A Characterization Of A Family Of Semiclassical Orthogonal Polynomials Of Class One^{*}

Mohamed Ihsen Tounsi[†]

Received 11 November 2011

Abstract

In this paper, we give another characterization of a non-symmetric semiclassical orthogonal polynomials of class one.

1 Introduction

Our goal is to characterize the set of non-symmetric semiclassical orthogonal polynomials of class one $\{W_n\}_{n\geq 0}$ verifying the three-term recurrence relation with $\beta_n = (-1)^n$, $n \geq 0$ in a concise way as in [5, 6] via the study of the functional equation $(\Phi w)' + \Psi w = 0$ satisfied by its corresponding regular form w. Some information about the shape of polynomials Φ and Ψ intervening in the above functional equation are given due to the quadratic decomposition of $\{W_n\}_{n\geq 0}$ and to a connection between w and a suitable symmetric regular form ϑ . As application, we characterize w by giving the functional equation, the recurrence coefficient γ_{n+1} , $n \geq 0$ and an integral representation.

We denote by \mathcal{P} the vector space of polynomials with coefficients in \mathbb{C} and by \mathcal{P}' its dual space. The action of $u \in \mathcal{P}'$ on $f \in \mathcal{P}$ is denoted as $\langle u, f \rangle$. In particular, we denote by $(u)_n := \langle u, x^n \rangle$, $n \geq 0$, the moments of u. For instance, for any form u, any polynomial g and any $(a, b, c) \in (\mathbb{C} \setminus \{0\}) \times \mathbb{C}^2$, we let $Du = u', \sigma u, gu, h_a u, \tau_b u,$ $(x - c)^{-1}u$ and δ_c , be the forms defined in [3]:

$$\begin{split} \langle u',f\rangle &:= -\langle u,f'\rangle, \ \langle \sigma u,f\rangle := \langle u,\sigma f\rangle, \ \langle gu,f\rangle := \langle u,gf\rangle, \ \langle h_a u,f\rangle := \langle u,h_a f\rangle, \\ \langle \tau_b u,f\rangle &:= \langle u,\tau_{-b}f\rangle, \ \langle (x-c)^{-1}u,f\rangle := \langle u,\theta_c f\rangle, \ \langle \delta_c,f\rangle := f(c), \end{split}$$

where $(\sigma f)(x) = f(x^2)$, $(h_a f)(x) = f(ax)$, $(\tau_{-b} f)(x) = f(x+b)$, $(\theta_c f)(x) = \frac{f(x) - f(c)}{x-c}$ for all $f \in \mathcal{P}$. It is easy to see that [3, 4]

$$(fu)' = fu' + f'u, \ f \in \mathcal{P}, \ u \in \mathcal{P}', \tag{1}$$

$$f(x)\sigma u = \sigma(f(x^2)u), \ f \in \mathcal{P}, \ u \in \mathcal{P}',$$
(2)

$$\sigma(u') = 2(\sigma(xu))', \ u \in \mathcal{P}',\tag{3}$$

^{*}Mathematics Subject Classifications: 33C45, 42C05.

[†]Institut Supérieur des Sciences Appliquées et de Technologie, University of Gabès, Rue Omar Ibn El Khattab, 6072, Gabès, Tunisia

M. I. Tounsi

$$x^{-1}(xu) = u - (u)_0 \delta_0, \ x(x^{-1}u) = u, \ u \in \mathcal{P}'.$$
(4)

A form w is said to be regular whenever there is a sequence of monic polynomials $\{W_n\}_{n\geq 0}$, deg $W_n = n$, $n \geq 0$ (MPS) such that $\langle w, W_n W_m \rangle = k_n \delta_{n,m}$, $n, m \geq 0$ with $k_n \neq 0$ for any $n \geq 0$. In this case, $\{W_n\}_{n\geq 0}$ is called a monic orthogonal polynomial sequence (MOPS) and it is characterized by the following three-term recurrence relation [1]

$$W_0(x) = 1, \quad W_1(x) = x - \beta_0,$$

$$W_{n+2}(x) = (x - \beta_{n+1})W_{n+1}(x) - \gamma_{n+1}W_n(x), \quad n \ge 0,$$
(5)

where $\beta_n = \frac{\langle w, x W_n^2 \rangle}{\langle w, W_n^2 \rangle} \in \mathbb{C}$ and $\gamma_{n+1} = \frac{\langle w, W_{n+1}^2 \rangle}{\langle w, W_n^2 \rangle} \in \mathbb{C} \setminus \{0\}, \ n \ge 0$. When w is regular, $\{W_n\}_{n \ge 0}$ is a symmetric (MOPS) if and only if $\beta_n = 0, \ n \ge 0$.

When w is regular, $\{W_n\}_{n\geq 0}$ is a symmetric (MOPS) if and only if $\beta_n = 0, n \geq 0$ or equivalently $(w)_{2n+1} = 0, n \geq 0$. Also, The form w is said to be normalized if $(w)_0 = 1$. In this paper, we suppose that any form will be normalized.

A form w is called semiclassical when it is regular and there exist two polynomials Φ (monic) and Ψ , deg $\Phi = t \ge 0$, deg $\Psi = p \ge 1$ such that

$$(\Phi w)' + \Psi w = 0. \tag{6}$$

It's corresponding orthogonal polynomial sequence $\{W_n\}_{n\geq 0}$ is called semiclassical. The semiclassical character is kept by shifting [3, 4, 5]. In fact, let $\{a^{-n}W_n(ax+b)\}_{n\geq 0}$, $a\neq 0, b\in \mathbb{C}$; when w satisfies (6), then $(h_{a^{-1}}\circ \tau_{-b})w$ fulfills

$$\left(a^{-t}\Phi(ax+b)(h_{a^{-1}}\circ\tau_{-b})w\right)' + a^{1-t}\Psi(ax+b)(h_{a^{-1}}\circ\tau_{-b})w = 0,\tag{7}$$

and the recurrence coefficients of (5) are

$$\frac{\beta_n - b}{a} , \frac{\gamma_{n+1}}{a^2}, \ n \ge 0.$$
(8)

The semiclassical form w is said to be of class $s = \max(p-1, t-2) \ge 0$ if and only if [3, 4, 5]

$$\prod_{c \in \mathcal{Z}_{\Phi}} \left\{ \left(\Psi(c) + \Phi'(c) \right) + \left(\left\langle w, \left(\theta_c \Psi \right) + \left(\theta_c^2 \Phi \right) \right\rangle \right) \right\} > 0, \tag{9}$$

where \mathcal{Z}_{Φ} is the set of zeros of Φ . In particular, when s = 0 the form w is usually called *classical* Hermite, Laguerre, Bessel and Jacobi, see [3, 4, 5].

LEMMA 1 ([3]). Let w be a symmetric semiclassical form of class s satisfying (6). The following statements hold.

i) When s is odd then the polynomial Φ is odd and Ψ is even.

ii) When s is even then the polynomial Φ is even and Ψ is odd.

Let $\{W_n\}_{n\geq 0}$ be a (MOPS) with respect to the form w fulfilling the three-term recurrence relation (5) with

$$\beta_n = (-1)^n \,, \, n \ge 0. \tag{10}$$

Such a (MOPS) is characterized by the following quadratic decomposition [4]

$$W_{2n}(x) = P_n(x^2)$$
, $W_{2n+1}(x) = (x-1)P_n^*(x^2)$, $n \ge 0$, (11)

where $\{P_n\}_{n\geq 0}$ is a (MOPS) and $\{P_n^*\}_{n\geq 0}$ is the sequence of monic Kernel polynomials of **K**-parameter 1 associated with $\{P_n\}_{n\geq 0}$ defined by [1, 2]

$$P_n^*(x) = \frac{1}{x-1} \left[P_{n+1}(x) - \frac{P_{n+1}(1)}{P_n(1)} P_n(x) \right], \quad n \ge 0.$$
(12)

Furthermore the sequences $\{P_n\}_{n\geq 0}$ and $\{P_n^*\}_{n\geq 0}$ satisfy respectively the recurrence relation (5) with

$$\begin{cases} \beta_0^P = \gamma_1 + 1, \\ \beta_{n+1}^P = \gamma_{2n+2} + \gamma_{2n+3} + 1, \\ \gamma_{n+1}^P = \gamma_{2n+1} \gamma_{2n+2}, \end{cases} \begin{cases} \beta_0^* = \gamma_1 + \gamma_2 + 1, \\ \beta_{n+1}^* = \gamma_{2n+3} + \gamma_{2n+4} + 1, \\ \gamma_{n+1}^* = \gamma_{2n+2} \gamma_{2n+3}. \end{cases}$$
(13)

for all $n \ge 0$. Denoting by u and v the forms associated with $\{P_n\}_{n\ge 0}$ and $\{P_n^*\}_{n\ge 0}$ respectively, we get [4]

$$u = \sigma w = \sigma(xw), \tag{14}$$

$$v = \gamma_1^{-1} (x - 1) \sigma w.$$
 (15)

The regularity of v means that [1]

$$P_{n+1}(1) \neq 0, \quad n \ge 0.$$
 (16)

Moreover, the form (x-1)w is antisymmetric, that is,

$$((x-1)w)_{2n} = 0, \quad n \ge 0.$$
(17)

Let now λ be a non-zero complex number and ϑ be the form such that

$$\lambda x \vartheta = (x - 1)w. \tag{18}$$

According to (17)-(18) we get $(x\vartheta)_{2n} = 0$, $n \ge 0$. Hence ϑ is a symmetric form. Multiplying (18) by x, applying the operator σ and using (15) we get $\lambda x \sigma \vartheta = \gamma_1 v$. Consequently, according to [3], the form ϑ is regular if and only if

$$\Omega_n(\lambda) = \gamma_1 P_{n-1}^{*(1)}(0) + \lambda P_n^{*}(0) \neq 0, \quad n \ge 0,$$
(19)

with $P_n^{*(1)}(x) = (v\theta_0 P_{n+1}^*)(x)$, $n \ge 0$ and $P_{-1}^{*(1)}(x) := 0$.

LEMMA 2. There exists a non zero constant λ such that the form ϑ given by (18) is regular.

PROOF. According to the following relation [2]

$$P_{n+1}^{*(1)}(x)P_{n+1}^{*}(x) - P_{n+2}^{*}(x)P_{n}^{*(1)}(x) = \prod_{\nu=0}^{n} \gamma_{\nu+1}^{*} \neq 0, \quad n \ge 0,$$

it is easy to see that

$$|P_{n-1}^{*(1)}(0)| + |P_n^{*}(0)| \neq 0, \quad \forall n \ge 0.$$
(20)

Let *n* be a fixed nonnegative integer. If $P_{n-1}^{*(1)}(0) = 0$, then $P_n^*(0) \neq 0$ from (20). So, condition (19) is satisfied for $\lambda \neq 0$. If $P_n^*(0) = 0$, then $P_{n-1}^{*(1)}(0) \neq 0$ from (20). So, condition (19) satisfied for $\lambda \neq 0$. If $P_{n-1}^{*(1)}(0) \neq 0$ and $P_n^*(0) \neq 0$, then for all $\lambda \neq \lambda_n$, (20) is satisfied, where we have posed

$$\lambda_n = -\gamma_1 \frac{P_{n-1}^{*(1)}(0)}{P_n^*}, \quad n \ge 0.$$
(21)

In any case there exists a constant $\lambda \neq 0$ such that (19) is fulfilled and so ϑ is a regular form.

In what follows we assume that the (MOPS) $\{W_n\}_{n\geq 0}$ associated with (5),(10) is semiclassical of class s_w . Its corresponding regular form w is then semiclassical of class s_w satisfying the functional equation (6). Multiplying the equation (6) by $(x-1)^2$ and on account of (1) and (18), we deduce that the form ϑ , when it is regular, is also semiclassical of class s_ϑ at most $s_w + 2$ satisfying the functional equation

$$(\mathbf{E}\vartheta)' + \mathbf{F}\vartheta = 0, \tag{22}$$

with

$$E(x) = x(x-1)\Phi(x); \quad F(x) = x((x-1)\Psi(x) - 2\Phi(x)).$$
(23)

The next technical lemma is needed in the sequel.

LEMMA 3. For all root c of Φ , we have

a) $\langle \vartheta, \theta_c^2 \mathbf{E} + \theta_c \mathbf{F} \rangle = \frac{1}{\lambda} (c-1)^2 \langle w, \theta_c \Psi + \theta_c^2 \Phi \rangle + (1 - \frac{1}{\lambda}) (c-1) \left(\Phi'(c) + \Psi(c) \right),$ b) $\mathbf{E}'(c) + \mathbf{F}(c) = c(c-1) \left(\Phi'(c) + \Psi(c) \right).$ (24)

PROOF. Let c be a root of Φ . Write $\Phi(x) = (x - c)\Phi_c(x)$ with $\Phi_c(x) = (\theta_c \Phi)(x)$. From (22)-(23) we have

$$\left(\theta_c^2 \mathbf{E} + \theta_c \mathbf{F}\right)(x) = \theta_c \left\{\xi(\xi - 1) \left(\Phi_c(\xi) + \Psi(\xi)\right)\right\}(x) - 2x\Phi_c(x).$$
(25)

Taking $g(x) = (\Phi_c + \Psi)(x)$ and f(x) = x(x-1) in the following relation

$$\theta_c(fg)(x) = g(x)(\theta_c f)(x) + f(c)(\theta_c g)(x), \quad \text{for all } f, g \in \mathcal{P},$$
(26)

(25) becomes

$$\left(\theta_c^2 \mathbf{E} + \theta_c \mathbf{F}\right)(x) = (c-1)\left\{\left(\Phi_c + \Psi\right)(x) + c\left(\theta_c(\Phi_c + \Psi)\right)(x)\right\} + x(\Psi - \Phi_c)(x).$$
(27)

From the second identity in (4), relation (18) is equivalent to

$$\vartheta = \frac{1}{\lambda}(w - x^{-1}w) + (1 - \frac{1}{\lambda})\delta_0.$$
(28)

We may also write

$$\left\langle \frac{1}{\lambda} (w - x^{-1}w), \theta_c^2 \mathbf{E} + \theta_c \mathbf{F} \right\rangle = \frac{1}{\lambda} \left\langle w, \theta_c^2 \mathbf{E} + \theta_c \mathbf{F} - \theta_0 (\theta_c^2 \mathbf{E} + \theta_c \mathbf{F}) \right\rangle.$$
(29)

Taking $f(x) = (\theta_c(\Phi_c + \Psi))(x)$ in the following

$$c\theta_0(\theta_c f) = \theta_c f - \theta_0 f, \quad f \in \mathcal{P}, \quad c \in \mathbb{C},$$
(30)

and applying the operator θ_0 to (27), we obtain

$$\left(\theta_0(\theta_c^2 \mathbf{E} + \theta_c \mathbf{F})\right)(x) = (\Psi - \Phi_c)(x) + (c-1)\left(\theta_c(\Phi_c + \Psi)\right)(x).$$
(31)

This gives

$$\left(\theta_c^2 \mathbf{E} + \theta_c \mathbf{F}\right)(x) - \left(\theta_0 \left(\theta_c^2 \mathbf{E} + \theta_c \mathbf{F}\right)\right)(x) = (c-1)^2 \left(\theta_c \left(\Phi_c + \Psi\right)\right)(x) + (x+c-2)\Psi - \Phi.$$
(32)

Thus (29) becomes

$$\left\langle \frac{1}{\lambda} (w - x^{-1}w), \theta_c^2 \mathbf{E} + \theta_c \mathbf{F} \right\rangle = \frac{1}{\lambda} (c - 1)^2 \left\langle w, \theta_c \Phi_c + \theta_c \Psi \right\rangle, \tag{33}$$

since $\langle w, \Psi \rangle = 0$ and $\langle w, x\Psi(x) - \Phi(x) \rangle = 0$ from (6). Next, by a simple calculation, we have

$$\left\langle (1-\frac{1}{\lambda})\delta_0, \theta_c^2 \mathbf{E} + \theta_c \mathbf{F} \right\rangle = (1-\frac{1}{\lambda})(c-1)(\Phi_c + \Psi)(c).$$
(34)

Adding (33) and (34) we obtain the first relation in (24). From (22)-(23), we have $E'(c) = c(c-1)\Phi'(c)$ and $F(c) = c(c-1)\Psi(c)$, hence the second relation in (24) holds.

Let us recall the following result about the class s_{ϑ} of the form ϑ .

THEOREM 1. The form ϑ is semiclassical and its class depends only on the zero x = 1 for any $\lambda \neq \lambda_n$, $n \geq -1$ where λ_n , $n \geq 0$ is given by (21) and

$$\lambda_{-1} = \frac{\left\langle w, \theta_0 \Psi + \theta_0^2 \Phi \right\rangle + \Phi'(0) + \Psi(0)}{\Phi'(0) + \Psi(0)}.$$
(35)

Moreover, the semiclassical form ϑ is of class s_ϑ satisfying the functional equation

$$\left(\widetilde{\mathbf{E}}\vartheta\right)' + \widetilde{\mathbf{F}}\vartheta = 0,\tag{36}$$

such that

a) if $\Phi(1) \neq 0$, then $s_{\vartheta} = s_w + 2$,

$$\widetilde{\mathbf{E}}(x) = x(x-1)\Phi(x)$$
 and $\widetilde{\mathbf{F}}(x) = x\left((x-1)\Psi(x) - 2\Phi(x)\right)$

b) if $\Phi(1) = 0$ and $\Psi(1) \neq 0$, then $s_{\vartheta} = s_w + 1$,

$$\widetilde{\mathbf{E}}(x) = x\Phi(x)$$
 and $\widetilde{\mathbf{F}}(x) = x\left(\Psi(x) - (\theta_1\Phi)(x)\right);$

214

c) if $\Phi(1) = 0$ and $\Psi(1) = 0$, then $s_{\vartheta} = s_w$,

$$\widetilde{\mathbf{E}}(x) = x(\theta_1 \Phi)(x)$$
 and $\widetilde{\mathbf{F}}(x) = x(\theta_1 \Psi)(x)$.

PROOF. By our assumption, on account of Lemma 2, and by (22)-(23), the form ϑ is regular and so is semiclassical of class $s_{\vartheta} \leq s_w + 2$. Let c be a root of E such that $c \neq 1$. According to (23) we get $c\Phi(c) = 0$. If $c \neq 0$, then c is a root of Φ . We suppose E'(c) + F(c) = 0. From (24) we obtain $\Phi'(c) + \Psi(c) = 0$ and $\langle \vartheta, \theta_c^2 E + \theta_c F \rangle = \frac{1}{\lambda}(c-1)^2 \langle w, \theta_c \Psi + \theta_c^2 \Phi \rangle \neq 0$, because w is semiclassical and so satisfies (9). If c = 0 and $\Phi(0) \neq 0$, then $E'(0) + F(0) = -\Phi(0) \neq 0$ from (23). If c = 0 and $\Phi(0) = 0$, then E'(0) + F(0) = 0. We are led to the following: When $\Phi'(0) + \Psi(0) = 0$, we get $\langle \vartheta, \theta_0^2 E + \theta_0 F \rangle = \frac{1}{\lambda} \langle w, \theta_0 \Psi + \theta_0^2 \Phi \rangle \neq 0$ from (24a). When $\Phi'(0) + \Psi(0) \neq 0$ and because $\lambda \neq \lambda_{-1}$, then according to (24a) with c = 0, we obtain $\langle \vartheta, \theta_0^2 E + \theta_0 F \rangle \neq 0$. Therefore equation (6) is not simplified by x - c for $c \neq 1$. Next, from (23) we have $E'(1) + F(1) = -\Phi(1)$.

a) If $\Phi(1) \neq 0$, then $E'(1) + F(1) \neq 0$ and the equation (22) cannot be simplified. This means that

$$s_{\vartheta} = \max(\deg \mathbf{E} - 2, \deg \mathbf{F} - 1) = \max(\deg \Phi - 2, \deg \Psi - 1) = s_w + 2.$$

b) If $\Phi(1) = 0$, then E'(1) + F(1) = 0 and $\langle \vartheta, \theta_1^2 E + \theta_1 F \rangle = 0$ from (24). Therefore (22) can be simplified by x - 1. After simplification, it becomes $\left(\widetilde{E}\vartheta\right)' + \widetilde{F}\vartheta = 0$, with $\widetilde{E}(x) = x\Phi(x)$ and $\widetilde{F}(x) = x\left(\Psi(x) - (\theta_1\Phi)(x)\right)$. We have $\widetilde{E}'(1) + \widetilde{F}(1) = \Psi(1)$. When $\Psi(1) \neq 0$, the above functional equation is not simplified. Consequently, $s_\vartheta = \max(\deg \widetilde{E} - 2, \deg \widetilde{F} - 1) = s_w + 1$.

c) If $\Phi(1) = 0$ and $\Psi(1) = 0$, then $\tilde{\mathbf{E}}'(1) + \tilde{\mathbf{F}}(1) = \Psi(1) = 0$. By virtue of (18) and (6) we get $\langle \vartheta, \theta_1^2 \tilde{\mathbf{E}} + \theta_1 \tilde{\mathbf{F}} \rangle = \frac{1}{\lambda} \langle w, \Psi \rangle = 0$. Therefore (34) is simplified by x - 1, and ϑ fulfils $(\hat{\mathbf{E}}\vartheta)' + \hat{\mathbf{F}}\vartheta = 0$, where $\hat{\mathbf{E}}(x) = x(\theta_1\Phi)(x)$ and $\hat{\mathbf{F}}(x) = x(\theta_1\Psi)(x)$. If 1 is a root of $\theta_1\Phi$, then $\Phi'(1) + \Psi(1) = 0$. Assuming that $\hat{\mathbf{E}}'(1) + \hat{\mathbf{F}}(1) = 0$, a simple calculation gives $\langle \vartheta, \theta_1^2 \hat{\mathbf{E}} + \theta_1 \hat{\mathbf{F}} \rangle = \frac{1}{\lambda} \langle w, \theta_1 \Psi + \theta_1^2 \Phi \rangle \neq 0$ since w is a semiclassical of class 1 satisfying (9). Hence the functional equation $(\hat{\mathbf{E}}\vartheta)' + \hat{\mathbf{F}}\vartheta = 0$ is not simplified and $s_\vartheta = \max(\deg \hat{\mathbf{E}} - 2, \deg \hat{\mathbf{F}} - 1) = s_w$.

2 Main Results

In the sequel we deal with the semiclassical sequence $\{W_n\}_{n\geq 0}$ of class one satisfying (10). Its corresponding regular form w is then semiclassical of class $s_w = 1$ fulfilling the functional equation (6) with $0 \leq \deg \Phi \leq 3$ and $1 \leq \deg \Psi \leq 2$.

2.1 Characterization of the Polynomials Φ and Ψ

We can usually decompose the polynomials Φ and Ψ through their odd and even parts. Set

$$\Phi(x) = \phi(x^2) + x\varphi(x^2), \quad \Psi(x) = \psi(x^2) + x\omega(x^2), \quad (\theta_1\Phi)(x) = \phi_1(x^2) + x\varphi_1(x^2) \quad \text{and} \quad (\theta_1\Psi)(x) = \psi_1(x^2) + x\omega_1(x^2). \quad (37)$$

PROPOSITION 1. Let w be a semiclassical form of class one satisfying (6) and $\{W_n\}_{n\geq 0}$ be its corresponding MOPS fulfilling (10).

- a) If $\Phi(1) \neq 0$, then $\phi(x) = \varphi(x) = \frac{1}{2} (x \omega(x) \psi(x))$.
- b) If $\Phi(1) = 0$ and $\Psi(1) \neq 0$, then $\phi(x) = 0$ and $\varphi_1(x) = \omega(x)$.
- c) If $\Phi(1) = 0$ and $\Psi(1) = 0$, then $\phi(x) + \varphi(x) = 0$ and $\psi(x) + x\omega(x) = 0$.

PROOF. Set

$$\widetilde{\mathbf{E}}(x) = \widetilde{\mathbf{E}}^{e}(x^{2}) + x\widetilde{\mathbf{E}}^{o}(x^{2}); \quad \widetilde{\mathbf{F}}(x) = \widetilde{\mathbf{F}}^{e}(x^{2}) + x\widetilde{\mathbf{F}}^{o}(x^{2}).$$
(38)

a) $\Phi(1) \neq 0$. According to (37)-(38) and from Theorem 1., we obtain $\widetilde{\mathbf{E}}^e(x) = x(\phi - \varphi)(x)$, $\widetilde{\mathbf{E}}^o(x) = x\varphi(x) - \phi(x)$, $\widetilde{\mathbf{F}}^e(x) = x(\psi - \omega - 2\varphi)(x)$, $\widetilde{\mathbf{F}}^o(x) = x\omega(x) - \psi(x) - 2\phi(x)$. On account of Lemma 1. and the fact that ϑ is of odd class, we get $\widetilde{\mathbf{E}}^e = \widetilde{\mathbf{F}}^o = 0$. This leads to the result a).

b) $\Phi(1) = 0$ and $\Psi(1) \neq 0$. Similar to a), we have $\widetilde{\mathbf{E}}^e(x) = x\varphi(x)$, $\widetilde{\mathbf{E}}^o(x) = \phi(x)$, $\widetilde{\mathbf{F}}^e(x) = x(\omega - \varphi_1)(x)$ and $\widetilde{\mathbf{F}}^o(x) = (\psi - \phi_1)(x)$. The form ϑ is of odd class, then $\widetilde{\mathbf{E}}^e = \widetilde{\mathbf{F}}^o = 0$. Hence the conclusion.

c) $\Phi(1) = 0$ and $\Psi(1) = 0$. In this case we have $\widetilde{E}^e(x) = x\varphi_1(x)$, $\widetilde{E}^o(x) = \phi_1(x)$, $\widetilde{F}^e(x) = x\omega_1(x)$, $\widetilde{F}^o(x) = \psi_1(x)$. Since ϑ is of odd class, $\widetilde{E}^e = \widetilde{F}^o = 0$. Therefore $\varphi_1 = 0$ and $\psi_1 = 0$. Moreover we can write $\Phi(x) = (x - 1)(\theta_1 \Phi)(x) = (x - 1)\phi_1(x^2)$ and $\Psi(x) = (x - 1)x\omega_1(x^2)$. So $\phi = -\phi_1$, $\varphi = -\phi_1$, $\omega = -\omega_1$ and $\psi = x\omega_1$. This gives the desired result.

THEOREM 2. Let w be a semiclassical form of class one satisfying (6) and $\{W_n\}_{n\geq 0}$ be its corresponding (MOPS) fulfilling (10). The functional equation (6) has only one solution given by

$$\Phi(x) = x^3 - x, \quad \Psi(x) = ax^2 + x + c, \quad a \neq 0, \quad (w)_0 = (w)_1 = 1, \tag{39}$$

with

$$a + c + 1 \neq 0;$$
 $|a + 2| + |a + c + 3| \neq 0$ and $|a + 2| + |c - 3| \neq 0.$ (40)

PROOF. When deg $\Phi \leq 2$ and deg $\Psi = 2$, we consider $a \neq 0$, b and c as three complex numbers such that $\Psi(x) = ax^2 + bx + c$. From Proposition 1, we have the following.

i) If $\Phi(1) \neq 0$, then $\phi(x) = \varphi(x)$, and so $\Phi(x) = (x+1)\phi(x^2)$ from (37). Because Φ is a monic polynomial of degree at most two, then necessarily $\phi(x) = 1$. In addition, we have $x\omega(x) - \psi(x) = 2$. This implies that a = b and c = -2. Thus $\Phi(x) = x + 1$ and $\Psi(x) = ax^2 + ax - 2$, $a \neq 0$. According to equation (6), we have $\langle w, \Psi(x) \rangle =$

 $\langle w, x\Psi(x) - \Phi(x) \rangle = 0$. Then $\langle w, ax^2 + ax - 2 \rangle = \langle w, ax^3 + ax^2 - 3x - 1 \rangle = 0$. It is equivalent to

$$a(\gamma_1 + 2) - 2 = 0$$
 and $a(\gamma_1 + 1) - 2 = 0,$ (41)

since $\langle w, x \rangle = 1$ and $\langle w, x^3 \rangle = \langle w, x^2 \rangle = \gamma_1 + 1$. It is easy to see from (41) that a = 0, that is a contradiction with deg $\Psi = 2$.

ii) If $\Phi(1) = 0$ and $\Psi(1) \neq 0$, then $\phi(x) = 0$. Therefore $\Phi(x) = x$, because Φ is monic and deg $\Phi \leq 2$. This contradicts $\Phi(1) = 0$.

iii) If $\Phi(1) = 0$ and $\Psi(1) = 0$, then $\Phi(x) = x - 1$ and $\Psi(x) = a(x^2 - x)$ with $a \neq 0$. Writing $\langle w, \Psi(x) \rangle = \langle w, a(x^2 - x) \rangle = 0$, then $a\gamma_1 = 0$ and so $\gamma_1 = 0$. It is a contradiction, by virtue of the regularity of the form w.

When deg $\Phi = 3$, we obtain deg $\phi \leq 1$ and deg $\varphi = 1$ from (37). According to Proposition 1, we have the following.

i) If $\Phi(1) \neq 0$, then $\phi(x) = \varphi(x)$ and $\psi(x) = -2\phi(x) + x\omega(x)$. We obtain $\Phi(x) = (x+1)\varphi(x^2)$ and $\Psi(x) = (x^2+x)\omega(x^2) - 2\varphi(x^2)$. Therefore ω is a constant polynomial and φ is a monic polynomial of degree one since deg $\Psi \leq 2$ and deg $\Phi = 3$. Denoting by $\varphi(x) = x + d$ and $\omega(x) = e$. We write $\Phi(x) = (x+1)(x^2+d)$ and $\Psi(x) = (e-2)x^2 + ex - 2d$. As above, we have $\langle w, \Psi \rangle = \langle w, x\Psi(x) - \Phi(x) \rangle = 0$. It follows $(e-2)(\gamma_1+1) + e - 2d = 0$ and $(e-2)(\gamma_1+1) - 2d = 0$. Hence e = 0 and $\gamma_1 + d + 1 = 0$. Again, according to equation (6), we have $\langle (\Phi(x)w)' + \Psi(x)w, x^2 \rangle = 0$, then $\langle w, x^2(x^2+d) \rangle = 0$. Since $x^2 = W_2(x) + \gamma_1 + 1$, we then obtain $\langle w, (W_2(x) + \gamma_1 + 1)W_2(x) \rangle = 0$. This gives $\langle w, W_2^2(x) \rangle = 0$. It is a contradiction with the orthogonality of $\{W_n\}_{n\geq 0}$.

ii) If $\Phi(1) = 0$ and $\Psi(1) = 0$, then $\phi(x) = -\varphi(x)$ and $\psi(x) = -x\omega(x)$. Therefore $\Psi(x) = (x - x^2)\psi(x^2)$, and on account of $1 \leq \deg \Psi \leq 2$, $\deg \psi = 0$. Denoting by $\psi(x) = a_1$, where $a_1 \in \mathbb{C} \setminus \{0\}$, since $\langle w, \Psi \rangle = \langle w, a_1(x - x^2) \rangle = 0$, we have $a_1\gamma_1 = 0$. It is a contradiction.

iii) If $\Phi(1) = 0$ and $\Psi(1) \neq 0$, then $\phi(x) = 0$ and $\omega(x) = \varphi_1(x)$. So $\Phi(x) = x(x^2-1)$ and $\Psi(x) = ax^2 + x + c$. If a = 0, then c + 1 = 0, since $\langle w, \Psi \rangle = 0$. Thus $\Psi(x) = x - 1$ which contradicts $\Psi(1) \neq 0$. Necessarily $a \neq 0$. Moreover the form w is of class one, we shall have the condition (9) with $\mathcal{Z}_{\Phi} = \{-1, 0, 1\}$, which leads to relation (40).

2.2 The Computation of γ_{n+1}

We will study the form w given in Theorem 2. Denoting by $\alpha = \frac{1}{2}(c-1)$ and $\beta = -\frac{1}{2}(a+c+3)$. The form w fulfills the following equation

$$(x(x^2 - 1)w)' + (-2(\alpha + \beta + 2)x^2 + x + 2\alpha + 1)w = 0, (w)_0 = (w)_1 = 1,$$
(42)

where

$$|\alpha + \beta + 1| + |\alpha| \neq 0, \quad \beta + 1 \neq 0, \quad |\alpha + \beta + 1| + |\beta| \neq 0, \quad \alpha + \beta + 2 \neq 0.$$
(43)

Applying the operator σ in (42) and on account of (2) and (3), we get

$$\left((x^2 - x)u\right)' + \left(-(\alpha + \beta + 2)x + \alpha + 1\right)u = 0, \quad (u)_0 = 1.$$
(44)

Multiplying (44) by x - 1, we obtain the functional equation satisfied by the form v

$$\left((x^2 - x)v\right)' + \left(-(\alpha + \beta + 3)x + \alpha + 2\right)v, \quad (v)_0 = 1.$$
(45)

Therefore the forms u and v are classical. Moreover from a suitable shifting, we obtain

$$u = \left(\tau_{\frac{1}{2}} \circ h_{\frac{1}{2}}\right) \mathcal{J}(\alpha, \beta); \quad v = \left(\tau_{\frac{1}{2}} \circ h_{\frac{1}{2}}\right) \mathcal{J}(\alpha, \beta + 1).$$
(46)

Where $\mathcal{J}(\alpha, \beta)$ is the Jacobi form of parameters α and β satisfying the following functional equation

$$\left((x^2 - 1)\mathcal{J}(\alpha, \beta)\right)' + \left(-(\alpha + \beta + 2)x + \alpha - \beta\right)\mathcal{J}(\alpha, \beta) = 0, \quad (\mathcal{J}(\alpha, \beta))_0 = 1.$$

It is regular if and only if $\alpha \neq -n$, $\beta \neq -n$, $\alpha + \beta \neq -n$, $n \geq 1$. Moreover, the coefficients of its corresponding orthogonal polynomials $\{P_n^{(\alpha,\beta)}\}_{n\geq 0}$ are given by [1]

$$\beta_{n}^{(\alpha,\beta)} = \frac{\alpha^{2} - \beta^{2}}{(2n + \alpha + \beta)(2n + \alpha + \beta + 2)}, \quad n \ge 0,$$

$$\gamma_{n+1}^{(\alpha,\beta)} = 4 \frac{(n+1)(n + \alpha + \beta + 1)(n + \alpha + 1)(n + \beta + 1)}{(2n + \alpha + \beta + 1)(2n + \alpha + \beta + 2)^{2}(2n + \alpha + \beta + 3)}, \quad n \ge 0.$$
(47)

PROPOSITION 2. Let w be the form of class one satisfying (42). The coefficients of its corresponding (MOPS) $\{W_n\}_{n\geq 0}$ are given by

$$\begin{split} \gamma_{2n+1} &= -\frac{(n+\alpha+\beta+1)(n+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)}, \quad n \ge 0, \\ \gamma_{2n+2} &= -\frac{(n+1)(n+\alpha+1)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta+3)}, \quad n \ge 0. \end{split}$$
(48)

PROOF. Let $\{P_n\}_{n\geq 0}$ be a (MOPS) with respect to the regular form u and $\{P_n^*\}_{n\geq 0}$ be the (MOPS) with respect to the regular form v. From (46), we have

$$P_n(x) = 2^{-n} P_n^{(\alpha,\beta)}(2x-1), \quad P_n^*(x) = 2^{-n} P_n^{(\alpha,\beta+1)}(2x-1), \quad n \ge 0.$$
(49)

By comparing with (13), (47) and using (8) we get

$$\gamma_{2n+1}\gamma_{2n+2} = \frac{(n+1)(n+\alpha+\beta+1)(n+\alpha+1)(n+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)^2(2n+\alpha+\beta+3)}, \quad n \ge 0, \\ \gamma_{2n+2}\gamma_{2n+3} = \frac{(n+1)(n+\alpha+\beta+2)(n+\alpha+\beta+2)(2n+\alpha+\beta+3)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta+3)^2(2n+\alpha+\beta+4)}, \quad n \ge 0.$$
 (50)

This gives

$$\frac{\gamma_{2n+3}}{\gamma_{2n+1}} = \frac{(n+\alpha+\beta+2)(n+\beta+2)(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)}{(n+\alpha+\beta+1)(n+\beta+1)(2n+\alpha+\beta+3)(2n+\alpha+\beta+4)}, \quad n \ge 0.$$

By virtue of (50) and from a simple calculation we deduce (48).

REMARK 1. In particular, when $\alpha = 2^{-1}$ and $\beta = -2^{-1}$, we obtain the so-called second-order self-associated orthogonal sequence, see [4].

M. I. Tounsi

2.3 Integral Representation

Regarding the integral representation of the form w given by (42), we start with the representation of the form u. For $\Re(\alpha) > -1$ and $\Re(\beta) > -1$, we have for all $f \in \mathcal{P}[1]$

$$\begin{aligned} \langle u, f \rangle &= \left\langle \mathcal{J}(\alpha, \beta), f\left(\frac{x+1}{2}\right) \right\rangle \\ &= \frac{1}{2^{\alpha+\beta+1}} \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1)\Gamma(\beta+1)} \int_{-1}^{1} (1+x)^{\alpha} (1-x)^{\beta} f\left(\frac{x+1}{2}\right) dx. \end{aligned}$$

Using the substitution $t = \frac{x+1}{2}$, we get

$$\langle u, f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_0^1 t^\alpha (1 - t)^\beta f(t) dt \,, \, f \in \mathcal{P}.$$
(51)

Next, we decompose the polynomial f as follows: $f(x) = f_1(x^2) + (x-1)f_2(x^2)$. From the fact that (x-1)w is antisymmetric, we obtain $\langle w, f \rangle = \langle u, f_1 \rangle$. Using again the substitution $t = y^2$ in (51), we obtain

$$\langle w, f \rangle = 2 \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_0^1 y^{2\alpha + 1} (1 - y^2)^\beta f_1(y^2) dy.$$

Since for $\Re(\alpha) > -\frac{1}{2}$ and $\Re(\beta) > -1$, $\int_{-1}^{1} y | y |^{2\alpha-1} (1-y^2)^{\beta} f_1(y^2) dy = 0$, the above representation may be written as follows

$$\langle w, f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{-1}^{1} (y^2 + y) |y|^{2\alpha - 1} (1 - y^2)^{\beta} f_1(y^2) dy.$$

Moreover, we have

$$\int_{-1}^{1} (y^2 + y) |y|^{2\alpha - 1} (1 - y^2)^{\beta} (y - 1) f_2(y^2) dy = 0.$$

Consequently, we get an integral representation of the form w for all $f \in \mathcal{P}$, $\Re \alpha > -\frac{1}{2}$, $\Re \beta > -1$,

$$\langle w, f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{-1}^{1} (y^2 + y) |y|^{2\alpha - 1} (1 - y^2)^{\beta} f(y) dy.$$

References

- T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- [2] J. Dini and P. Maroni, La multiplication d'une forme linaire par une fraction rationnelle. Applications aux formes de Laguerre-Hahn, Ann. Polon. Math. 52 (1990), 175–185.

- [3] A. Ghressi and L. Khériji, A survey on D-semiclassical orthogonal polynomials, AMEN, 10(2010), 210–234.
- [4] P. Maroni and M. Ihsen Tounsi, The second-order self-associated orthogonal sequences, Journal of Applied Mathematics, 2(2004), 137–167.
- [5] P. Maroni and M. Mejri, Some semiclassical orthogonal polynomials of class one, Eurasian Math. J., 2(2)(2011), 108–128.
- [6] M. Sghaier, Some new results about a set of semiclassical polynomials of class s = 1, Integral Transform, Spec. Funct., 21(7)(2010), 529–539.