A Characterization Of A Family Of Semiclassical Orthogonal Polynomials Of Class One*

Mohamed Ihsen Tounsi ${ }^{\dagger}$

Received 11 November 2011

Abstract

In this paper, we give another characterization of a non-symmetric semiclassical orthogonal polynomials of class one.

1 Introduction

Our goal is to characterize the set of non-symmetric semiclassical orthogonal polynomials of class one $\left\{W_{n}\right\}_{n \geq 0}$ verifying the three-term recurrence relation with $\beta_{n}=$ $(-1)^{n}, n \geq 0$ in a concise way as in $[5,6]$ via the study of the functional equation $(\Phi w)^{\prime}+\Psi w=0$ satisfied by its corresponding regular form w. Some information about the shape of polynomials Φ and Ψ intervening in the above functional equation are given due to the quadratic decomposition of $\left\{W_{n}\right\}_{n \geq 0}$ and to a connection between w and a suitable symmetric regular form ϑ. As application, we characterize w by giving the functional equation, the recurrence coefficient $\gamma_{n+1}, n \geq 0$ and an integral representation.

We denote by \mathcal{P} the vector space of polynomials with coefficients in \mathbb{C} and by \mathcal{P}^{\prime} its dual space. The action of $u \in \mathcal{P}^{\prime}$ on $f \in \mathcal{P}$ is denoted as $\langle u, f\rangle$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, the moments of u. For instance, for any form u, any polynomial g and any $(a, b, c) \in(\mathbb{C} \backslash\{0\}) \times \mathbb{C}^{2}$, we let $D u=u^{\prime}, \sigma u, g u, h_{a} u, \tau_{b} u$, $(x-c)^{-1} u$ and δ_{c}, be the forms defined in [3]:

$$
\begin{gathered}
\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle,\langle\sigma u, f\rangle:=\langle u, \sigma f\rangle,\langle g u, f\rangle:=\langle u, g f\rangle,\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle, \\
\left\langle\tau_{b} u, f\right\rangle:=\left\langle u, \tau_{-b} f\right\rangle, \quad\left\langle(x-c)^{-1} u, f\right\rangle:=\left\langle u, \theta_{c} f\right\rangle, \quad\left\langle\delta_{c}, f\right\rangle:=f(c),
\end{gathered}
$$

where $(\sigma f)(x)=f\left(x^{2}\right),\left(h_{a} f\right)(x)=f(a x),\left(\tau_{-b} f\right)(x)=f(x+b),\left(\theta_{c} f\right)(x)=\frac{f(x)-f(c)}{x-c}$ for all $f \in \mathcal{P}$. It is easy to see that $[3,4]$

$$
\begin{gather*}
(f u)^{\prime}=f u^{\prime}+f^{\prime} u, f \in \mathcal{P}, u \in \mathcal{P}^{\prime} \tag{1}\\
f(x) \sigma u=\sigma\left(f\left(x^{2}\right) u\right), f \in \mathcal{P}, u \in \mathcal{P}^{\prime} \tag{2}\\
\sigma\left(u^{\prime}\right)=2(\sigma(x u))^{\prime}, u \in \mathcal{P}^{\prime} \tag{3}
\end{gather*}
$$

[^0]\[

$$
\begin{equation*}
x^{-1}(x u)=u-(u)_{0} \delta_{0}, x\left(x^{-1} u\right)=u, u \in \mathcal{P}^{\prime} \tag{4}
\end{equation*}
$$

\]

A form w is said to be regular whenever there is a sequence of monic polynomials $\left\{W_{n}\right\}_{n \geq 0}, \operatorname{deg} W_{n}=n, n \geq 0$ (MPS) such that $\left\langle w, W_{n} W_{m}\right\rangle=k_{n} \delta_{n, m}, n, m \geq 0$ with $k_{n} \neq 0$ for any $n \geq 0$. In this case, $\left\{W_{n}\right\}_{n \geq 0}$ is called a monic orthogonal polynomial sequence (MOPS) and it is characterized by the following three-term recurrence relation [1]

$$
\begin{align*}
& W_{0}(x)=1, \quad W_{1}(x)=x-\beta_{0} \\
& W_{n+2}(x)=\left(x-\beta_{n+1}\right) W_{n+1}(x)-\gamma_{n+1} W_{n}(x), \quad n \geq 0 \tag{5}
\end{align*}
$$

where $\beta_{n}=\frac{\left\langle w, x W_{n}^{2}\right\rangle}{\left\langle w, W_{n}^{2}\right\rangle} \in \mathbb{C}$ and $\gamma_{n+1}=\frac{\left\langle w, W_{n+1}^{2}\right\rangle}{\left\langle w, W_{n}^{2}\right\rangle} \in \mathbb{C} \backslash\{0\}, n \geq 0$.
When w is regular, $\left\{W_{n}\right\}_{n \geq 0}$ is a symmetric (MOPS) if and only if $\beta_{n}=0, n \geq 0$ or equivalently $(w)_{2 n+1}=0, n \geq 0$. Also, The form w is said to be normalized if $(w)_{0}=1$. In this paper, we suppose that any form will be normalized.

A form w is called semiclassical when it is regular and there exist two polynomials Φ (monic) and $\Psi, \operatorname{deg} \Phi=t \geq 0, \operatorname{deg} \Psi=p \geq 1$ such that

$$
\begin{equation*}
(\Phi w)^{\prime}+\Psi w=0 \tag{6}
\end{equation*}
$$

It's corresponding orthogonal polynomial sequence $\left\{W_{n}\right\}_{n \geq 0}$ is called semiclassical. The semiclassical character is kept by shifting $[3,4,5]$. In fact, let $\left\{a^{-n} W_{n}(a x+b)\right\}_{n \geq 0}$, $a \neq 0, b \in \mathbb{C}$; when w satisfies (6), then $\left(h_{a^{-1}} \circ \tau_{-b}\right) w$ fulfills

$$
\begin{equation*}
\left(a^{-t} \Phi(a x+b)\left(h_{a^{-1}} \circ \tau_{-b}\right) w\right)^{\prime}+a^{1-t} \Psi(a x+b)\left(h_{a^{-1}} \circ \tau_{-b}\right) w=0 \tag{7}
\end{equation*}
$$

and the recurrence coefficients of (5) are

$$
\begin{equation*}
\frac{\beta_{n}-b}{a}, \frac{\gamma_{n+1}}{a^{2}}, n \geq 0 \tag{8}
\end{equation*}
$$

The semiclassical form w is said to be of class $s=\max (p-1, t-2) \geq 0$ if and only if $[3,4,5]$

$$
\begin{equation*}
\prod_{c \in \mathcal{Z}_{\Phi}}\left\{\left(\Psi(c)+\Phi^{\prime}(c)\right)+\left(\left\langle w,\left(\theta_{c} \Psi\right)+\left(\theta_{c}^{2} \Phi\right)\right\rangle\right)\right\}>0 \tag{9}
\end{equation*}
$$

where \mathcal{Z}_{Φ} is the set of zeros of Φ. In particular, when $s=0$ the form w is usually called classical Hermite, Laguerre, Bessel and Jacobi, see [3, 4, 5].

LEMMA 1 ([3]). Let w be a symmetric semiclassical form of class s satisfying (6). The following statements hold.
i) When s is odd then the polynomial Φ is odd and Ψ is even.
ii) When s is even then the polynomial Φ is even and Ψ is odd.

Let $\left\{W_{n}\right\}_{n \geq 0}$ be a (MOPS) with respect to the form w fulfilling the three-term recurrence relation (5) with

$$
\begin{equation*}
\beta_{n}=(-1)^{n}, n \geq 0 . \tag{10}
\end{equation*}
$$

Such a (MOPS) is characterized by the following quadratic decomposition [4]

$$
\begin{equation*}
W_{2 n}(x)=P_{n}\left(x^{2}\right) \quad, \quad W_{2 n+1}(x)=(x-1) P_{n}^{*}\left(x^{2}\right), \quad n \geq 0 \tag{11}
\end{equation*}
$$

where $\left\{P_{n}\right\}_{n \geq 0}$ is a (MOPS) and $\left\{P_{n}^{*}\right\}_{n \geq 0}$ is the sequence of monic Kernel polynomials of \mathbf{K}-parameter 1 associated with $\left\{P_{n}\right\}_{n \geq 0}$ defined by [1, 2]

$$
\begin{equation*}
P_{n}^{*}(x)=\frac{1}{x-1}\left[P_{n+1}(x)-\frac{P_{n+1}(1)}{P_{n}(1)} P_{n}(x)\right], \quad n \geq 0 \tag{12}
\end{equation*}
$$

Furthermore the sequences $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{P_{n}^{*}\right\}_{n \geq 0}$ satisfy respectively the recurrence relation (5) with

$$
\left\{\begin{array} { l }
{ \beta _ { 0 } ^ { P } = \gamma _ { 1 } + 1 , } \tag{13}\\
{ \beta _ { n + 1 } ^ { P } = \gamma _ { 2 n + 2 } + \gamma _ { 2 n + 3 } + 1 , } \\
{ \gamma _ { n + 1 } ^ { P } = \gamma _ { 2 n + 1 } \gamma _ { 2 n + 2 } , }
\end{array} \left\{\left\{\begin{array}{l}
\beta_{0}^{*}=\gamma_{1}+\gamma_{2}+1 \\
\beta_{n+1}^{*}=\gamma_{2 n+3}+\gamma_{2 n+4}+1 \\
\gamma_{n+1}^{*}=\gamma_{2 n+2} \gamma_{2 n+3}
\end{array}\right.\right.\right.
$$

for all $n \geq 0$. Denoting by u and v the forms associated with $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{P_{n}^{*}\right\}_{n \geq 0}$ respectively, we get [4]

$$
\begin{gather*}
u=\sigma w=\sigma(x w) \tag{14}\\
v=\gamma_{1}^{-1}(x-1) \sigma w \tag{15}
\end{gather*}
$$

The regularity of v means that [1]

$$
\begin{equation*}
P_{n+1}(1) \neq 0, \quad n \geq 0 \tag{16}
\end{equation*}
$$

Moreover, the form $(x-1) w$ is antisymmetric, that is,

$$
\begin{equation*}
((x-1) w)_{2 n}=0, \quad n \geq 0 \tag{17}
\end{equation*}
$$

Let now λ be a non-zero complex number and ϑ be the form such that

$$
\begin{equation*}
\lambda x \vartheta=(x-1) w . \tag{18}
\end{equation*}
$$

According to (17)-(18) we get $(x \vartheta)_{2 n}=0, n \geq 0$. Hence ϑ is a symmetric form. Multiplying (18) by x, applying the operator σ and using (15) we get $\lambda x \sigma \vartheta=\gamma_{1} v$. Consequently, according to [3], the form ϑ is regular if and only if

$$
\begin{equation*}
\Omega_{n}(\lambda)=\gamma_{1} P_{n-1}^{*(1)}(0)+\lambda P_{n}^{*}(0) \neq 0, \quad n \geq 0 \tag{19}
\end{equation*}
$$

with $P_{n}^{*(1)}(x)=\left(v \theta_{0} P_{n+1}^{*}\right)(x), n \geq 0$ and $P_{-1}^{*(1)}(x):=0$.
LEMMA 2. There exists a non zero constant λ such that the form ϑ given by (18) is regular.

PROOF. According to the following relation [2]

$$
P_{n+1}^{*(1)}(x) P_{n+1}^{*}(x)-P_{n+2}^{*}(x) P_{n}^{*(1)}(x)=\prod_{\nu=0}^{n} \gamma_{\nu+1}^{*} \neq 0, \quad n \geq 0
$$

it is easy to see that

$$
\begin{equation*}
\left|P_{n-1}^{*(1)}(0)\right|+\left|P_{n}^{*}(0)\right| \neq 0, \quad \forall n \geq 0 \tag{20}
\end{equation*}
$$

Let n be a fixed nonnegative integer. If $P_{n-1}^{*(1)}(0)=0$, then $P_{n}^{*}(0) \neq 0$ from (20). So, condition (19) is satisfied for $\lambda \neq 0$. If $P_{n}^{*}(0)=0$, then $P_{n-1}^{*(1)}(0) \neq 0$ from (20). So, condition (19) satisfied for $\lambda \neq 0$. If $P_{n-1}^{*(1)}(0) \neq 0$ and $P_{n}^{*}(0) \neq 0$, then for all $\lambda \neq \lambda_{n}$, (20) is satisfied, where we have posed

$$
\begin{equation*}
\lambda_{n}=-\gamma_{1} \frac{P_{n-1}^{*(1)}(0)}{P_{n}^{*}}, \quad n \geq 0 \tag{21}
\end{equation*}
$$

In any case there exists a constant $\lambda \neq 0$ such that (19) is fulfilled and so ϑ is a regular form.

In what follows we assume that the (MOPS) $\left\{W_{n}\right\}_{n \geq 0}$ associated with (5),(10) is semiclassical of class s_{w}. Its corresponding regular form w is then semiclassical of class s_{w} satisfying the functional equation (6). Multiplying the equation (6) by $(x-1)^{2}$ and on account of (1) and (18), we deduce that the form ϑ, when it is regular, is also semiclassical of class s_{ϑ} at most $s_{w}+2$ satisfying the functional equation

$$
\begin{equation*}
(\mathrm{E} \vartheta)^{\prime}+\mathrm{F} \vartheta=0, \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{E}(x)=x(x-1) \Phi(x) ; \quad \mathrm{F}(x)=x((x-1) \Psi(x)-2 \Phi(x)) . \tag{23}
\end{equation*}
$$

The next technical lemma is needed in the sequel.
LEMMA 3. For all root c of Φ, we have
a) $\left\langle\vartheta, \theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right\rangle=\frac{1}{\lambda}(c-1)^{2}\left\langle w, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle+\left(1-\frac{1}{\lambda}\right)(c-1)\left(\Phi^{\prime}(c)+\Psi(c)\right)$,
b) $\mathrm{E}^{\prime}(c)+\mathrm{F}(c)=c(c-1)\left(\Phi^{\prime}(c)+\Psi(c)\right)$.

PROOF. Let c be a root of Φ. Write $\Phi(x)=(x-c) \Phi_{c}(x)$ with $\Phi_{c}(x)=\left(\theta_{c} \Phi\right)(x)$. From (22)-(23) we have

$$
\begin{equation*}
\left(\theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right)(x)=\theta_{c}\left\{\xi(\xi-1)\left(\Phi_{c}(\xi)+\Psi(\xi)\right)\right\}(x)-2 x \Phi_{c}(x) . \tag{25}
\end{equation*}
$$

Taking $g(x)=\left(\Phi_{c}+\Psi\right)(x)$ and $f(x)=x(x-1)$ in the following relation

$$
\begin{equation*}
\theta_{c}(f g)(x)=g(x)\left(\theta_{c} f\right)(x)+f(c)\left(\theta_{c} g\right)(x), \quad \text { for all } f, g \in \mathcal{P} \tag{26}
\end{equation*}
$$

(25) becomes

$$
\begin{equation*}
\left(\theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right)(x)=(c-1)\left\{\left(\Phi_{c}+\Psi\right)(x)+c\left(\theta_{c}\left(\Phi_{c}+\Psi\right)\right)(x)\right\}+x\left(\Psi-\Phi_{c}\right)(x) . \tag{27}
\end{equation*}
$$

From the second identity in (4), relation (18) is equivalent to

$$
\begin{equation*}
\vartheta=\frac{1}{\lambda}\left(w-x^{-1} w\right)+\left(1-\frac{1}{\lambda}\right) \delta_{0} . \tag{28}
\end{equation*}
$$

We may also write

$$
\begin{equation*}
\left\langle\frac{1}{\lambda}\left(w-x^{-1} w\right), \theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right\rangle=\frac{1}{\lambda}\left\langle w, \theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}-\theta_{0}\left(\theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right)\right\rangle \tag{29}
\end{equation*}
$$

Taking $f(x)=\left(\theta_{c}\left(\Phi_{c}+\Psi\right)\right)(x)$ in the following

$$
\begin{equation*}
c \theta_{0}\left(\theta_{c} f\right)=\theta_{c} f-\theta_{0} f, \quad f \in \mathcal{P}, \quad c \in \mathbb{C} \tag{30}
\end{equation*}
$$

and applying the operator θ_{0} to (27), we obtain

$$
\begin{equation*}
\left(\theta_{0}\left(\theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right)\right)(x)=\left(\Psi-\Phi_{c}\right)(x)+(c-1)\left(\theta_{c}\left(\Phi_{c}+\Psi\right)\right)(x) \tag{31}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left(\theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right)(x)-\left(\theta_{0}\left(\theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right)\right)(x)=(c-1)^{2}\left(\theta_{c}\left(\Phi_{c}+\Psi\right)\right)(x)+(x+c-2) \Psi-\Phi \tag{32}
\end{equation*}
$$

Thus (29) becomes

$$
\begin{equation*}
\left\langle\frac{1}{\lambda}\left(w-x^{-1} w\right), \theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right\rangle=\frac{1}{\lambda}(c-1)^{2}\left\langle w, \theta_{c} \Phi_{c}+\theta_{c} \Psi\right\rangle \tag{33}
\end{equation*}
$$

since $\langle w, \Psi\rangle=0$ and $\langle w, x \Psi(x)-\Phi(x)\rangle=0$ from (6). Next, by a simple calculation, we have

$$
\begin{equation*}
\left\langle\left(1-\frac{1}{\lambda}\right) \delta_{0}, \theta_{c}^{2} \mathrm{E}+\theta_{c} \mathrm{~F}\right\rangle=\left(1-\frac{1}{\lambda}\right)(c-1)\left(\Phi_{c}+\Psi\right)(c) . \tag{34}
\end{equation*}
$$

Adding (33) and (34) we obtain the first relation in (24). From (22)-(23), we have $\mathrm{E}^{\prime}(c)=c(c-1) \Phi^{\prime}(c)$ and $\mathrm{F}(c)=c(c-1) \Psi(c)$, hence the second relation in (24) holds.

Let us recall the following result about the class s_{ϑ} of the form ϑ.
THEOREM 1. The form ϑ is semiclassical and its class depends only on the zero $x=1$ for any $\lambda \neq \lambda_{n}, n \geq-1$ where $\lambda_{n}, n \geq 0$ is given by (21) and

$$
\begin{equation*}
\lambda_{-1}=\frac{\left\langle w, \theta_{0} \Psi+\theta_{0}^{2} \Phi\right\rangle+\Phi^{\prime}(0)+\Psi(0)}{\Phi^{\prime}(0)+\Psi(0)} \tag{35}
\end{equation*}
$$

Moreover, the semiclassical form ϑ is of class s_{ϑ} satisfying the functional equation

$$
\begin{equation*}
(\widetilde{\mathrm{E}} \vartheta)^{\prime}+\widetilde{\mathrm{F}} \vartheta=0 \tag{36}
\end{equation*}
$$

such that
a) if $\Phi(1) \neq 0$, then $s_{\vartheta}=s_{w}+2$,

$$
\widetilde{\mathrm{E}}(x)=x(x-1) \Phi(x) \quad \text { and } \quad \widetilde{\mathrm{F}}(x)=x((x-1) \Psi(x)-2 \Phi(x))
$$

b) if $\Phi(1)=0$ and $\Psi(1) \neq 0$, then $s_{\vartheta}=s_{w}+1$,

$$
\widetilde{\mathrm{E}}(x)=x \Phi(x) \quad \text { and } \quad \widetilde{\mathrm{F}}(x)=x\left(\Psi(x)-\left(\theta_{1} \Phi\right)(x)\right)
$$

c) if $\Phi(1)=0$ and $\Psi(1)=0$, then $s_{\vartheta}=s_{w}$,

$$
\widetilde{\mathrm{E}}(x)=x\left(\theta_{1} \Phi\right)(x) \quad \text { and } \quad \widetilde{\mathrm{F}}(x)=x\left(\theta_{1} \Psi\right)(x)
$$

PROOF. By our assumption, on account of Lemma 2, and by (22)-(23), the form ϑ is regular and so is semiclassical of class $s_{\vartheta} \leq s_{w}+2$. Let c be a root of E such that $c \neq 1$. According to (23) we get $c \Phi(c)=0$. If $c \neq 0$, then c is a root of Φ. We suppose $E^{\prime}(c)+F(c)=0$. From (24) we obtain $\Phi^{\prime}(c)+\Psi(c)=0$ and $\left\langle\vartheta, \theta_{c}^{2} \mathrm{E}+\theta_{c} F\right\rangle=$ $\frac{1}{\lambda}(c-1)^{2}\left\langle w, \theta_{c} \Psi+\theta_{c}^{2} \Phi\right\rangle \neq 0$, because w is semiclassical and so satisfies (9). If $c=0$ and $\Phi(0) \neq 0$, then $\mathrm{E}^{\prime}(0)+\mathrm{F}(0)=-\Phi(0) \neq 0$ from (23). If $c=0$ and $\Phi(0)=0$, then $\mathrm{E}^{\prime}(0)+\mathrm{F}(0)=0$. We are led to the following: When $\Phi^{\prime}(0)+\Psi(0)=0$, we get $\left\langle\vartheta, \theta_{0}^{2} \mathrm{E}+\theta_{0} F\right\rangle=\frac{1}{\lambda}\left\langle w, \theta_{0} \Psi+\theta_{0}^{2} \Phi\right\rangle \neq 0$ from (24a). When $\Phi^{\prime}(0)+\Psi(0) \neq 0$ and because $\lambda \neq \lambda_{-1}$, then according to (24a) with $c=0$, we obtain $\left\langle\vartheta, \theta_{0}^{2} E+\theta_{0} F\right\rangle \neq 0$. Therefore equation (6) is not simplified by $x-c$ for $c \neq 1$. Next, from (23) we have $\mathrm{E}^{\prime}(1)+\mathrm{F}(1)=-\Phi(1)$.
a) If $\Phi(1) \neq 0$, then $\mathrm{E}^{\prime}(1)+\mathrm{F}(1) \neq 0$ and the equation (22) cannot be simplified. This means that

$$
s_{\vartheta}=\max (\operatorname{deg} \mathrm{E}-2, \operatorname{deg} \mathrm{~F}-1)=\max (\operatorname{deg} \Phi-2, \operatorname{deg} \Psi-1)=s_{w}+2 .
$$

b) If $\Phi(1)=0$, then $\mathrm{E}^{\prime}(1)+\mathrm{F}(1)=0$ and $\left\langle\vartheta, \theta_{1}^{2} \mathrm{E}+\theta_{1} \mathrm{~F}\right\rangle=0$ from (24). Therefore (22) can be simplified by $x-1$. After simplification, it becomes $(\widetilde{\mathrm{E}} \vartheta)^{\prime}+\widetilde{\mathrm{F}} \vartheta=0$, with $\widetilde{\mathrm{E}}(x)=x \Phi(x)$ and $\widetilde{\mathrm{F}}(x)=x\left(\Psi(x)-\left(\theta_{1} \Phi\right)(x)\right)$. We have $\widetilde{\mathrm{E}}^{\prime}(1)+\widetilde{\mathrm{F}}(1)=\Psi(1)$. When $\Psi(1) \neq 0$, the above functional equation is not simplified. Consequently, $s_{\vartheta}=$ $\max (\operatorname{deg} \widetilde{\mathrm{E}}-2, \operatorname{deg} \widetilde{\mathrm{~F}}-1)=s_{w}+1$.
c) If $\Phi(1)=0$ and $\Psi(1)=0$, then $\widetilde{\mathrm{E}}^{\prime}(1)+\widetilde{\mathrm{F}}(1)=\Psi(1)=0$. By virtue of (18) and (6) we get $\left\langle\vartheta, \theta_{1}^{2} \widetilde{\mathrm{E}}+\theta_{1} \widetilde{\mathrm{~F}}\right\rangle=\frac{1}{\lambda}\langle w, \Psi\rangle=0$. Therefore (34) is simplified by $x-1$, and ϑ fulfils $(\widehat{\mathrm{E}} \vartheta)^{\prime}+\widehat{\mathrm{F}} \vartheta=0$, where $\widehat{\mathrm{E}}(x)=x\left(\theta_{1} \Phi\right)(x)$ and $\widehat{\mathrm{F}}(x)=x\left(\theta_{1} \Psi\right)(x)$. If 1 is a root of $\theta_{1} \Phi$, then $\Phi^{\prime}(1)+\Psi(1)=0$. Assuming that $\widehat{\mathrm{E}}^{\prime}(1)+\widehat{\mathrm{F}}(1)=0$, a simple calculation gives $\left\langle\vartheta, \theta_{1}^{2} \widehat{\mathrm{E}}+\theta_{1} \widehat{\mathrm{~F}}\right\rangle=\frac{1}{\lambda}\left\langle w, \theta_{1} \Psi+\theta_{1}^{2} \Phi\right\rangle \neq 0$ since w is a semiclassical of class 1 satisfying (9). Hence the functional equation $(\widehat{\mathrm{E}} \vartheta)^{\prime}+\widehat{\mathrm{F}} \vartheta=0$ is not simplified and $s_{\vartheta}=\max (\operatorname{deg} \widehat{\mathrm{E}}-2, \operatorname{deg} \widehat{\mathrm{~F}}-1)=s_{w}$.

2 Main Results

In the sequel we deal with the semiclassical sequence $\left\{W_{n}\right\}_{n \geq 0}$ of class one satisfying (10). Its corresponding regular form w is then semiclassical of class $s_{w}=1$ fulfilling the functional equation (6) with $0 \leq \operatorname{deg} \Phi \leq 3$ and $1 \leq \operatorname{deg} \Psi \leq 2$.

2.1 Characterization of the Polynomials Φ and Ψ

We can usually decompose the polynomials Φ and Ψ through their odd and even parts. Set

$$
\begin{gather*}
\Phi(x)=\phi\left(x^{2}\right)+x \varphi\left(x^{2}\right), \quad \Psi(x)=\psi\left(x^{2}\right)+x \omega\left(x^{2}\right) \tag{37}\\
\left(\theta_{1} \Phi\right)(x)=\phi_{1}\left(x^{2}\right)+x \varphi_{1}\left(x^{2}\right) \quad \text { and } \quad\left(\theta_{1} \Psi\right)(x)=\psi_{1}\left(x^{2}\right)+x \omega_{1}\left(x^{2}\right)
\end{gather*}
$$

PROPOSITION 1. Let w be a semiclassical form of class one satisfying (6) and $\left\{W_{n}\right\}_{n \geq 0}$ be its corresponding MOPS fulfilling (10).
a) If $\Phi(1) \neq 0$, then $\phi(x)=\varphi(x)=\frac{1}{2}(x \omega(x)-\psi(x))$.
b) If $\Phi(1)=0$ and $\Psi(1) \neq 0$, then $\phi(x)=0$ and $\varphi_{1}(x)=\omega(x)$.
c) If $\Phi(1)=0$ and $\Psi(1)=0$, then $\phi(x)+\varphi(x)=0$ and $\psi(x)+x \omega(x)=0$.

PROOF. Set

$$
\begin{equation*}
\widetilde{\mathrm{E}}(x)=\widetilde{\mathrm{E}}^{e}\left(x^{2}\right)+x \widetilde{\mathrm{E}}^{o}\left(x^{2}\right) ; \quad \widetilde{\mathrm{F}}(x)=\widetilde{\mathrm{F}}^{e}\left(x^{2}\right)+x \widetilde{\mathrm{~F}}^{o}\left(x^{2}\right) \tag{38}
\end{equation*}
$$

a) $\Phi(1) \neq 0$. According to $(37)-(38)$ and from Theorem 1., we obtain $\widetilde{\mathrm{E}}^{e}(x)=x(\phi-$ $\varphi)(x), \widetilde{\mathrm{E}}^{o}(x)=x \varphi(x)-\phi(x), \widetilde{\mathrm{F}}^{e}(x)=x(\psi-\omega-2 \varphi)(x), \widetilde{\mathrm{F}}^{o}(x)=x \omega(x)-\psi(x)-2 \phi(x)$. On account of Lemma 1. and the fact that ϑ is of odd class, we get $\widetilde{\mathrm{E}}^{e}=\widetilde{\mathrm{F}}^{o}=0$. This leads to the result a).
b) $\Phi(1)=0$ and $\Psi(1) \neq 0$. Similar to a), we have $\widetilde{\mathrm{E}}^{e}(x)=x \varphi(x), \widetilde{\mathrm{E}}^{o}(x)=$ $\phi(x), \widetilde{\mathrm{F}}^{e}(x)=x\left(\omega-\varphi_{1}\right)(x)$ and $\widetilde{\mathrm{F}}^{o}(x)=\left(\psi-\phi_{1}\right)(x)$. The form ϑ is of odd class, then $\widetilde{\mathrm{E}}^{e}=\widetilde{\mathrm{F}}^{o}=0$. Hence the conclusion.
c) $\Phi(1)=0$ and $\Psi(1)=0$. In this case we have $\widetilde{\mathrm{E}}^{e}(x)=x \varphi_{1}(x), \widetilde{\mathrm{E}}^{o}(x)=$ $\phi_{1}(x), \widetilde{\mathrm{F}}^{e}(x)=x \omega_{1}(x), \widetilde{\mathrm{F}}^{o}(x)=\psi_{1}(x)$. Since ϑ is of odd class, $\widetilde{\mathrm{E}}^{e}=\widetilde{\mathrm{F}}^{o}=0$. Therefore $\varphi_{1}=0$ and $\psi_{1}=0$. Moreover we can write $\Phi(x)=(x-1)\left(\theta_{1} \Phi\right)(x)=(x-1) \phi_{1}\left(x^{2}\right)$ and $\Psi(x)=(x-1) x \omega_{1}\left(x^{2}\right)$. So $\phi=-\phi_{1}, \varphi=-\phi_{1}, \omega=-\omega_{1}$ and $\psi=x \omega_{1}$. This gives the desired result.

THEOREM 2. Let w be a semiclassical form of class one satisfying (6) and $\left\{W_{n}\right\}_{n \geq 0}$ be its corresponding (MOPS) fulfilling (10). The functional equation (6) has only one solution given by

$$
\begin{equation*}
\Phi(x)=x^{3}-x, \quad \Psi(x)=a x^{2}+x+c, \quad a \neq 0, \quad(w)_{0}=(w)_{1}=1 \tag{39}
\end{equation*}
$$

with

$$
\begin{equation*}
a+c+1 \neq 0 ; \quad|a+2|+|a+c+3| \neq 0 \quad \text { and } \quad|a+2|+|c-3| \neq 0 \tag{40}
\end{equation*}
$$

PROOF. When $\operatorname{deg} \Phi \leq 2$ and $\operatorname{deg} \Psi=2$, we consider $a \neq 0, b$ and c as three complex numbers such that $\Psi(x)=a x^{2}+b x+c$. From Proposition 1, we have the following.
i) If $\Phi(1) \neq 0$, then $\phi(x)=\varphi(x)$, and so $\Phi(x)=(x+1) \phi\left(x^{2}\right)$ from (37). Because Φ is a monic polynomial of degree at most two, then necessarily $\phi(x)=1$. In addition, we have $x \omega(x)-\psi(x)=2$. This implies that $a=b$ and $c=-2$. Thus $\Phi(x)=x+1$ and $\Psi(x)=a x^{2}+a x-2, a \neq 0$. According to equation (6), we have $\langle w, \Psi(x)\rangle=$
$\langle w, x \Psi(x)-\Phi(x)\rangle=0$. Then $\left\langle w, a x^{2}+a x-2\right\rangle=\left\langle w, a x^{3}+a x^{2}-3 x-1\right\rangle=0$. It is equivalent to

$$
\begin{equation*}
a\left(\gamma_{1}+2\right)-2=0 \text { and } a\left(\gamma_{1}+1\right)-2=0 \tag{41}
\end{equation*}
$$

since $\langle w, x\rangle=1$ and $\left\langle w, x^{3}\right\rangle=\left\langle w, x^{2}\right\rangle=\gamma_{1}+1$. It is easy to see from (41) that $a=0$, that is a contradiction with $\operatorname{deg} \Psi=2$.
ii) If $\Phi(1)=0$ and $\Psi(1) \neq 0$, then $\phi(x)=0$. Therefore $\Phi(x)=x$, because Φ is monic and $\operatorname{deg} \Phi \leq 2$. This contradicts $\Phi(1)=0$.
iii) If $\Phi(1)=0$ and $\Psi(1)=0$, then $\Phi(x)=x-1$ and $\Psi(x)=a\left(x^{2}-x\right)$ with $a \neq 0$. Writing $\langle w, \Psi(x)\rangle=\left\langle w, a\left(x^{2}-x\right)\right\rangle=0$, then $a \gamma_{1}=0$ and so $\gamma_{1}=0$. It is a contradiction, by virtue of the regularity of the form w.

When $\operatorname{deg} \Phi=3$, we obtain $\operatorname{deg} \phi \leq 1$ and $\operatorname{deg} \varphi=1$ from (37). According to Proposition 1, we have the following.
i) If $\Phi(1) \neq 0$, then $\phi(x)=\varphi(x)$ and $\psi(x)=-2 \phi(x)+x \omega(x)$. We obtain $\Phi(x)=(x+$ 1) $\varphi\left(x^{2}\right)$ and $\Psi(x)=\left(x^{2}+x\right) \omega\left(x^{2}\right)-2 \varphi\left(x^{2}\right)$. Therefore ω is a constant polynomial and φ is a monic polynomial of degree one since $\operatorname{deg} \Psi \leq 2$ and $\operatorname{deg} \Phi=3$. Denoting by $\varphi(x)=$ $x+d$ and $\omega(x)=e$. We write $\Phi(x)=(x+1)\left(x^{2}+d\right)$ and $\Psi(x)=(e-2) x^{2}+e x-2 d$. As above, we have $\langle w, \Psi\rangle=\langle w, x \Psi(x)-\Phi(x)\rangle=0$. It follows $(e-2)\left(\gamma_{1}+1\right)+e-2 d=0$ and $(e-2)\left(\gamma_{1}+1\right)-2 d=0$. Hence $e=0$ and $\gamma_{1}+d+1=0$. Again, according to equation (6), we have $\left\langle(\Phi(x) w)^{\prime}+\Psi(x) w, x^{2}\right\rangle=0$, then $\left\langle w, x^{2}\left(x^{2}+d\right)\right\rangle=0$. Since $x^{2}=W_{2}(x)+\gamma_{1}+1$, we then obtain $\left\langle w,\left(W_{2}(x)+\gamma_{1}+1\right) W_{2}(x)\right\rangle=0$. This gives $\left\langle w, W_{2}^{2}(x)\right\rangle=0$. It is a contradiction with the orthogonality of $\left\{W_{n}\right\}_{n \geq 0}$.
ii) If $\Phi(1)=0$ and $\Psi(1)=0$, then $\phi(x)=-\varphi(x)$ and $\psi(x)=-x \omega(x)$. Therefore $\Psi(x)=\left(x-x^{2}\right) \psi\left(x^{2}\right)$, and on account of $1 \leq \operatorname{deg} \Psi \leq 2$, $\operatorname{deg} \psi=0$. Denoting by $\psi(x)=a_{1}$, where $a_{1} \in \mathbb{C} \backslash\{0\}$, since $\langle w, \Psi\rangle=\left\langle w, a_{1}\left(x-x^{2}\right)\right\rangle=0$, we have $a_{1} \gamma_{1}=0$. It is a contradiction.
iii) If $\Phi(1)=0$ and $\Psi(1) \neq 0$, then $\phi(x)=0$ and $\omega(x)=\varphi_{1}(x)$. So $\Phi(x)=x\left(x^{2}-1\right)$ and $\Psi(x)=a x^{2}+x+c$. If $a=0$, then $c+1=0$, since $\langle w, \Psi\rangle=0$. Thus $\Psi(x)=x-1$ which contradicts $\Psi(1) \neq 0$. Necessarily $a \neq 0$. Moreover the form w is of class one, we shall have the condition (9) with $\mathcal{Z}_{\Phi}=\{-1,0,1\}$, which leads to relation (40).

2.2 The Computation of γ_{n+1}

We will study the form w given in Theorem 2. Denoting by $\alpha=\frac{1}{2}(c-1)$ and $\beta=$ $-\frac{1}{2}(a+c+3)$. The form w fulfills the following equation

$$
\begin{align*}
& \left(x\left(x^{2}-1\right) w\right)^{\prime}+\left(-2(\alpha+\beta+2) x^{2}+x+2 \alpha+1\right) w=0 \tag{42}\\
& (w)_{0}=(w)_{1}=1
\end{align*}
$$

where

$$
\begin{equation*}
|\alpha+\beta+1|+|\alpha| \neq 0, \quad \beta+1 \neq 0, \quad|\alpha+\beta+1|+|\beta| \neq 0, \quad \alpha+\beta+2 \neq 0 \tag{43}
\end{equation*}
$$

Applying the operator σ in (42) and on account of (2) and (3), we get

$$
\begin{equation*}
\left(\left(x^{2}-x\right) u\right)^{\prime}+(-(\alpha+\beta+2) x+\alpha+1) u=0, \quad(u)_{0}=1 \tag{44}
\end{equation*}
$$

Multiplying (44) by $x-1$, we obtain the functional equation satisfied by the form v

$$
\begin{equation*}
\left(\left(x^{2}-x\right) v\right)^{\prime}+(-(\alpha+\beta+3) x+\alpha+2) v, \quad(v)_{0}=1 \tag{45}
\end{equation*}
$$

Therefore the forms u and v are classical. Moreover from a suitable shifting, we obtain

$$
\begin{equation*}
u=\left(\tau_{\frac{1}{2}} \circ h_{\frac{1}{2}}\right) \mathcal{J}(\alpha, \beta) ; \quad v=\left(\tau_{\frac{1}{2}} \circ h_{\frac{1}{2}}\right) \mathcal{J}(\alpha, \beta+1) \tag{46}
\end{equation*}
$$

Where $\mathcal{J}(\alpha, \beta)$ is the Jacobi form of parameters α and β satisfying the following functional equation

$$
\left(\left(x^{2}-1\right) \mathcal{J}(\alpha, \beta)\right)^{\prime}+(-(\alpha+\beta+2) x+\alpha-\beta) \mathcal{J}(\alpha, \beta)=0, \quad(\mathcal{J}(\alpha, \beta))_{0}=1
$$

It is regular if and only if $\alpha \neq-n, \quad \beta \neq-n, \quad \alpha+\beta \neq-n, n \geq 1$. Moreover, the coefficients of its corresponding orthogonal polynomials $\left\{P_{n}^{(\alpha, \beta)}\right\}_{n \geq 0}$ are given by [1]

$$
\begin{align*}
& \beta_{n}^{(\alpha, \beta)}=\frac{\alpha^{2}-\beta^{2}}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)}, \quad n \geq 0, \\
& \gamma_{n+1}^{(\alpha, \beta)}=4 \frac{(n+1)(n+\alpha+\beta+1)(n+\alpha+1)(n+\beta+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)^{2}(2 n+\alpha+\beta+3)} \quad, n \geq 0 . \tag{47}
\end{align*}
$$

PROPOSITION 2. Let w be the form of class one satisfying (42). The coefficients of its corresponding (MOPS) $\left\{W_{n}\right\}_{n \geq 0}$ are given by

$$
\begin{align*}
& \gamma_{2 n+1}=-\frac{(n+\alpha+\beta+1)(n+\beta+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)}, \quad n \geq 0 \tag{48}\\
& \gamma_{2 n+2}=-\frac{(n+1)(n+\alpha+1)}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta+3)}, \quad n \geq 0
\end{align*}
$$

PROOF. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a (MOPS) with respect to the regular form u and $\left\{P_{n}^{*}\right\}_{n \geq 0}$ be the (MOPS) with respect to the regular form v. From (46), we have

$$
\begin{equation*}
P_{n}(x)=2^{-n} P_{n}^{(\alpha, \beta)}(2 x-1), \quad P_{n}^{*}(x)=2^{-n} P_{n}^{(\alpha, \beta+1)}(2 x-1), \quad n \geq 0 \tag{49}
\end{equation*}
$$

By comparing with (13), (47) and using (8) we get

$$
\begin{array}{ll}
\gamma_{2 n+1} \gamma_{2 n+2}=\frac{(n+1)(n+\alpha+\beta+1)(n+\alpha+1)(n+\beta+1)}{(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)^{2}(2 n+\alpha+\beta+3)}, & n \geq 0 \\
\gamma_{2 n+2} \gamma_{2 n+3}=\frac{(n+1)(n+\alpha+\beta+2)(n+\alpha+1)(n+\beta+2)}{(2 n+\alpha+\beta+2)(2 n+\alpha+\beta+3)^{2}(2 n+\alpha+\beta+4)}, & n \geq 0 \tag{50}
\end{array}
$$

This gives

$$
\frac{\gamma_{2 n+3}}{\gamma_{2 n+1}}=\frac{(n+\alpha+\beta+2)(n+\beta+2)(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+2)}{(n+\alpha+\beta+1)(n+\beta+1)(2 n+\alpha+\beta+3)(2 n+\alpha+\beta+4)}, \quad n \geq 0
$$

By virtue of (50) and from a simple calculation we deduce (48).
REMARK 1. In particular, when $\alpha=2^{-1}$ and $\beta=-2^{-1}$, we obtain the so-called second-order self-associated orthogonal sequence, see [4].

2.3 Integral Representation

Regarding the integral representation of the form w given by (42), we start with the representation of the form u. For $\Re(\alpha)>-1$ and $\Re(\beta)>-1$, we have for all $f \in \mathcal{P}[1]$

$$
\begin{aligned}
\langle u, f\rangle & =\left\langle\mathcal{J}(\alpha, \beta), f\left(\frac{x+1}{2}\right)\right\rangle \\
& =\frac{1}{2^{\alpha+\beta+1}} \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1}(1+x)^{\alpha}(1-x)^{\beta} f\left(\frac{x+1}{2}\right) d x
\end{aligned}
$$

Using the substitution $t=\frac{x+1}{2}$, we get

$$
\begin{equation*}
\langle u, f\rangle=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{0}^{1} t^{\alpha}(1-t)^{\beta} f(t) d t, f \in \mathcal{P} \tag{51}
\end{equation*}
$$

Next, we decompose the polynomial f as follows: $f(x)=f_{1}\left(x^{2}\right)+(x-1) f_{2}\left(x^{2}\right)$. From the fact that $(x-1) w$ is antisymmetric, we obtain $\langle w, f\rangle=\left\langle u, f_{1}\right\rangle$. Using again the substitution $t=y^{2}$ in (51), we obtain

$$
\langle w, f\rangle=2 \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{0}^{1} y^{2 \alpha+1}\left(1-y^{2}\right)^{\beta} f_{1}\left(y^{2}\right) d y
$$

Since for $\Re(\alpha)>-\frac{1}{2}$ and $\Re(\beta)>-1, \int_{-1}^{1} y|y|^{2 \alpha-1}\left(1-y^{2}\right)^{\beta} f_{1}\left(y^{2}\right) d y=0$, the above representation may be written as follows

$$
\langle w, f\rangle=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1}\left(y^{2}+y\right)|y|^{2 \alpha-1}\left(1-y^{2}\right)^{\beta} f_{1}\left(y^{2}\right) d y
$$

Moreover, we have

$$
\int_{-1}^{1}\left(y^{2}+y\right)|y|^{2 \alpha-1}\left(1-y^{2}\right)^{\beta}(y-1) f_{2}\left(y^{2}\right) d y=0 .
$$

Consequently, we get an integral representation of the form w for all $f \in \mathcal{P}, \Re \alpha>$ $-\frac{1}{2}, \Re \beta>-1$,

$$
\langle w, f\rangle=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1}\left(y^{2}+y\right)|y|^{2 \alpha-1}\left(1-y^{2}\right)^{\beta} f(y) d y
$$

References

[1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] J. Dini and P. Maroni, La multiplication d'une forme linaire par une fraction rationnelle. Applications aux formes de Laguerre-Hahn, Ann. Polon. Math. 52 (1990), 175-185.
[3] A. Ghressi and L. Khériji, A survey on D-semiclassical orthogonal polynomials, AMEN, 10(2010), 210-234.
[4] P. Maroni and M. Ihsen Tounsi, The second-order self-associated orthogonal sequences, Journal of Applied Mathematics, 2(2004), 137-167.
[5] P. Maroni and M. Mejri, Some semiclassical orthogonal polynomials of class one, Eurasian Math. J., 2(2)(2011), 108-128.
[6] M. Sghaier, Some new results about a set of semiclassical polynomials of class $s=1$, Integral Transform, Spec. Funct., 21(7)(2010), 529-539.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 33C45, 42C05.
 ${ }^{\dagger}$ Institut Supérieur des Sciences Appliquées et de Technologie, University of Gabès, Rue Omar Ibn El Khattab, 6072, Gabès, Tunisia

