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Abstract

Suppose G = (V;E) is a simple, connected, undirected graph with n vertices
and m edges. Let f be a bijection from V onto f1; 2; :::; ng which labels the
vertices of G. The vertex-labeling f induces an edge-labeling fC of G as follows:
an edge uv 2 E with f(u) > f(v) is assigned the label fC(uv) =

�
f(u)
f(v)

�
. If the

edge labels of G are pairwise distinct, then we say G is a combination graph. In
this paper, we will show that complete k-ary trees, wheel graphs, Petersen graphs
GP (n; 1); GP (n; 2), grid graphs and certain caterpillar graphs are combination
graphs. We will also show that, except for several special cases, complete bi-
partite graphs are not combination graphs.

1 Introduction

Suppose G = (V;E) is a simple, connected, undirected graph with n vertices and m
edges. Let f be a bijection from V onto f1; 2; :::; ng which labels the vertices of G.
The vertex-labeling f induces an edge-labeling fC of G as follows: an edge uv 2 E
with f(u) > f(v) is assigned the label fC(uv) =

�
f(u)
f(v)

�
. The labeling fC is called the

combination labeling of G induced by the labeling f . When the combination labeling
fC is injective, we say that it is a valid combination labeling. If the graph G has a
valid combination labeling, then we say G is a combination graph.
The study of graph labelings has been and continues to be an popular topic of

graph theory. The dynamic survey by Gillian [2] shows the diversity of graph label-
ings. Graceful labelings are similar to combination labelings. A graceful labeling of a
simple graph G = (V;E) is a labeling of its vertices with distinct integers from the
set f0; 1; :::; jEjg, such that each edge is uniquely identi�ed by the absolute di¤erence
between its endpoints. Graceful labelings have been extensively studied. A well-known
conjecture of graceful labelings, known as the graceful tree conjecture, states that all
trees have graceful labelings. For a recent survey, see [1]. By comparing the range of
allowable (induced) labels on the edges of a graceful labeling versus that of a combina-
tion labeling, if a graph has both a valid combination labeling and a graceful labeling,
it would seen that it would be more di¢ cult to �nd a graceful labeling. Finally, it is
known that K3;3 has a graceful labeling but no valid combination labeling, while the
5-cycle has a valid combination labeling but no graceful labeling.
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In this paper, we concentrate on the labeling of vertices of a graph which induces a
combination labeling on the edges of the graph. This problem was introduced by Hedge
and Shetty [3] in 2006. In this paper, we will study combination labelings for several
classes of graphs and answer some questions that were posed by in [3]. More speci�cally,
we will show that complete k-ary trees, wheel graphs, generalized Petersen graphs
GP (n; 1); GP (n; 2), and grid graphs are combination graphs. In addition, we will show
that, except for some special cases, complete bi-partite graphs are not combination
graphs.
In Section 2 we will show that full k-ary trees, wheel graphs, generalized Petersen

graphs GP (n; 1); GP (n; 2), and grid graphs are combination graphs. In Section 3, we
show that complete bi-partite graphs are not combination graphs, except for a few
special cases.

2 Classes of Combination Graphs

In this section, we will study several classes of graphs and show that they are combi-
nation graphs. We begin with rooted trees.

2.1 Trees

A rooted tree is a tree where one of the vertices (or nodes) is distinguished from the
other. This distinguished vertex is known as the root of the tree. The nodes of a tree
can be categorized as either non-leaf nodes or leaf nodes. A node is a leaf node if it
has degree 1. Otherwise, it is a non-leaf node. The depth of a vertex in a rooted tree
is the number of edges on the path from the root to the vertex. The height of a tree is
the largest depth of any leaf node. A k-ary tree is a rooted tree where each node has
at most k children. A complete k-ary tree is a k-ary tree where each non-leaf node has
exactly k children and the leaf nodes have the same depth.
Our approach will be to show that a rooted tree with the property that all leaf

nodes have the same depth is a combination graph. This immediately implies that a
complete k-ary tree is a combination graph. We begin with a simple, useful fact that
can easily be proved by algebraic manipulations.

LEMMA 1. If n > k > 0, then
�
n+1
k+1

�
>
�
n
k

�
.

LEMMA 2. Let T be a rooted tree with the property that the depth of any two
leaf nodes are the same. Then T is a combination graph.

PROOF. Let T be a rooted tree satisfying the assumptions stated in the lemma.
We may assume that T has at least three vertices since a tree consisting one or two
nodes is a combination graph.
We will �nd an assignment f of labels for the nodes of T so that the induced edge

labels of T are pairwise distinct. To label the nodes, we will visit and label (using the
positive integers) the nodes using a breadth-�rst traversal starting at the root such
that:

1. the smallest available value is used to label the current node being visited, and
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2. if the depth of two non-leaf nodes u and v are the same and f(u) < f(v), then
the labels assigned to the children of u are less than the labels assigned to the
children of v.

Note that this labeling process does not necessarily need to a unique labeling since
siblings can be labeled in any order. As the labels are assigned in a breadth-�rst
manner, the label of a node at depth k is smaller than the label of a node at depth
k + 1. Figure 1 illustrates one labeling constructed by the labeling process on a given
tree.
Consider an edge e = uv in the tree T , where f(u) < f(v) are the labels assigned

to the two endpoints of e. The label induced on this edge is
�
f(v)
f(u)

�
. Note that u is

the parent of v. Suppose the non-leaf node u has children v1; v2; :::; vk0 with f(v1) <
f(v2) < � � � < f(vk0 ) and k

0 � 1. Note that by labeling process, it must be that

f(v1)+1 = f(v2); f(v2) = f(v3)+1; :::; f(vk0�1)+1 = f(vk0 ). By Lemma 1,
�f(v

k
0 )

f(u)

�
>�f(v

k
0�1)

f(u)

�
> � � � >

�
f(v1)
f(u)

�
. Therefore, edges between a parent and its siblings have

distinct labelings.
Now consider two nodes u;w having the same depth and f(w) = f(u)+1. Suppose

node u is a non-leaf node. As all leaf nodes have the same depth, the node w must
also be a non-leaf node. By the labeling process, the children of u must be labeled
a; a+1; :::; a+ l and the children of w must be labeled a+ l+1; a+ l+2; :::; a+ l+m
for some a and l;m � 1. By Lemma 1,

�
a+l
f(u)

�
<
�
a+l+1
f(u)+1

�
=
�
a+l+1
f(w)

�
. Therefore all the

edges of the same level of the tree are pairwise distinct.
Finally, consider two non-leaf nodes u;w where the depth of u is d, the depth of

w is d + 1, for some d, such that f(u) is the largest label assigned to nodes of depth
d and f(w) is the smallest label assigned to nodes of depth d + 1. Then we see that
f(w) = f(u)+1. Suppose the children of u are labeled a; a+1; :::; a+ l for some a and
l � 1. Then the children of w are a+ l + 1; :::; a+ l +m for some m � 1. By Lemma
1,
�
a+l
f(u)

�
<
�
a+l+1
f(w)

�
. This shows that the edges at level d have labels less than those at

level d+ 1.
Combining these three results, we see that the tree T is a combination graph.
Lemma 2 immediately implies that complete k-ary trees are combination graphs.

We state this in the following Corollary.
THEOREM 1. The complete k-ary tree is a combination graph.

2.2 Caterpillars

We now consider another class of trees called caterpillars. A tree is a caterpillar if,
upon removing all leaves and their incident edges, a path is left. This path is called
the central path of the caterpillar graph. Note that in the caterpillar, the central path
can be extended to a longer path since each endpoint of the path must be adjacent
to a vertex in the caterpillar. Let us call this path the extended central path of the
caterpillar. We will call an edge that is not on the extended central path of a caterpillar
a leg.
We begin by showing that if a caterpillar has enough legs, then it is a combination

graph. To do this we start with a simple lemma that can be veri�ed through algebraic
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Figure 1: A labeling of a 18 node rooted tree.

manipulation.

LEMMA 3. If l;m � 0 and n+ 1 � 2(l +m), then
�
n
l

�
<
�
n+1
l+m

�
.

THEOREM 2. Let G = (V;E) be a caterpillar with extended central path P
consisting of p vertices. If G has at least 3p � 6 vertices, then T is a combination
graph.

PROOF. We partition the vertex set of V into two smaller sets A and B by �rst
dividing the path P into two (disjoint) sub-paths Q and R of equal or almost equal
length. Then we place a vertex v into A if v 2 Q or v is adjacent to a vertex on
Q. Otherwise, we place v into B. At least one of G[A] or G[B] contain at least
(2p�6)=2 = p�3 edges that are not edges of P , where G[A](G[B]) denote the subgraph
of G induced by the vertex set A(B). Without loss of generality, assume G[A] has this
property.
We now construct a labeling f of the vertices of V . Label the path P starting from

one end to the other end with labels 1; 2; :::; p so that the vertex that is labeled with the
value 1 is the end-vertex of P which belongs to A. Now label the remaining vertices of
G that are not on the path P so that if u; v are not on P , up1; vp2 2 E, p1; p2 2 P and
f(p1) < f(p2), then f(u) < f(v). This can be accomplished by starting at the end of
P label with value 1, and moving along the path P . As a leg is encountered, we label
the vertex of the leg that is not on the path with the next available value. We claim
that this labeling is a combination labeling of G.
We see that the edges on the path P have labels 1; 2; :::; p and the smallest edge

label of an edge not on the path is at least
�
p+1
2

�
> p. It is clear that the edge labels

of any two edges in G[A] but not on P satis�es Lemma 3 and therefore are pairwise
distinct. Finally, the smallest label assigned to a leaf node in B but not on P is at least
p+(p� 3)+1 = 2p� 2 = 2(p� 1). In G[B], the label p� 1 is the largest label assigned
to a vertex on P that can be adjacent to vertices not on P . Therefore, Lemma 3 can
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be applied to the labels of the legs of the entire graph G to show that the legs of G
have pairwise distinct labels.

THEOREM 3. Let G = (V;E) be a caterpillar with extended central path P
consisting of p vertices. If each vertex of P , except for its two endpoints, is adjacent
to at least one vertex that is not on P , then G is a combination graph.

PROOF. Start at one end of the path P and label the endpoint 1. Follow the path
and label each vertex visited with the next available label. To label the vertices that
are not on P , use the labeling scheme as in Theorem 2. If f(u) is the label of a vertex u
not on P that is adjacent to a vertex v on P with label f(v), then f(u) � 2f(v). To see
this, note that the smallest value that f(u) can be is p+ f(v)� 1. Since p� 1 � v, we
have f(u) � p+ f(v)� 1 � 2f(v). Applying Lemma 3, we see that G is a combination
graph.

2.3 Generalized Petersen Graph GP (n; k)

Suppose k; n are positive integers such that n > 2k. The generalized Petersen graph,
denote by GP (n; k), is the simple graph with vertices u1; u2; ::; un; v1; v2; :::; vn and
edges uiui+1; vivi+k; uivi; 1 � i � n, where the indexes are taken modulo n. We will
show that GP (n; 1) and GP (n; 2) are combination graphs.

LEMMA 4. If n � 2 then
�
2n
2

�
<
�
n+3
3

�
.

THEOREM 4. If n � 4, then GP (n; 1) is a combination graph.
PROOF. Figure 2 gives a valid combination labeling for GP (4; 1). Therefore, as-

sume that n � 5. Label the vertices of GP (n; 1) as follows: f(u1) = 1; f(u2) =
2; :::; f(un�2) = n � 2; f(un�1) = n; f(un) = n � 1; f(v1) = n + 1; f(v2) = n +
2; :::; f(vn�2) = 2n � 2; f(vn�1) = 2n; f(vn) = 2n � 1. We claim that this is a
valid combination labeling of GP (n; 1). The edges uiui+1; 1 � i � n have labels
2; 3; :::; n;

�
n
2

�
. The edges vivi+1; 1 � i � n have labels n+2; :::; 2n�2; 2n;

�
2n
2

�
;
�
2n�1
n+1

�
=�

2n�1
n�2

�
. The edges uivi+1; 1 � i � n have labels

�
n+1
1

�
;
�
n+2
2

�
; :::;

�
2n
n

�
. By Lemma

4,
�
2n�1
2

�
<
�
2n
2

�
<
�
n+3
3

�
. By Lemma 1,

�
n+i
i

�
<
�
n+i+1
i+1

�
. In addition, it is

easy to see that if n � 5, then 2n � 2 <
�
n
2

�
<
�
n+2
2

�
. Therefore, the edge labels

2; 3; :::; 2n�2;
�
n
2

�
<
�
n+2
2

�
;
�
2n
2

�
;
�
n+3
3

�
;
�
n+4
4

�
; :::;

�
2n�2
n�2

�
;
�
2n�1
n�2

�
;
�
2n�1
n�1

�
;
�
2n
n

�
are all dis-

tinct and are listed in increasing order.

LEMMA 5. If n � 9, then
�
2n�2
n�2

�
<
�
2n�1
n�3

�
. If n = 8, then

�
2n�2
n�2

�
=
�
2n�1
n�3

�
LEMMA 6. If 8 � n � 16, then

�
n+4
4

�
<
�
2n
3

�
<
�
n+5
5

�
. If n � 17, then

�
2n
3

�
<
�
n+4
4

�
.

THEOREM 5. For n � 5, then GP (n; 2) is a combination graph.
PROOF. Figure 3 gives valid combination labelings for GP (n; 2), where 5 � n � 8.

Therefore, assume that n � 9. Label the vertices of GP (n; 2) as follows: f(u1) =
1; f(u2) = 2; :::; f(un�2) = n�2; f(un�1) = n; f(un) = n�1; f(v1) = n+1; f(v2) = n+
2; :::; f(vn�2) = 2n�2; f(vn�1) = 2n; f(vn) = 2n�1. We claim that this is a valid com-
bination labeling of GP (n; 2). The edges uiui+1; 1 � i � n have labels 2; 3; :::; n;

�
n
2

�
.

The edges vivi+2; 1 � i � n have labels
�
n+2
2

�
;
�
n+3
3

�
; :::;

�
2n�2
2

�
;
�
2n�1
n+2

�
;
�
2n�1
2n�2

�
;
�
2n
n+1

�
and

�
2n
2n�3

�
. The edges uivi+1; 1 � i � n have labels

�
n+1
1

�
;
�
n+2
2

�
; :::;

�
2n
n

�
. Note that
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Figure 2: A valid combination labeling of GP (4; 1):

�
2n�1
n+2

�
=
�
2n�1
n�3

�
;
�
2n�2
2n�2

�
= 2n � 1;

�
2n
n+1

�
=
�
2n
n�1

�
and

�
2n
2n�3

�
=
�
2n
3

�
. We claim that

we can order the edge labels in monotone increasing order. We can order this smallest
edge labels as 2 < 3 < � � � < n < n+ 1 < 2n� 1 <

�
n
2

�
where the last inequality holds

as n > 8 � 3. Continuing, we have
�
n
2

�
<
�
n+2
2

�
<
�
n+3
2

�
< � � �

�
2n�2
2

�
. By Lemma 6,

we have either
�
n+3
2

�
<
�
2n
3

�
<
�
n+4
4

�
< � � � <

�
2n�2
n�2

�
<
�
2n�1
nn�3

�
where the last inequal-

ity follows from Lemma 5, or
�
n+3
2

�
<
�
n+4
4

��
2n
3

�
<
�
n+5
5

�
< � � � <

�
2n�2
n�2

�
<
�
2n�1
n�3

�
.

Finally, we have
�
2n�1
n�1

�
<
�
2n
n�1

�
<
�
2n
n

�
. This gives a sequence of strict inequalities

involving each edge label. Therefore, GP (n; 2) is a combination graph.

2.4 Wheel Graphs

Let n be a positive integer greater than 2. A wheel graph on n+ 1 vertices is a graph
consisting of a cycle of length n and a vertex not on the cycle that is adjacent to every
vertex on the cycle. We denote this graph by Wn. In [3], it was conjectured that for
all n � 7, Wn is a combination graph. We will show that this conjecture is true. We
begin with some simple, useful results that can be veri�ed by algebraic manipulations.

LEMMA 7. If n � 6 is an even number, then
�
n
n=2

�
<
�
n+1
n=2�1

�
.

LEMMA 8. If n � 20 is an even number, then
�
n=2+2
2

�
<
�
n+1
2

�
<
�
n=2+2
3

�
. In

addition, if 10 � n � 18 is an even number, then
�
n=2+2
3

�
<
�
n+1
2

�
<
�
n=2+3
3

�
.

LEMMA 9. If n � 7 is an odd number, then
�
n�1
bn=2c

�
<
�

n
bn=2c�1

�
.

We now proceed to label the wheel graphWn. We will give a labeling that �almost�
works and then modify it slightly to so that it gives a valid combination labeling of
Wn.

THEOREM 6. If n � 7, then Wn is a combination graph.

PROOF. Valid combination labelings for n = 7; 8 were given in [3]. Let us assume
that n � 9. Denote the cycle of length n of Wn by Cn. Let x be the vertex that is not
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Figure 3: Valid combination labelings for GP (n; 2) for 5 � n � 8:

in Cn and is adjacent to each vertex of Cn. Denote the vertices of Cn by v0; v1; :::; vn�1
where vi is adjacent to vi+1 modulo n. We now give a labeling of the vertices of Wn.
Label vertex x with value 1. On the cycle Cn, label v0 with 2, v2 with 3, v4 with

4, etc. In general, after labeling vertex vi with value k, we skip over vertex vi+1, and
label vi+2 with value k + 1 if it has not already been labeled. If vi+2 has already been
labeled, then we label vi+3 with value k + 1. The indexes are taken modulo n. Let us
denote this labeling by f .
Under this labeling there exists (at least one) i such that

�
f(vi)
f(vi+1)

�
=
�
f(vi)
f(vi�1)

�
. When

n is odd, we have f(vn�4) = n. Therefore
�f(vn�4)
f(vn�3)

�
=
�

n
dn=2e

�
=
�

n
bn=2c

�
=
�f(vn�4)
f(vn�5)

�
.

However, this is the only occurrence because for any vertex whose label l is greater
than bn=2c + 3, its neighbors on Cn have labels l � bn=2c and l � dn=2e. The only
value of l which satis�es

�
l

l�bn=2c
�
=
�

l
l�dn=2e

�
is l = n. Using a similar argument for

when n is even, we see that
�
f(vi)
f(vi+1)

�
=
�
f(vi)
f(vi�1)

�
happens only when i = n � 5 and

f(vn�5) = n� 1.
We make a slight modi�cation to the labeling f by performing the following swaps:

1. If n is odd, we swap the labels n and n� 1 in the labeling f .

2. If n is even, we swap the labels n� 1 and n� 2 in the labeling f .

Let us denote this new labeling by g. We claim that g is a combination labeling
of Wn. It is clear that two adjacent edges on Cn do not have labels

�
l

l�k
�
and

�
l
k

�
for

l > k because of the modi�cations made above. Figure 4 gives examples for n = 10; 11.
In the case where n is odd, the edge labels ofWn, induced by g are 2; 3; :::; n+1 and�bn=2c+3
2

�
;
�bn=2c+3

3

�
; :::;

�
n�2

bn=2c�2
�
;
�

n�2
bn=2c�1

�
;
�
n�1
bn=2c

�
;
�

n�1
bn=2c+1

�
;
�

n
bn=2c

�
;
�

n
bn=2c�1

�
;
�

n+1
bn=2c+1

�
;
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Figure 4: Combination labelings for W9 and W10:

�
n+1

bn=2c+2
�
and

�bn=2c+2
2

�
. Note that

�
n+1

bn=2c+2
�
=
�
n+1
bn=2c

�
. If remove

�
n

bn=2c
�
;
�

n
bn=2c�1

�
from the sequence above, the remaining values are all distinct and in fact, 2 < 3 <
� � � < n + 1 <

�bn=2c+2
2

�
<
�bn=2c+3

2

�
<
�bn=2c+3

3

�
< � � � <

�
n�2

bn=2c�2
�
<
�

n�2
bn=2c�1

�
<�

n�1
bn=2c+1

�
<
�
n�1
bn=2c

�
<
�

n+1
bn=2c+2

�
(=

�
n+1
bn=2c

�
) <

�
n+1

bn=2c+1
�
. By Lemma 9,

�
n�1

bn=2c+1
�
<�

n�1
bn=2c

�
<
�

n
bn=2c�1

�
<
�

n
bn=2c

�
. Since

�
n

bn=2c
�
<
�
n+1
bn=2c

�
<
�

n+1
bn=2c+1

�
, all the edge labels

are distinct, when n is odd.
We now consider the case when n is even. The edge labels of Wn,induced by g are

2; 3; :::; n+1;
�
n=2+2
2

�
;
�
n=2+2
3

�
;
�
n=2+3
3

�
;
�
n=2+3
4

�
; :::;

�
n�2
n=2�1

�
;
�
n�2
n=2

�
;
�
n�1
n=2�2

�
;
�
n�1
n=2�1

�
;
�
n
n=2

�
;�

n
n=2+1

�
;
�
n+1
n=2+1

�
and

�
n+1
2

�
. If we remove

�
n�1
n=2�2

�
;
�
n�1
n=2�1

�
and

�
n+1
2

�
from this list, the

remaining values are clearly distinct and 2 < 3 < � � �n + 1 <
�
n=2+2
2

�
<
�
n=2+2
3

�
<�

n=2+3
3

�
< � � � <

�
n�2
n=2

�
=
�
n�2
n=2�2

�
<
�
n�2
n=2�1

�
<
�

n
n=2�1

�
=
�

n
n=2+1

�
<
�
n
n=2

�
<=�

n+1
n=2

�
=
�
n+1
n=2+1

�
. Note that as

�
n�1
n=2�2

�
<
�
n�1
n=2�1

�
<
�

n
n=2�1

�
and by Lemma 7,�

n�2
n=2�1

�
<
�
n�1
n=2�2

�
, all edge labels except for possibility

�
n+1
2

�
are distinct. By Lemma

8,
�
n=2+2
2

�
<
�
n+1
2

�
<
�
n=2+2
3

�
for all even n � 20. For n = 10; 12; 14; 16; 18, we have�

n=2+2
3

�
<
�
n+1
2

�
<
�
n=2+3
3

�
. Therefore all the edge labels are distinct in Wn.

2.5 Grid Graphs

Let k; n be positive integers with k � n. Let G = (V;E) be the k�n grid graph. More
precisely, V = f(i; j) : 0 � i � k � 1; 0 � j � n � 1g and E = ff(i; j1); (i; j2)g : 0 �
j1 � n� 2; j2 = j1 + 1g [ ff(i1; j); (i2; j)g : 0 � i1 � k � 2; i2 = i1 + 1g. Another way
of constructing the k � n grid graph is to take the Cartesian product of the paths Pk
and Pn. We claim that for large enough values of k and n, the k � n grid graph is a
combination graph. To prove this, we begin with a useful fact.

LEMMA 10. Let k � n. If n � d 2k�3+
p
4k2�12k+1
2 e, then kn <

�
n+2
2

�
.

THEOREM 7. Let k � n. If n � d 2k�3+
p
4k2�12k+1
2 e, then the k � n grid graph is
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a combination graph.

PROOF. Label the vertex (i; j) with the value in + j + 1. Then the edges have
induced labels in the set f2; 3; :::; kn�1; kn;

�
n+2
n

�
;
�
n+3
n

�
; :::;

�
kn�1
n

�
;
�
kn
n

�
gnf2n+1; 3n+

1; :::; (k � 1)n+ 1g. Clearly, the labels
�
n+2
n

�
;
�
n+3
n

�
; :::;

�
kn
n

�
for an increasing sequence

and therefore are pairwise distinct. Since n � d 2k�3+
p
4k2�12k+1
2 e, Lemma 10 implies�

n+2
n

�
=
�
n+2
2

�
> kn. Therefore, the edge labels are pairwise distinct.

3 Other Results

We state several related results.

LEMMA 11. Let G be a graph with n � 3 vertices. If G is a combination graph,
then at most one vertex of G has degree n� 1.
PROOF. Suppose there are at least two vertices that have degree n � 1 in G and

G is a combination graph. Consider a valid combination labeling. Let x < y be vertex
labels of two vertices of degree n�1. Suppose y � 3. Then y is adjacent vertices labeled
1 and y � 1. But

�
y
y�1
�
=
�
y
1

�
, which contradicts assumption that G is a combination

graph. Therefore y � 2 implying x = 1; y = 2. Then both x; y are adjacent to the
vertex labeled 3. As

�
3
1

�
=
�
3
2

�
, this contradicts assumption that G is a combination

graph. Therefore, at most one vertex of G can have degree n� 1.
This immediately implies that Kn is not a combination graph whenever n � 3. The

proof of Lemma 3 also shows that if a combination graph has a vertex of degree n� 1,
the label of that vertex must be 1 or 2. We now show that some combination graph on
n vertices with the maximum number of edges possible must contain a vertex of degree
n� 1 whose label is 1.
LEMMA 12. Let m be the maximum number of edges in any combination graph

with n vertices. Then there is a combination graph G with n vertices and m edges
such the vertex labeled with value 1 is adjacent to all the other vertices.

PROOF. Suppose that G is a combination graph with n vertices, m edges and the
vertex v labeled with value 1 does not have degree n � 1. Then, let the vertices that
are not adjacent to v have labels a1; a2; :::; ak, where k � 1. Remove from G all edges
whose induced edge labeling belongs in fa1; a2; :::; akg. There are at most k such edges,
as G is a combination graph. Finally, add edges to G so that v has degree n� 1. The
resulting graph is still a combination graph. Since the original graph was a combination
graph and has maximum number of edges possible, the number of edges removed must
be k.

We can use Lemma 3 to show that any combination graph with 6 vertices can have
at most 8 edges. In the contrary, suppose G is a combination graph with 6 vertices
and 9 edges. By Lemma 3 there must exists a graph H with 6 vertices and 9 edges
such that the vertex labeled with value 1 is adjacent the other 5 vertices. The only
remaining edges that are permissible the 5 edges 26; 25; 35; 36; 46. But since

�
6
2

�
=
�
6
4

�
and

�
5
2

�
=
�
5
3

�
, at most 3 of these 5 edges can be in the graph H given a total of 8 edges,

which is a contradiction. A similar argument can be applied to obtain the following
bound from [3].
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m �
(
n2=4 if n is even

(n2 � 1)=4 if n is odd:
(1)

In [3], it was shown that Kr;r is not a combination graph for r � 3. We now
generalize this for complete bipartite graphs Kl;k.
Note that if a graph G = (V;E

0
) is not a combination graph, then it is clear that

if we add additional edges to E
0
it will not be a combination graph. We record this in

the following lemma.

LEMMA 13. Suppose G = (V;E) and E
0 � E. If (V;E

0
) is not a combination

graph, then G is not a combination graph.

THEOREM 8. LetKl;k = (A;B) be the complete bipartite graph with k elements in
the partite set A, and l elements in the other partite set B. Then Kl;k is a combination
graph if and only if k = 1 or l = 1 or k = l = 2.

PROOF. The case where k = l = 2 the cycle of length 4 which is clearly a combi-
nation graph. Suppose k = 1 (or if l = 1) and let A denote the partite set with one
vertex. Label the lone vertex of the partite set A with value 1 and label the vertices
in the other partite set with values 2; 3; :::; l + 1. Clearly this is a valid labeling.
Suppose l � 2 and k > l. We will show that Kl;k is not a combination graph. To

do this, suppose to the contrary that Kl;k is a combination graph where the vertices of
the graph is labeled using a valid combination labeling. Then the vertices with label 1
and l + k must be in the same partite set. For if not, then without loss of generality
suppose 1 2 A, l + k 2 B. This forces vertex with label l + k � 1 to be in B, which in
turn forces vertex with label l+ k� 2 to be in B, and so on. Therefore, the partite set
A contains only one vertex, the vertex with label 1. This contradicts our assumption
that jAj � 2. We now have two scenarios: 1; l + k 2 A or 1; l + k 2 B.

Case 1: Suppose 1; l + k 2 A. If the vertex with label l + k � 1 2 B, then using an
argument similar to the one above, we have 2; 3; :::; l + k � 1 2 B. This implies that
l = 2. As k > 2,

�
k+2
2

�
=
�
k+2
k

�
and 2; k 2 B, we have two edges with the same label,

which is a contradiction. Therefore, it must be that l + k � 1 2 A. By repeatedly
applying this argument and the assumption that jBj = k, we see that the labels in A
are f1; k + 2; k + 3; :::; l + kg and the labels in B are f2; 3; :::; k + 1g. As k > 2 and�
k+2
2

�
=
�
k+2
k

�
, there are two edge labels with the same value, which is a contradiction.

Therefore, case 1 leads to a contradiction.

Case 2: Suppose 1; l + k 2 B. Then, using an argument similar to that of case 1,
we have that A contains vertices with labels 2; 3; :::; l+ 1 and B contains vertices with
labels 1; l + 2; :::; l + k. The labels l; l + 1 2 A. Since k > l, 2l + 1 � l + k implying
that 2l + 1 2 B. This along with the fact that

�
2l+1
l

�
=
�
2l+1
l+1

�
implies that two edges

have the same labeling, which is a contradiction. Therefore, case 2 also leads to a
contradiction.

COROLLARY 1. Suppose G is a complete k-partite with partite sets A1; A2; ::; Ak
where k � 2 and jAij � 2 for i = 1 to k. Then G is not a combination graph.
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PROOF. Construct a graph H from G by removing all edges between Ai; Aj where
1 < i 6= j � k. Partition the vertices of H into two sets A1 and [ki=2Ai. The graph
H is a complete bipartite graph. By Theorem 8, it is not a combination graph. By
Lemma 13, G is not a combination graph.

We would like to end by stating the following open problem: Are all trees combina-
tion graphs?. Based on instances that we have considered, which all turned out to be
combination graphs, we believe and conjecture that all trees are combination graphs.
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