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Abstract

In the present article we investigate the existence and uniqueness of solutions
for a system of integral equations of fractional order by using some fixed point
theorems. Also we illustrate our results with some examples.

1 Introduction

The idea of fractional calculus and fractional order integral equations has been a subject
of interest not only among mathematicians, but also among physicists and engineers.
Indeed, we can find numerous applications in rheology, control, porous media, vis-
coelasticity, electrochemistry, electromagnetism, etc. [9, 11, 16, 17, 19]. There has
been a significant development in ordinary and partial fractional differential equations
in recent years; see the monographs of Kilbas et al. [14], Miller and Ross [18], Samko
et al. [21], the papers of Abbas and Benchohra [1, 2], Abbas et al. [3], Belarbi et al.
[4], Benchohra et al. [5, 6, 7], Diethelm [8], Kilbas and Marzan [15], Mainardi [16],
Podlubny et al [20], Vityuk [22], Vityuk and Golushkov [23], and Zhang [24] and the
references therein.

In [13], R. W. Ibrahim and H. A. Jalab studied the existence of solutions of the
following fractional integral inclusion

u(t) = Y bi(thult — 7;) € I*F(t,u(t)) if t € [0, 77,
i=1
where 7; < t € [0,7],b; : [0,T7] — R, ¢« = 1,...,n are continuous functions, and

F:[0,7] x R — P(R) is a given multivalued map.
This paper concerned with the existence and uniqueness of solutions for the follow-
ing fractional order integral equations for the system

’U,(LL"y) = Zgz(:ﬁ,y)u(xfgl,yfyz)+fgf(x,y,u(x, y)) if (:E’y) €J:= [07 Q]X[O, b]7 (1)
i=1
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u(z,y) = (z,y); if (z,y) € J = [=€,a] x [~p,0]\(0,a] x (0,0], (2)

where a,b > 0, § = (0,0), &,p; > 0; ¢ = 1,...,m, £ = max;—1,.. m{§} p =
max;—1, . m{f;}, Ij is the left-sided mixed Riemann-Liouville integral of order r =
(r1,m2) € (0,00) x (0,00), f: JXxR* - R" g;: J = R; i =1,...,m are given
continuous functions, and ® : J — R” is a given continuous function such that

@(Z’,O) = Zgl(:r,())@(x _gi’_ﬂi); (S [O,CL],
i=1

and

2(0,y) = Zgi((ly)@(—fi,y — )5 y €[0,0].

We present three results for the problem (1)-(2), the first one is based on Schauder’s
fixed point theorem (Theorem 1), the second one is a uniqueness of the solution by
using the Banach fixed point theorem (Theorem 2) and the last one on the nonlinear
alternative of Leray-Schauder type (Theorem 4).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. By C(J) we denote the Banach space of all continuous
functions from J into R™ with the norm

[wlleo = sup Jw(z,y)l,
(z,y)ed
where ||.|| denotes a suitable complete norm on R™. Also, C' := C([-¢&, a] X [—u,b]) is a

Banach space endowed with the norm

lwlc = sup [[w(z,y)].
(z,y)€[—E&,a] X [—p,b]

As usual, by L'(J) we denote the space of Lebesgue-integrable functions w : J — R"

with the norm .
ol = / / (e, ) |dyde.
0 0

DEFINITION 1 ([23]). Let r = (r1,73) € (0,00) x (0,00), 8 = (0,0) and u € L*(J).
The left-sided mixed Riemann-Liouville integral of order r of u is defined by

1 rory
Ir — _ ri—1 _ 4\r2—1 .
(lgu)(z,y) 7F(7"1)F(r2)/0 /O(a: $)1 7 (y — )2 Yu(s, t)dtds
In particular,

@ ry
(I§u)(z,y) = w(z,y), (Igu)(z,y) = / / u(s, t)dtds for almost all (z,y) € J,
o Jo
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where o = (1,1).
For instance, Iju exists for all r1,72 € (0,00), when u € L*(J). Note also that when
u € C(J), then (Iju) € C(J), moreover

(Igu)(z,O) = (Igu)(oay) =0; z € [0704}’ Y€ [O7b]

EXAMPLE 1. Let A,w € (—1,00) and r = (r1,72) € (0,00) x (0,00), then

T'(1+ (1 +w)

_ A+, wtrs
= T for almost all (x,y) € J.
FA+A+r)l(14+w+rs) 4 (z,9)

ng)‘y”

3 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (1)-(2).

DEFINITION 2. A function u € C' is said to be a solution of (1)-(2) if u satisfies
equation (1) on J and condition (2) on J.

Set

B = max { sup |9z’($ay)|}-

i=1,....m (zy)eT

THEOREM 1. Assume
(Hy) There exists a positive function h € C(J) such that

IIf (z,y,u)|| < h(x,y), for all (z,y) € J and u € R™.

If mB < 1, then problem (1)-(2) has at least one solution v on [—&, a] X [—u, b].

PROOF. Transform problem (1)-(2) into a fixed point problem. Consider the op-
erator N : C — C defined by,

®(z,y); (z,y) € J,
N(w)(z,y) = § <m . , 3)

2im gilw y)ule = &y — py) + I (2,9, u(@,); (2,) € J.
The problem of finding the solutions of problem (1)-(2) is reduced to finding the solu-
tions of the operator equation N(u) = u. Let R > 2~ where

R a™ b h* 7
T(1 4 r)T(1 4 ro)

and h* = ||h||eo, and consider the set

Br={ueC:|ullc <R}
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It is clear that Bpg is a closed bounded and convex subset of C. For every u € Br and
(z,y) € J we obtain by (H;) that

m

IN(u)(z,y)ll < Z |9i (2, )| lul@ — &y — )|

_ : ym—s”*l — )2 f(s, b, ul(s s
oo A AR R VR YOI 17

IN

Ty

mB||ullc + m /0 /0 (x—8)" Yy — t)" " h(s, t)dtds
a™ b

(1 + rl)I‘(l + ?"2)

< mBR+(1-mB)R=R.

AN

mBllullc + h*F

On the other hand, for every u € Bgr and (z,y) € J, we obtain
IN(u)(z, )| = | ®(z,y)]| < R.

So we obtain that

IN@W)llc < R.

That is, N(Br) C Bpg. Since f is bounded on Bp, thus N(Bpg) is equicontinuous and
the Schauder fixed point theorem shows that N has at least one fixed point u* € Bp
which is solution of (1)-(2).

For the uniqueness we prove the following Theorem

THEOREM 2. Assume that following hypothesis holds:

(H3) There exists a positive function I € C(J) such that

||f(x,y,u) - f(x,;y,v)” < l(x’y)Hu - UH’

for each (z,y) € J and u,v € R™.

If
BI'(1 I'(1 rpr2l*
mBT(1+r)T(1+7r2)+a -1, )
I'(1+7r)I(1 +7g)
where I* = ||{||, then problem (1)-(2) has a unique solution on [—¢, a] X [—w, b].

PROOF. Consider the operator N defined in (3). Then by (Hz), for every u,v € C
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and (z,y) € J we have

IN(u)(z,y) = N(o)(,y)] < Z lgi (@, y)l [z = &y — ;) — vz =&, w)l

+ //x—s” Yy —t)r=—1
Tl T2

1 f(s,t,u(s,t)) — f(s,t,v(s,t))||dtds

mBHu—vHOO

+ / / 7"1 1 t)?"z—l
7’1 7”2

x (s, t)||u — v|cdtds

IN X

’I‘lb’l’Q
< mB|u—v||e +1* uU—v
> H H F(1+T1)F(1+T2)H ||C
I*ar1pr2
(mB+ T rra g /10~ vle
Thus .
IN(w) = N@)lo < mBT(1 4+ r)T(1 4+ rg) + a™ b2 o= vllc

F(l + Tl)F(l + 7’2)
Hence by (4), we have that N is a contraction mapping. Then in view of Banach fixed
point Theorem, N has a unique fixed point which is solution of problem (1)-(2).

THEOREM 3 ([10]). (Nonlinear alternative of Leray-Schauder type) By U and 0U
we denote the closure of U and the boundary of U respectively. Let X be a Banach
space and C' a nonempty convex subset of X. Let U a nonempty open subset of C' with
0c U and T : U — C continuous and compact operator. Then either

(a) T has fixed points, or
(b) there exist u € QU and X € (0,1) with u = AT (u).

In the sequel we use the following version of Gronwall’s Lemma for two independent
variables and singular kernel.

LEMMA 1 ([12]). Let v : J — [0, 00) be a real function and w(.,.) be a nonnegative,
locally integrable function on J. If there are constants ¢ > 0 and 0 < ry,72 < 1 such

that e U(S’t)
v(z,y) <w(z,y) +c Y dtds,

then there exists a constant § = d(ry,72) such that

< 5 dtd
v(x,y) < wzy+6// @—s) t)rz s,

for every (z,y) € J.

Now, we present an existence result for the problem (1)-(2) based on the Nonlinear
alternative of Leray-Schauder type.

THEOREM 4. Assume
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(H3) There exist positive functions p,q € C(J) such that

|f(z,y,u)|| < plz,y) + q(z,y)||lu|, for all (z,y) € J and u € R™.

If mB < 1, then problem (1)-(2) has at least one solution on [—¢&, a] X [—u, b].

PROOF. Consider the operator N defined in (3). We shall show that the operator
N is completely continuous. By the continuity of f and the Arzela-Ascoli Theorem,
we can easily obtain that N is completely continuous.

A priori bounds. We shall show there exists an open set U C C with u # AN (u),
for A € (0,1) and u € U. Let w € C and u = AN(u) for some 0 < A < 1. Thus for
each (z,y) € J, we have

u(x,y) = )‘Zgl(x,y)u(x - £i7y - Mi) + )‘Igf(xvy’u(x’y))

This implies by (H3) that, for each (z,y) € J, we have
p*a’!‘l b’l‘2
(1 +7r)C(1 +1rg)

L T ry o — )11y — )21y (s <
* F(rl)r(r2)/0 /0( )y —1) (s, t)dtds,

where p* = ||p|leo and ¢* = ||¢]|co. Thus, for each (z,y) € J, we get

lu(z,y) < mBllu(z,y)| +

p*arlbrg
(I+7r)T(1+7r2)

)T
q _ 7‘1 1 ’I“zfl
+ A= mBIT( T () // x—8) — )" u(s, t)dtds
€y
< w—|—c/ /(x—S)Tlfl(y—t)rrlu(s,t)dtds,
0o Jo

lu@ )l < Fmp

where .
P a1 pr2

T A—mBTA+ )1 +r)

and

*

q
(1 =mB)T'(r))(r2)
From Lemma 1, there exists § := §(r1,72) > 0 such that, for each (z,y) € J, we get

ufloo < <1+c6// ) —t)’”21dtds)

1 K2
< w<1+65“ b ) = M.
T172

C .=

Set M* := max{||®||, M} and

U={ueC:|ulc <M +1}.
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By our choice of U, there is no u € OU such that u = AN(u), for A € (0,1). As a
consequence of Theorem 3, we deduce that N has a fixed point v in U which is a
solution to problem (1)-(2).

4 Examples

We provide two examples.

EXAMPLE 1. As an application of our results we consider the following system of
fractional integral equations of the form

=3y xty? 1 1 3
’UJ(LE,y) - ?u(wf iayf 3) + 12 U(LE - 27y7 5) + ZU(J?* 1ay7 5)
+1g f(z,y,u); if (z,y) € J :=[0,1] x [0, 1], (5)
u(@,y) = 0; if (z,y) € J := [=2,1] x [-3,1]\(0,1] x (0, 1], (6)
where m =3, r = (3, 1) and
1
— %ty .
Set 5 ‘s .
_ry _ry _ 2
gl@,y) ===, e2(ey) = —o-, gs(wy) = .

We have B = % and
|f(z,y,u)| < e*tY; for all (x,y) € J and u € R.

Then condition (Hp) is satisfied and mB = % < 1. In view of Theorem 1, problem
(5)-(6) has a solution defined on [—2,1] x [—3,1].
EXAMPLE 2. Consider the fractional integral equation

3y 1 xty? 2 3 1

u(xvy) = ?u(m— 1,1/_ 5) + ?U(JJ - g7y_ Z) + gu({E - 37y_ 2)
+1g f (2, y, u); if (z,y) € J:=[0,1] x [0,1], (7)
u(z,y) = ®(x,y); if (z,y) € J:=[-3,1] x [-2,1]\(0,1] x (0, 1], (8)
where m =3, r = (3, 1), f(z,y,u) = ‘”TJBy 14|zl|‘u\ and @ : J — R is continuous with
1 1
D(z,0) = gfb(x —3,-2), ®(0,y) = §<I>(—3,y —2); z,y €1[0,1]. ©)
Notice that condition (9) is satisfied by ® = 0.
Set 5 ‘s )
_ Tty _ry -
gl@,y) ===, e2(wy) = —o-, gs(wy) = <.

We have B = %. It is clear that f satisfies (Hsy) with {* = %. A simple computation
shows that condition (4) is satisfied. Hence by Theorem 2, problem (7)-(8) has a unique
solution defined on [—3,1] x [-2,1].
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