Fractional Order Riemann-Liouville Integral Equations with Multiple Time Delays*

Saïd Abbas ${ }^{\dagger}$, Mouffak Benchohra ${ }^{\ddagger}$

Received 12 November 2011

Abstract

In the present article we investigate the existence and uniqueness of solutions for a system of integral equations of fractional order by using some fixed point theorems. Also we illustrate our results with some examples.

1 Introduction

The idea of fractional calculus and fractional order integral equations has been a subject of interest not only among mathematicians, but also among physicists and engineers. Indeed, we can find numerous applications in rheology, control, porous media, viscoelasticity, electrochemistry, electromagnetism, etc. [9, 11, 16, 17, 19]. There has been a significant development in ordinary and partial fractional differential equations in recent years; see the monographs of Kilbas et al. [14], Miller and Ross [18], Samko et al. [21], the papers of Abbas and Benchohra [1, 2], Abbas et al. [3], Belarbi et al. [4], Benchohra et al. [5, 6, 7], Diethelm [8], Kilbas and Marzan [15], Mainardi [16], Podlubny et al [20], Vityuk [22], Vityuk and Golushkov [23], and Zhang [24] and the references therein.

In [13], R. W. Ibrahim and H. A. Jalab studied the existence of solutions of the following fractional integral inclusion

$$
u(t)-\sum_{i=1}^{m} b_{i}(t) u\left(t-\tau_{i}\right) \in I^{\alpha} F(t, u(t)) \text { if } t \in[0, T]
$$

where $\tau_{i}<t \in[0, T], b_{i}:[0, T] \rightarrow \mathbb{R}, i=1, \ldots, n$ are continuous functions, and $F:[0, T] \times \mathbb{R} \rightarrow \mathcal{P}(\mathbb{R})$ is a given multivalued map.

This paper concerned with the existence and uniqueness of solutions for the following fractional order integral equations for the system

$$
\begin{equation*}
u(x, y)=\sum_{i=1}^{m} g_{i}(x, y) u\left(x-\xi_{i}, y-\mu_{i}\right)+I_{\theta}^{r} f(x, y, u(x, y)) \text { if }(x, y) \in J:=[0, a] \times[0, b] \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
u(x, y)=\Phi(x, y) ; \text { if }(x, y) \in \tilde{J}:=[-\xi, a] \times[-\mu, b] \backslash(0, a] \times(0, b] \tag{2}
\end{equation*}
$$

\]

where $a, b>0, \theta=(0,0), \xi_{i}, \mu_{i} \geq 0 ; i=1, \ldots, m, \xi=\max _{i=1, \ldots, m}\left\{\xi_{i}\right\}, \mu=$ $\max _{i=1, \ldots, m}\left\{\mu_{i}\right\}, I_{\theta}^{r}$ is the left-sided mixed Riemann-Liouville integral of order $r=$ $\left(r_{1}, r_{2}\right) \in(0, \infty) \times(0, \infty), f: J \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, g_{i}: J \rightarrow \mathbb{R} ; i=1, \ldots, m$ are given continuous functions, and $\Phi: \tilde{J} \rightarrow \mathbb{R}^{n}$ is a given continuous function such that

$$
\Phi(x, 0)=\sum_{i=1}^{m} g_{i}(x, 0) \Phi\left(x-\xi_{i},-\mu_{i}\right) ; x \in[0, a]
$$

and

$$
\Phi(0, y)=\sum_{i=1}^{m} g_{i}(0, y) \Phi\left(-\xi_{i}, y-\mu_{i}\right) ; y \in[0, b]
$$

We present three results for the problem (1)-(2), the first one is based on Schauder's fixed point theorem (Theorem 1), the second one is a uniqueness of the solution by using the Banach fixed point theorem (Theorem 2) and the last one on the nonlinear alternative of Leray-Schauder type (Theorem 4).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper. By $C(J)$ we denote the Banach space of all continuous functions from J into \mathbb{R}^{n} with the norm

$$
\|w\|_{\infty}=\sup _{(x, y) \in J}\|w(x, y)\|
$$

where $\|$.$\| denotes a suitable complete norm on \mathbb{R}^{n}$. Also, $C:=C([-\xi, a] \times[-\mu, b])$ is a Banach space endowed with the norm

$$
\|w\|_{C}=\sup _{(x, y) \in[-\xi, a] \times[-\mu, b]}\|w(x, y)\| .
$$

As usual, by $L^{1}(J)$ we denote the space of Lebesgue-integrable functions $w: J \rightarrow \mathbb{R}^{n}$ with the norm

$$
\|w\|_{L^{1}}=\int_{0}^{a} \int_{0}^{b}\|w(x, y)\| d y d x
$$

DEFINITION $1([23])$. Let $r=\left(r_{1}, r_{2}\right) \in(0, \infty) \times(0, \infty), \theta=(0,0)$ and $u \in L^{1}(J)$. The left-sided mixed Riemann-Liouville integral of order r of u is defined by

$$
\left(I_{\theta}^{r} u\right)(x, y)=\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} u(s, t) d t d s
$$

In particular,

$$
\left(I_{\theta}^{\theta} u\right)(x, y)=u(x, y),\left(I_{\theta}^{\sigma} u\right)(x, y)=\int_{0}^{x} \int_{0}^{y} u(s, t) d t d s \text { for almost all }(x, y) \in J
$$

where $\sigma=(1,1)$.
For instance, $I_{\theta}^{r} u$ exists for all $r_{1}, r_{2} \in(0, \infty)$, when $u \in L^{1}(J)$. Note also that when $u \in C(J)$, then $\left(I_{\theta}^{r} u\right) \in C(J)$, moreover

$$
\left(I_{\theta}^{r} u\right)(x, 0)=\left(I_{\theta}^{r} u\right)(0, y)=0 ; x \in[0, a], y \in[0, b] .
$$

EXAMPLE 1. Let $\lambda, \omega \in(-1, \infty)$ and $r=\left(r_{1}, r_{2}\right) \in(0, \infty) \times(0, \infty)$, then

$$
I_{\theta}^{r} x^{\lambda} y^{\omega}=\frac{\Gamma(1+\lambda) \Gamma(1+\omega)}{\Gamma\left(1+\lambda+r_{1}\right) \Gamma\left(1+\omega+r_{2}\right)} x^{\lambda+r_{1}} y^{\omega+r_{2}} \text { for almost all }(x, y) \in J
$$

3 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (1)-(2).
DEFINITION 2. A function $u \in C$ is said to be a solution of (1)-(2) if u satisfies equation (1) on J and condition (2) on \tilde{J}.

Set

$$
B=\max _{i=1, \ldots, m}\left\{\sup _{(x, y) \in J}\left|g_{i}(x, y)\right|\right\}
$$

THEOREM 1. Assume
$\left(H_{1}\right)$ There exists a positive function $h \in C(J)$ such that

$$
\|f(x, y, u)\| \leq h(x, y), \text { for all }(x, y) \in J \text { and } u \in \mathbb{R}^{n}
$$

If $m B<1$, then problem (1)-(2) has at least one solution u on $[-\xi, a] \times[-\mu, b]$.
PROOF. Transform problem (1)-(2) into a fixed point problem. Consider the operator $N: C \rightarrow C$ defined by,

$$
N(u)(x, y)= \begin{cases}\Phi(x, y) ; & (x, y) \in \tilde{J} \tag{3}\\ \sum_{i=1}^{m} g_{i}(x, y) u\left(x-\xi_{i}, y-\mu_{i}\right)+I_{\theta}^{r} f(x, y, u(x, y)) ; & (x, y) \in J\end{cases}
$$

The problem of finding the solutions of problem (1)-(2) is reduced to finding the solutions of the operator equation $N(u)=u$. Let $R \geq \frac{R^{*}}{1-m B}$ where

$$
R^{*}=\frac{a^{r_{1}} b^{r_{2}} h^{*}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)},
$$

and $h^{*}=\|h\|_{\infty}$, and consider the set

$$
B_{R}=\left\{u \in C:\|u\|_{C} \leq R\right\}
$$

It is clear that B_{R} is a closed bounded and convex subset of C. For every $u \in B_{R}$ and $(x, y) \in J$ we obtain by $\left(H_{1}\right)$ that

$$
\begin{aligned}
\|N(u)(x, y)\| & \leq \sum_{i=1}^{m}\left|g_{i}(x, y)\right|\left\|u\left(x-\xi_{i}, y-\mu_{i}\right)\right\| \\
& +\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1}\|f(s, t, u(s, t))\| d t d s \\
& \leq m B\|u\|_{C}+\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} h(s, t) d t d s \\
& \leq m B\|u\|_{C}+h^{*} \frac{a^{r_{1}} b^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)} \\
& \leq m B R+(1-m B) R=R
\end{aligned}
$$

On the other hand, for every $u \in B_{R}$ and $(x, y) \in \tilde{J}$, we obtain

$$
\|N(u)(x, y)\|=\|\Phi(x, y)\| \leq R
$$

So we obtain that

$$
\|N(u)\|_{C} \leq R
$$

That is, $N\left(B_{R}\right) \subseteq B_{R}$. Since f is bounded on B_{R}, thus $N\left(B_{R}\right)$ is equicontinuous and the Schauder fixed point theorem shows that N has at least one fixed point $u^{*} \in B_{R}$ which is solution of (1)-(2).

For the uniqueness we prove the following Theorem
THEOREM 2. Assume that following hypothesis holds:
$\left(H_{2}\right)$ There exists a positive function $l \in C(J)$ such that

$$
\|f(x, y, u)-f(x, y, v)\| \leq l(x, y)\|u-v\|
$$

for each $(x, y) \in J$ and $u, v \in \mathbb{R}^{n}$.

If

$$
\begin{equation*}
\frac{m B \Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)+a^{r_{1}} b^{r_{2}} l^{*}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}<1 \tag{4}
\end{equation*}
$$

where $l^{*}=\|l\|_{\infty}$, then problem (1)-(2) has a unique solution on $[-\xi, a] \times[-\mu, b]$.
PROOF. Consider the operator N defined in (3). Then by $\left(H_{2}\right)$, for every $u, v \in C$
and $(x, y) \in J$ we have

$$
\begin{aligned}
\|N(u)(x, y)-N(v)(x, y)\| & \leq \sum_{i=1}^{m}\left|g_{i}(x, y)\right|\left\|u\left(x-\xi_{i}, y-\mu_{i}\right)-v\left(x-\xi_{i}, y\right)\right\| \\
& +\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} \\
& \times\|f(s, t, u(s, t))-f(s, t, v(s, t))\| d t d s \\
& \leq m B\|u-v\|_{\infty} \\
& +\frac{1}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} \\
& \times l(s, t)\|u-v\|_{C} d t d s \\
& \leq m B\|u-v\|_{\infty}+l^{*} \frac{a^{r_{1}} b^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}\|u-v\|_{C} \\
& =\left(m B+\frac{l^{*} a^{r_{1}} b^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}\right)\|u-v\|_{C}
\end{aligned}
$$

Thus

$$
\|N(u)-N(v)\|_{C} \leq \frac{m B \Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)+a^{r_{1}} b^{r_{2}} l^{*}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}\|u-v\|_{C}
$$

Hence by (4), we have that N is a contraction mapping. Then in view of Banach fixed point Theorem, N has a unique fixed point which is solution of problem (1)-(2).

THEOREM 3 ([10]). (Nonlinear alternative of Leray-Schauder type) By \bar{U} and ∂U we denote the closure of U and the boundary of U respectively. Let X be a Banach space and C a nonempty convex subset of X. Let U a nonempty open subset of C with $0 \in U$ and $T: \bar{U} \rightarrow C$ continuous and compact operator. Then either
(a) T has fixed points, or
(b) there exist $u \in \partial U$ and $\lambda \in(0,1)$ with $u=\lambda T(u)$.

In the sequel we use the following version of Gronwall's Lemma for two independent variables and singular kernel.

LEMMA 1 ([12]). Let $v: J \rightarrow[0, \infty)$ be a real function and $\omega(.,$.$) be a nonnegative,$ locally integrable function on J. If there are constants $c>0$ and $0<r_{1}, r_{2}<1$ such that

$$
v(x, y) \leq \omega(x, y)+c \int_{0}^{x} \int_{0}^{y} \frac{v(s, t)}{(x-s)^{r_{1}}(y-t)^{r_{2}}} d t d s
$$

then there exists a constant $\delta=\delta\left(r_{1}, r_{2}\right)$ such that

$$
v(x, y) \leq \omega(x, y)+\delta c \int_{0}^{x} \int_{0}^{y} \frac{\omega(s, t)}{(x-s)^{r_{1}}(y-t)^{r_{2}}} d t d s
$$

for every $(x, y) \in J$.
Now, we present an existence result for the problem (1)-(2) based on the Nonlinear alternative of Leray-Schauder type.

THEOREM 4. Assume
$\left(H_{3}\right)$ There exist positive functions $p, q \in C(J)$ such that

$$
\|f(x, y, u)\| \leq p(x, y)+q(x, y)\|u\|, \text { for all }(x, y) \in J \text { and } u \in \mathbb{R}^{n}
$$

If $m B<1$, then problem (1)-(2) has at least one solution on $[-\xi, a] \times[-\mu, b]$.
PROOF. Consider the operator N defined in (3). We shall show that the operator N is completely continuous. By the continuity of f and the Arzela-Ascoli Theorem, we can easily obtain that N is completely continuous.

A priori bounds. We shall show there exists an open set $U \subseteq C$ with $u \neq \lambda N(u)$, for $\lambda \in(0,1)$ and $u \in \partial U$. Let $u \in C$ and $u=\lambda N(u)$ for some $0<\lambda<1$. Thus for each $(x, y) \in J$, we have

$$
u(x, y)=\lambda \sum_{i=1}^{m} g_{i}(x, y) u\left(x-\xi_{i}, y-\mu_{i}\right)+\lambda I_{\theta}^{r} f(x, y, u(x, y))
$$

This implies by $\left(H_{3}\right)$ that, for each $(x, y) \in J$, we have

$$
\begin{aligned}
\|u(x, y)\| & \leq m B\|u(x, y)\|+\frac{p^{*} a^{r_{1}} b^{r_{2}}}{\Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)} \\
& +\frac{q^{*}}{\Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} u(s, t) d t d s
\end{aligned}
$$

where $p^{*}=\|p\|_{\infty}$ and $q^{*}=\|q\|_{\infty}$. Thus, for each $(x, y) \in J$, we get

$$
\begin{aligned}
\|u(x, y)\| & \leq \frac{p^{*} a^{r_{1}} b^{r_{2}}}{(1-m B) \Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)} \\
& +\frac{q^{*}}{(1-m B) \Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} u(s, t) d t d s \\
& \leq w+c \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} u(s, t) d t d s
\end{aligned}
$$

where

$$
w:=\frac{p^{*} a^{r_{1}} b^{r_{2}}}{(1-m B) \Gamma\left(1+r_{1}\right) \Gamma\left(1+r_{2}\right)}
$$

and

$$
c:=\frac{q^{*}}{(1-m B) \Gamma\left(r_{1}\right) \Gamma\left(r_{2}\right)} .
$$

From Lemma 1 , there exists $\delta:=\delta\left(r_{1}, r_{2}\right)>0$ such that, for each $(x, y) \in J$, we get

$$
\begin{aligned}
\|u\|_{\infty} & \leq w\left(1+c \delta \int_{0}^{x} \int_{0}^{y}(x-s)^{r_{1}-1}(y-t)^{r_{2}-1} d t d s\right) \\
& \leq w\left(1+\frac{c \delta a^{r_{1}} b^{r_{2}}}{r_{1} r_{2}}\right):=\widetilde{M}
\end{aligned}
$$

Set $M^{*}:=\max \{\|\Phi\|, \widetilde{M}\}$ and

$$
U=\left\{u \in C:\|u\|_{C}<M^{*}+1\right\} .
$$

By our choice of U, there is no $u \in \partial U$ such that $u=\lambda N(u)$, for $\lambda \in(0,1)$. As a consequence of Theorem 3, we deduce that N has a fixed point u in \bar{U} which is a solution to problem (1)-(2).

4 Examples

We provide two examples.
EXAMPLE 1. As an application of our results we consider the following system of fractional integral equations of the form

$$
\begin{gather*}
u(x, y)=\frac{x^{3} y}{8} u\left(x-\frac{3}{4}, y-3\right)+\frac{x^{4} y^{2}}{12} u\left(x-2, y-\frac{1}{2}\right)+\frac{1}{4} u\left(x-1, y-\frac{3}{2}\right) \\
+I_{\theta}^{r} f(x, y, u) ; \text { if }(x, y) \in J:=[0,1] \times[0,1] \tag{5}\\
u(x, y)=0 ; \text { if }(x, y) \in \tilde{J}:=[-2,1] \times[-3,1] \backslash(0,1] \times(0,1] \tag{6}
\end{gather*}
$$

where $m=3, r=\left(\frac{1}{2}, \frac{1}{5}\right)$ and

$$
f(x, y, u)=e^{x+y} \frac{1}{1+|u|}
$$

Set

$$
g_{1}(x, y)=\frac{x^{3} y}{8}, g_{2}(x, y)=\frac{x^{4} y^{2}}{12}, g_{3}(x, y)=\frac{1}{4}
$$

We have $B=\frac{1}{4}$ and

$$
|f(x, y, u)| \leq e^{x+y} ; \text { for all }(x, y) \in J \text { and } u \in \mathbb{R}
$$

Then condition $\left(H_{1}\right)$ is satisfied and $m B=\frac{3}{4}<1$. In view of Theorem 1, problem (5)-(6) has a solution defined on $[-2,1] \times[-3,1]$.

EXAMPLE 2. Consider the fractional integral equation

$$
\begin{gather*}
u(x, y)=\frac{x^{3} y}{8} u\left(x-1, y-\frac{1}{2}\right)+\frac{x^{4} y^{2}}{12} u\left(x-\frac{2}{5}, y-\frac{3}{4}\right)+\frac{1}{8} u(x-3, y-2) \\
+I_{\theta}^{r} f(x, y, u) ; \text { if }(x, y) \in J:=[0,1] \times[0,1] \tag{7}\\
u(x, y)=\Phi(x, y) ; \text { if }(x, y) \in \tilde{J}:=[-3,1] \times[-2,1] \backslash(0,1] \times(0,1] \tag{8}
\end{gather*}
$$

where $m=3, r=\left(\frac{1}{2}, \frac{1}{5}\right), f(x, y, u)=\frac{x+y}{20} \frac{|u|}{1+|u|}$ and $\Phi: \tilde{J} \rightarrow \mathbb{R}$ is continuous with

$$
\begin{equation*}
\Phi(x, 0)=\frac{1}{8} \Phi(x-3,-2), \Phi(0, y)=\frac{1}{8} \Phi(-3, y-2) ; x, y \in[0,1] \tag{9}
\end{equation*}
$$

Notice that condition (9) is satisfied by $\Phi \equiv 0$.
Set

$$
g_{1}(x, y)=\frac{x^{3} y}{8}, g_{2}(x, y)=\frac{x^{4} y^{2}}{12}, g_{3}(x, y)=\frac{1}{8}
$$

We have $B=\frac{1}{8}$. It is clear that f satisfies $\left(H_{2}\right)$ with $l^{*}=\frac{1}{10}$. A simple computation shows that condition (4) is satisfied. Hence by Theorem 2, problem (7)-(8) has a unique solution defined on $[-3,1] \times[-2,1]$.

Acknowledgement. The authors are grateful to the referee for his/her remarks.

References

[1] S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst., 3 (2009), 597-604.
[2] S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst., 4(2010), 406-413.
[3] S. Abbas, M. Benchohra and Y. Zhou, Darboux problem for fractional order neutral functional partial hyperbolic differential equations, Int. J. Dyn. Syst. Differ. Equ., 2(2009), 301-312.
[4] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal., 85(2006), 1459-1470.
[5] M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions, Appl. Anal., 87(2008), 851-863.
[6] M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3(2008), 1-12.
[7] M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., $338(2008), 1340-1350$.
[8] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265(2002), 229-248.
[9] W. G. Glockle and T. F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J., 68(1995), 46-53.
[10] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[11] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[12] D. Henry, Geometric Theory of Semilinear Parabolic Partial Differential Equations, Springer-Verlag, Berlin/New York, 1989.
[13] R. W. Ibrahim and H. A. Jalab, Existence of the solution of fractiona integral inclusion with time delay, Misk. Math. Notes, 11(2010), 139-150.
[14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.
[15] A. A. Kilbas and S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations, 41(2005), 84-89.
[16] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
[17] F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103(1995), 7180-7186.
[18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[19] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974.
[20] I. Podlubny, I. Petraš, B. M. Vinagre, P. O'Leary and L. Dorčak, Analogue realizations of fractional-order controllers. fractional order calculus and its applications, Nonlinear Dynam., 29(2002), 281-296.
[21] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
[22] A. N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn., Ser. Mat., 8(1997), 13-19.
[23] A. N. Vityuk and A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil., 7(2004), 318-325.
[24] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, Electron. J. Differential Equations 2006, No. 36, pp, 1-12.

[^0]: *Mathematics Subject Classifications: 26A33
 ${ }^{\dagger}$ Laboratoire de Mathématiques, Université de Saïda, B.P. 138, 20000, Saïda, Algérie
 ${ }^{\ddagger}$ Laboratoire de Mathématiques, Université de Sidi Bel-Abbès, B.P. 89, 22000, Sidi Bel-Abbès, Algérie

