E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl.,
92(1)(1983), 207�223.

[4] M. Raïssouli, Stability and stabilizability for means, AMEN, 11(2011), 159�174.

[5] M. Raïssouli, Re�nements for mean-inequalities via the stabilizability concept, J.
Ineq. Appl., Vol. 2012 (2012), 26 pages.

[6] M. Raïssouli and J.Sándor, On a method of construction of new means with appli-
cations, Int. J. Math. Math. Sci., to appear.
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