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Abstract

In this paper, we study the existence of positive periodic solutions of the
nonlinear neutral di¤erential equation with variable delay

d

dt
(x (t)� g (t; x (t� � (t)))) = r (t)x (t)� f (t; x (t� � (t))) :

The main tool employed here is the Krasnoselskii�s hybrid �xed point theorem
dealing with a sum of two mappings, one is a contraction and the other is compact.
The results obtained here generalize the work of Ra¤oul [17].

1 Introduction

Due to their importance in numerous applications, for example, physics, population
dynamics, industrial robotics, and other areas, many authors are studying the existence,
uniqueness, stability and positivity of solutions for delay di¤erential equations, see the
references in this article and the references therein.
In this paper, we are interested in the analysis of qualitative theory of positive

periodic solutions of delay di¤erential equations. Motivated by the papers [2, 6, 8,
12, 14, 17, 19] and the references therein, we concentrate on the existence of positive
periodic solutions for the nonlinear neutral di¤erential equation with variable delay

d

dt
(x (t)� g (t; x (t� � (t)))) = r (t)x (t)� f (t; x (t� � (t))) ; (1)

where r is a continuous real-valued function. The functions g; f : R � R ! R are
continuous in their respective arguments. To reach our desired end we have to transform
(1) into an integral equation and then use Krasnoselskii�s �xed point theorem to show
the existence of positive periodic solutions. The obtained integral equation splits in
the sum of two mappings, one is a contraction and the other is compact. In the case
g (t; x) = cx, Ra¤oul in [17] shows that (1) has a positive periodic solutions by using
Krasnoselskii�s �xed point theorem.
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The organization of this paper is as follows. In Section 2, we present the inversion
of (1) and Krasnoselskii�s �xed point theorem. For details on Krasnoselskii�s theorem
we refer the reader to [18]. In Section 3, we present our main results on existence of
positive periodic solutions of (1). The results presented in this paper generalize the
main results in [17].

2 Preliminaries

For T > 0, let PT be the set of all continuous scalar functions x, periodic in t of period
T . Then (PT ; k:k) is a Banach space with the supremum norm

kxk = sup
t2R

jx (t)j = sup
t2[0;T ]

jx (t)j :

Since we are searching for the existence of periodic solutions for equation (1), it is
natural to assume that

r (t+ T ) = r (t) ; � (t+ T ) = � (t) ; (2)

with � being scalar function, continuous, and � (t) � �� > 0. Also, we assumeZ T

0

r (s) ds > 0: (3)

We also assume that the functions g (t; x) and f (t; x) are periodic in t with period T ,
that is,

g (t+ T; x) = g (t; x) ; f (t+ T; x) = f (t; x) : (4)

The following lemma is fundamental to our results.

LEMMA 2.1. Suppose (2)-(4) hold. If x 2 PT , then x is a solution of equation (1)
if and only if

x (t) = g (t; x (t� � (t)))

+

Z t+T

t

G (t; s) [f (s; x (s� � (s)))� r (s) g (s; x (s� � (s)))] ds; (5)

where

G (t; s) =
e
R t
s
r(u)du

1� e�
R T
0
r(u)du

: (6)

PROOF. Let x 2 PT be a solution of (1). First we write this equation as

d

dt
(x (t)� g (t; x (t� � (t)))) = r (t) (x (t)� g (t; x (t� � (t))))

� f (t; x (t� � (t))) + r (t) g (t; x (t� � (t))) :
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Multiply both sides of the above equation by e�
R t
0
r(u)du and then integrate from t to

t+ T to obtainZ t+T

t

d

ds

h
(x (s)� g (s; x (s� � (s)))) e�

R s
0
r(u)du

i
ds

=

Z t+T

t

[�f (s; x (s� � (s))) + r (s) g (s; x (s� � (s)))] e�
R s
0
r(u)duds:

As a consequence, we arrive at

(x (t+ T )� g (t+ T; x (t+ T � � (t+ T )))) e�
R t+T
0

r(u)du

� (x (t)� g (t; x (t� � (t)))) e�
R t
0
r(u)du

=

Z t+T

t

[�f (s; x (s� � (s))) + r (s) g (s; x (s� � (s)))] e�
R s
0
r(u)duds:

Dividing both sides of the above equation by e�
R t
0
r(u)du and using the fact that x (t) =

x (t+ T ), (2) and (4), we obtain

x (t)� g (t; x (t� � (t)))

=

Z t+T

t

e
R t
s
r(u)du

1� e�
R T
0
r(u)du

[f (s; x (s� � (s)))� r (s) g (s; x (s� � (s)))] ds:

This completes the proof.

To simplify notation, we let

m =
e�

R 2T
0
jr(u)jdu

1� e�
R T
0
r(u)du

; M =
e
R 2T
0
jr(u)jdu

1� e�
R T
0
r(u)du

:

It is easy to see that for all (t; s) 2 [0; 2T ]� [0; 2T ] ;

m � G (t; s) �M;

and for all t; s 2 R, we have

G (t+ T; s+ T ) = G (t; s) :

Lastly in this section, we state Krasnoselskii�s �xed point theorem which enables us
to prove the existence of positive periodic solutions to (1). For its proof we refer the
reader to [18].

THEOREM 2.1 (Krasnoselskii). Let D be a closed convex nonempty subset of a
Banach space (B; k:k) : Suppose that A and B map D into B such that
(i) x; y 2 D; implies Ax+ By 2 D;
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z 2 D with z = Az + Bz:
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3 Existence of Positive Periodic Solutions

To apply Theorem 2.1, we need to de�ne a Banach space B, a closed convex subset
D of B and construct two mappings, one is a contraction and the other is compact.
So, we let (B; k:k) = (PT ; k:k) and D = f' 2 B : L � ' � Kg, where L is non-negative
constant and K is positive constant. We express equation (5) as

' (t) = (B') (t) + (A') (t) := (H') (t) ;

where A;B : D! B are de�ned by

(A') (t) =
Z t+T

t

G (t; s) [f (s; ' (s� � (s)))� r (s) g (s; ' (s� � (s)))] ds; (7)

and
(B') (t) = g (t; ' (t� � (t))) : (8)

In this section we obtain the existence of a positive periodic solution of (1) by
considering the two cases; g (t; x) � 0 and g (t; x) � 0 for all t 2 R, x 2 D. We assume
that function g (t; x) is locally Lipschitz continuous in x. That is, there exists a positive
constant k such that

jg (t; x)� g (t; y)j � k kx� yk ; for all t 2 [0; T ] ; x; y 2 D: (9)

In the case g (t; x) � 0, we assume that there exist a non-negative constant k1 and
positive constant k2 such that

k1x � g (t; x) � k2x; for all t 2 [0; T ] ; x 2 D; (10)

k2 < 1; (11)

and for all t 2 [0; T ] ; x 2 D

L (1� k1)
mT

� f (t; x)� r (t) g (t; x) � K (1� k2)
MT

: (12)

LEMMA 3.1. Suppose that the conditions (2)-(4) and (10)-(12) hold. Then A :
D! B is compact.
PROOF. Let A be de�ned by (7). Obviously, A' is continuous and it is easy to

show that (A') (t+ T ) = (A') (t). For t 2 [0; T ] and for ' 2 D, we have

j(A') (t)j �
�����
Z t+T

t

G (t; s) [f (s; ' (s� � (s)))� r (s) g (s; ' (s� � (s)))] ds
�����

�MT
K (1� k2)

MT
= K (1� k2) :

Thus from the estimation of j(A') (t)j we have

kA'k � K (1� k2) :
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This shows that A (D) is uniformly bounded.
To show that A (D) is equicontinuous. Let 'n 2 D, where n is a positive integer.

Next we calculate d
dt (A'n) (t) and show that it is uniformly bounded. By making use

of (2) and (4) we obtain by taking the derivative in (7) that

d

dt
(A'n) (t) = [G (t; t+ T )�G (t; t)] [f (t; 'n (t� � (t)))� r (t) g (t; 'n (t� � (t)))]

+ r (t) (A'n) (t) :

Consequently, by invoking (12), we obtain���� ddt (A'n) (t)
���� � K (1� k2)

MT
+ krkK (1� k2) � D;

for some positive constantD. Hence the sequence (A'n) is equicontinuous. The Ascoli-
Arzela theorem implies that a subsequence

�
A'nk

�
of (A'n) converges uniformly to

a continuous T -periodic function. Thus A is continuous and A (D) is contained in a
compact subset of B.

LEMMA 3.2. Suppose that (9) holds. If B is given by (8) with

k < 1; (13)

then B : D! B is a contraction.

PROOF. Let B be de�ned by (8). Obviously, B' is continuous and it is easy to
show that (B') (t+ T ) = (B') (t). So, for any '; 2 D, we have

j(B') (t)� (B ) (t)j � jg (t; ' (t� � (t)))� g (t;  (t� � (t)))j
� k k'�  k :

Then kB'� B k � k k'�  k. Thus B : D! B is a contraction by (13).

THEOREM 3.1. Suppose (2)-(4) and (9)-(13) hold. Then equation (1) has a
positive T -periodic solution x in the subset D.

PROOF. By Lemma 3.1, the operator A : D! B is compact and continuous. Also,
from Lemma 3.2, the operator B : D ! B is a contraction. Moreover, if '; 2 D; we
see that

(B ) (t) + (A') (t) = g (t;  (t� � (t)))

+

Z t+T

t

G (t; s) [f (s; ' (s� � (s)))� r (s) g (s; ' (s� � (s)))] ds

� k2K +M

Z t+T

t

[f (s; ' (s� � (s)))� r (s) g (s; ' (s� � (s)))] ds

� k2K +MT
K (1� k2)

MT
= K:
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On the other hand,

(B ) (t) + (A') (t) = g (t;  (t� � (t)))

+

Z t+T

t

G (t; s) [f (s; ' (s� � (s)))� r (s) g (s; ' (s� � (s)))] ds

� k1L+m

Z t+T

t

[f (s; ' (s� � (s)))� r (s) g (s; ' (s� � (s)))] ds

� k1L+mT
L (1� k1)

mT
= L:

Clearly, all the hypotheses of the Krasnoselskii theorem are satis�ed. Thus there exists
a �xed point x 2 D such that x = Ax+Bx. By Lemma 2.1 this �xed point is a solution
of (1) and the proof is complete.

REMARK 3.1. When g (t; x) = cx, Theorem 3.1 reduces to Theorem 3.2 of [17].

In the case g (t; x) � 0, we substitute conditions (10)-(12) with the following condi-
tions respectively. We assume that there exist a negative constant k3 and a non-positive
constant k4 such that

k3x � g (t; x) � k4x; for all t 2 [0; T ] ; x 2 D; (14)

�k3 < 1; (15)

and for all t 2 [0; T ] ; x 2 D

L� k3K
mT

� f (t; x)� r (t) g (t; x) � K � k4L
MT

: (16)

THEOREM 3.2. Suppose (2)-(4), (9) and (13)-(16) hold. Then equation (1) has a
positive T -periodic solution x in the subset D.
The proof follows along the lines of Theorem 3.1, and hence we omit it.

REMARK 3.2. When g (t; x) = cx, Theorem 3.2 reduces to Theorem 3.3 of [17].
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