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Abstract

In the present article we investigate the existence and uniqueness of solutions
for a system of integral equations of fractional order by using some �xed point
theorems. Also we illustrate our results with some examples.

1 Introduction

The idea of fractional calculus and fractional order integral equations has been a subject
of interest not only among mathematicians, but also among physicists and engineers.
Indeed, we can �nd numerous applications in rheology, control, porous media, vis-
coelasticity, electrochemistry, electromagnetism, etc. [9, 11, 16, 17, 19]. There has
been a signi�cant development in ordinary and partial fractional di¤erential equations
in recent years; see the monographs of Kilbas et al. [14], Miller and Ross [18], Samko
et al. [21], the papers of Abbas and Benchohra [1, 2], Abbas et al. [3], Belarbi et al.
[4], Benchohra et al. [5, 6, 7], Diethelm [8], Kilbas and Marzan [15], Mainardi [16],
Podlubny et al [20], Vityuk [22], Vityuk and Golushkov [23], and Zhang [24] and the
references therein.
In [13], R. W. Ibrahim and H. A. Jalab studied the existence of solutions of the

following fractional integral inclusion

u(t)�
mX
i=1

bi(t)u(t� � i) 2 I�F (t; u(t)) if t 2 [0; T ];

where � i < t 2 [0; T ]; bi : [0; T ] ! R; i = 1; : : : ; n are continuous functions, and
F : [0; T ]� R! P(R) is a given multivalued map.
This paper concerned with the existence and uniqueness of solutions for the follow-

ing fractional order integral equations for the system

u(x; y) =

mX
i=1

gi(x; y)u(x��i; y��i)+Ir�f(x; y; u(x; y)) if (x; y) 2 J := [0; a]�[0; b]; (1)
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u(x; y) = �(x; y); if (x; y) 2 ~J := [��; a]� [��; b]n(0; a]� (0; b]; (2)

where a; b > 0; � = (0; 0); �i; �i � 0; i = 1; : : : ;m; � = maxi=1;:::;mf�ig; � =
maxi=1;:::;mf�ig; Ir� is the left-sided mixed Riemann-Liouville integral of order r =
(r1; r2) 2 (0;1) � (0;1); f : J � Rn ! Rn; gi : J ! R; i = 1; : : : ;m are given
continuous functions, and � : ~J ! Rn is a given continuous function such that

�(x; 0) =
mX
i=1

gi(x; 0)�(x� �i;��i); x 2 [0; a];

and

�(0; y) =
mX
i=1

gi(0; y)�(��i; y � �i); y 2 [0; b]:

We present three results for the problem (1)-(2), the �rst one is based on Schauder�s
�xed point theorem (Theorem 1), the second one is a uniqueness of the solution by
using the Banach �xed point theorem (Theorem 2) and the last one on the nonlinear
alternative of Leray-Schauder type (Theorem 4).

2 Preliminaries

In this section, we introduce notations, de�nitions, and preliminary facts which are
used throughout this paper. By C(J) we denote the Banach space of all continuous
functions from J into Rn with the norm

kwk1 = sup
(x;y)2J

kw(x; y)k;

where k:k denotes a suitable complete norm on Rn: Also, C := C([��; a]� [��; b]) is a
Banach space endowed with the norm

kwkC = sup
(x;y)2[��;a]�[��;b]

kw(x; y)k:

As usual, by L1(J) we denote the space of Lebesgue-integrable functions w : J ! Rn
with the norm

kwkL1 =
Z a

0

Z b

0

kw(x; y)kdydx:

DEFINITION 1 ([23]). Let r = (r1; r2) 2 (0;1)�(0;1); � = (0; 0) and u 2 L1(J):
The left-sided mixed Riemann-Liouville integral of order r of u is de�ned by

(Ir�u)(x; y) =
1

�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1u(s; t)dtds:

In particular,

(I��u)(x; y) = u(x; y); (I
�
� u)(x; y) =

Z x

0

Z y

0

u(s; t)dtds for almost all (x; y) 2 J;
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where � = (1; 1):
For instance, Ir�u exists for all r1; r2 2 (0;1); when u 2 L1(J): Note also that when

u 2 C(J); then (Ir�u) 2 C(J); moreover

(Ir�u)(x; 0) = (I
r
�u)(0; y) = 0; x 2 [0; a]; y 2 [0; b]:

EXAMPLE 1. Let �; ! 2 (�1;1) and r = (r1; r2) 2 (0;1)� (0;1); then

Ir�x
�y! =

�(1 + �)�(1 + !)

�(1 + �+ r1)�(1 + ! + r2)
x�+r1y!+r2 for almost all (x; y) 2 J:

3 Existence of Solutions

Let us start by de�ning what we mean by a solution of the problem (1)-(2).

DEFINITION 2. A function u 2 C is said to be a solution of (1)-(2) if u satis�es
equation (1) on J and condition (2) on ~J:

Set

B = max
i=1;:::;m

(
sup

(x;y)2J
jgi(x; y)j

)
:

THEOREM 1. Assume

(H1) There exists a positive function h 2 C(J) such that

kf(x; y; u)k � h(x; y); for all (x; y) 2 J and u 2 Rn:

If mB < 1, then problem (1)-(2) has at least one solution u on [��; a]� [��; b]:
PROOF. Transform problem (1)-(2) into a �xed point problem. Consider the op-

erator N : C ! C de�ned by,

N(u)(x; y) =

(
�(x; y); (x; y) 2 ~J;Pm

i=1 gi(x; y)u(x� �i; y � �i) + Ir�f(x; y; u(x; y)); (x; y) 2 J:
(3)

The problem of �nding the solutions of problem (1)-(2) is reduced to �nding the solu-
tions of the operator equation N(u) = u: Let R � R�

1�mB where

R� =
ar1br2h�

�(1 + r1)�(1 + r2)
;

and h� = khk1; and consider the set

BR = fu 2 C : kukC � Rg:
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It is clear that BR is a closed bounded and convex subset of C: For every u 2 BR and
(x; y) 2 J we obtain by (H1) that

kN(u)(x; y)k �
mX
i=1

jgi(x; y)j ku(x� �i; y � �i)k

+
1

�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1kf(s; t; u(s; t))kdtds

� mBkukC +
1

�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1h(s; t)dtds

� mBkukC + h�
ar1br2

�(1 + r1)�(1 + r2)

� mBR+ (1�mB)R = R:

On the other hand, for every u 2 BR and (x; y) 2 ~J; we obtain

kN(u)(x; y)k = k�(x; y)k � R:

So we obtain that

kN(u)kC � R:

That is, N(BR) � BR: Since f is bounded on BR; thus N(BR) is equicontinuous and
the Schauder �xed point theorem shows that N has at least one �xed point u� 2 BR
which is solution of (1)-(2).

For the uniqueness we prove the following Theorem

THEOREM 2. Assume that following hypothesis holds:

(H2) There exists a positive function l 2 C(J) such that

kf(x; y; u)� f(x; y; v)k � l(x; y)ku� vk;

for each (x; y) 2 J and u; v 2 Rn:

If

mB�(1 + r1)�(1 + r2) + a
r1br2 l�

�(1 + r1)�(1 + r2)
< 1; (4)

where l� = klk1, then problem (1)-(2) has a unique solution on [��; a]� [��; b]:

PROOF. Consider the operator N de�ned in (3). Then by (H2); for every u; v 2 C
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and (x; y) 2 J we have

kN(u)(x; y)�N(v)(x; y)k �
mX
i=1

jgi(x; y)j ku(x� �i; y � �i)� v(x� �i; y)k

+
1

�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1

� kf(s; t; u(s; t))� f(s; t; v(s; t))kdtds
� mBku� vk1

+
1

�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1

� l(s; t)ku� vkCdtds

� mBku� vk1 + l�
ar1br2

�(1 + r1)�(1 + r2)
ku� vkC

=
�
mB +

l�ar1br2

�(1 + r1)�(1 + r2)

�
ku� vkC :

Thus

kN(u)�N(v)kC �
mB�(1 + r1)�(1 + r2) + a

r1br2 l�

�(1 + r1)�(1 + r2)
ku� vkC

Hence by (4), we have that N is a contraction mapping. Then in view of Banach �xed
point Theorem, N has a unique �xed point which is solution of problem (1)-(2).
THEOREM 3 ([10]). (Nonlinear alternative of Leray-Schauder type) By U and @U

we denote the closure of U and the boundary of U respectively. Let X be a Banach
space and C a nonempty convex subset of X: Let U a nonempty open subset of C with
0 2 U and T : U ! C continuous and compact operator. Then either

(a) T has �xed points, or

(b) there exist u 2 @U and � 2 (0; 1) with u = �T (u):

In the sequel we use the following version of Gronwall�s Lemma for two independent
variables and singular kernel.
LEMMA 1 ([12]). Let � : J ! [0;1) be a real function and !(:; :) be a nonnegative,

locally integrable function on J: If there are constants c > 0 and 0 < r1; r2 < 1 such
that

�(x; y) � !(x; y) + c
Z x

0

Z y

0

�(s; t)

(x� s)r1(y � t)r2 dtds;

then there exists a constant � = �(r1; r2) such that

�(x; y) � !(x; y) + �c
Z x

0

Z y

0

!(s; t)

(x� s)r1(y � t)r2 dtds;

for every (x; y) 2 J:
Now, we present an existence result for the problem (1)-(2) based on the Nonlinear

alternative of Leray-Schauder type.
THEOREM 4. Assume
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(H3) There exist positive functions p; q 2 C(J) such that

kf(x; y; u)k � p(x; y) + q(x; y)kuk; for all (x; y) 2 J and u 2 Rn:

If mB < 1; then problem (1)-(2) has at least one solution on [��; a]� [��; b]:
PROOF. Consider the operator N de�ned in (3). We shall show that the operator

N is completely continuous. By the continuity of f and the Arzela-Ascoli Theorem,
we can easily obtain that N is completely continuous.

A priori bounds. We shall show there exists an open set U � C with u 6= �N(u);
for � 2 (0; 1) and u 2 @U: Let u 2 C and u = �N(u) for some 0 < � < 1: Thus for
each (x; y) 2 J; we have

u(x; y) = �
mX
i=1

gi(x; y)u(x� �i; y � �i) + �Ir�f(x; y; u(x; y)):

This implies by (H3) that, for each (x; y) 2 J; we have

ku(x; y)k � mBku(x; y)k+ p�ar1br2

�(1 + r1)�(1 + r2)

+
q�

�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1u(s; t)dtds;

where p� = kpk1 and q� = kqk1: Thus, for each (x; y) 2 J; we get

ku(x; y)k � p�ar1br2

(1�mB)�(1 + r1)�(1 + r2)

+
q�

(1�mB)�(r1)�(r2)

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1u(s; t)dtds

� w + c

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1u(s; t)dtds;

where

w :=
p�ar1br2

(1�mB)�(1 + r1)�(1 + r2)
and

c :=
q�

(1�mB)�(r1)�(r2)
:

From Lemma 1, there exists � := �(r1; r2) > 0 such that, for each (x; y) 2 J; we get

kuk1 � w

�
1 + c�

Z x

0

Z y

0

(x� s)r1�1(y � t)r2�1dtds
�

� w

�
1 +

c�ar1br2

r1r2

�
:= fM:

Set M� := maxfk�k;fMg and
U = fu 2 C : kukC < M� + 1g:
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By our choice of U; there is no u 2 @U such that u = �N(u); for � 2 (0; 1): As a
consequence of Theorem 3, we deduce that N has a �xed point u in U which is a
solution to problem (1)-(2).

4 Examples

We provide two examples.
EXAMPLE 1. As an application of our results we consider the following system of

fractional integral equations of the form

u(x; y) =
x3y

8
u(x� 3

4
; y � 3) + x

4y2

12
u(x� 2; y � 1

2
) +

1

4
u(x� 1; y � 3

2
)

+Ir�f(x; y; u); if (x; y) 2 J := [0; 1]� [0; 1]; (5)

u(x; y) = 0; if (x; y) 2 ~J := [�2; 1]� [�3; 1]n(0; 1]� (0; 1]; (6)

where m = 3; r = (12 ;
1
5 ) and

f(x; y; u) = ex+y
1

1 + juj :

Set

g1(x; y) =
x3y

8
; g2(x; y) =

x4y2

12
; g3(x; y) =

1

4
:

We have B = 1
4 and

jf(x; y; u)j � ex+y; for all (x; y) 2 J and u 2 R:

Then condition (H1) is satis�ed and mB = 3
4 < 1: In view of Theorem 1, problem

(5)-(6) has a solution de�ned on [�2; 1]� [�3; 1]:
EXAMPLE 2. Consider the fractional integral equation

u(x; y) =
x3y

8
u(x� 1; y � 1

2
) +

x4y2

12
u(x� 2

5
; y � 3

4
) +

1

8
u(x� 3; y � 2)

+Ir�f(x; y; u); if (x; y) 2 J := [0; 1]� [0; 1]; (7)

u(x; y) = �(x; y); if (x; y) 2 ~J := [�3; 1]� [�2; 1]n(0; 1]� (0; 1]; (8)

where m = 3; r = (12 ;
1
5 ); f(x; y; u) =

x+y
20

juj
1+juj and � :

~J ! R is continuous with

�(x; 0) =
1

8
�(x� 3;�2); �(0; y) = 1

8
�(�3; y � 2); x; y 2 [0; 1]: (9)

Notice that condition (9) is satis�ed by � � 0:
Set

g1(x; y) =
x3y

8
; g2(x; y) =

x4y2

12
; g3(x; y) =

1

8
:

We have B = 1
8 : It is clear that f satis�es (H2) with l

� = 1
10 . A simple computation

shows that condition (4) is satis�ed. Hence by Theorem 2, problem (7)-(8) has a unique
solution de�ned on [�3; 1]� [�2; 1]:
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