
Applied Mathematics E-Notes, 12(2012), 210-??? c ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/�amen/

A Characterization Of A Family Of Semiclassical
Orthogonal Polynomials Of Class One�

Mohamed Ihsen Tounsiy

Received 11 November 2011

Abstract

In this paper, we give another characterization of a non-symmetric semiclas-
sical orthogonal polynomials of class one.

1 Introduction

Our goal is to characterize the set of non-symmetric semiclassical orthogonal polyno-
mials of class one fWngn�0 verifying the three-term recurrence relation with �n =
(�1)n; n � 0 in a concise way as in [5, 6] via the study of the functional equation
(�w)0+	w = 0 satis�ed by its corresponding regular form w. Some information about
the shape of polynomials � and 	 intervening in the above functional equation are
given due to the quadratic decomposition of fWngn�0 and to a connection between
w and a suitable symmetric regular form #. As application, we characterize w by
giving the functional equation, the recurrence coe¢ cient n+1, n � 0 and an integral
representation.
We denote by P the vector space of polynomials with coe¢ cients in C and by P 0

its dual space. The action of u 2 P 0 on f 2 P is denoted as hu; fi. In particular, we
denote by (u)n := hu; xni ; n � 0; the moments of u. For instance, for any form u,
any polynomial g and any (a; b; c) 2 (C n f0g)�C2, we let Du = u0, �u, gu, hau, � bu,
(x� c)�1u and �c, be the forms de�ned in [3]:

hu0; fi := �hu; f 0i; h�u; fi := hu; �fi; hgu; fi := hu; gfi; hhau; fi := hu; hafi;

h� bu; fi := hu; ��bfi; h(x� c)�1u; fi := hu; �cfi; h�c; fi := f(c);

where (�f)(x) = f(x2); (haf)(x) = f(ax); (��bf)(x) = f(x+ b); (�cf)(x) =
f(x)�f(c)

x�c
for all f 2 P: It is easy to see that [3, 4]

(fu)0 = fu0 + f 0u; f 2 P; u 2 P 0; (1)

f(x)�u = �(f(x2)u); f 2 P; u 2 P 0; (2)

�(u0) = 2(�(xu))0; u 2 P 0; (3)
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x�1(xu) = u� (u)0�0; x(x�1u) = u; u 2 P 0: (4)

A form w is said to be regular whenever there is a sequence of monic polynomials
fWngn�0, degWn = n; n � 0 (MPS) such that hw;WnWmi = kn�n;m, n;m � 0 with
kn 6= 0 for any n � 0. In this case, fWngn�0 is called a monic orthogonal polynomial
sequence (MOPS) and it is characterized by the following three-term recurrence relation
[1]

W0(x) = 1; W1(x) = x� �0;

Wn+2(x) = (x� �n+1)Wn+1(x)� n+1Wn(x); n � 0;
(5)

where �n =
hw;xW 2

ni
hw;W 2

ni
2 C and n+1 =

hw;W 2
n+1i

hw;W 2
ni

2 C n f0g; n � 0.
When w is regular, fWngn�0 is a symmetric (MOPS) if and only if �n = 0; n � 0

or equivalently (w)2n+1 = 0; n � 0. Also, The form w is said to be normalized if
(w)0 = 1. In this paper, we suppose that any form will be normalized.

A form w is called semiclassical when it is regular and there exist two polynomials
� (monic) and 	, deg� = t � 0, deg	 = p � 1 such that

(�w)0 +	w = 0: (6)

It�s corresponding orthogonal polynomial sequence fWngn�0 is called semiclassical.
The semiclassical character is kept by shifting [3, 4, 5]. In fact, let fa�nWn(ax+b)gn�0,
a 6= 0; b 2 C; when w satis�es (6), then (ha�1 � ��b)w ful�lls�

a�t�(ax+ b)(ha�1 � ��b)w
�0
+ a1�t	(ax+ b)(ha�1 � ��b)w = 0; (7)

and the recurrence coe¢ cients of (5) are

�n � b
a

;
n+1
a2

; n � 0: (8)

The semiclassical form w is said to be of class s = max(p� 1; t� 2) � 0 if and only if
[3, 4, 5] Y

c2Z�

�
(	(c) + �0(c)) +

�
hw; (�c	) + (�2c�)i

�	
> 0; (9)

where Z� is the set of zeros of �. In particular, when s = 0 the form w is usually
called classical Hermite, Laguerre, Bessel and Jacobi, see [3, 4, 5].

LEMMA 1 ([3]). Let w be a symmetric semiclassical form of class s satisfying (6).
The following statements hold.
i) When s is odd then the polynomial � is odd and 	 is even.
ii) When s is even then the polynomial � is even and 	 is odd.

Let fWngn�0 be a (MOPS) with respect to the form w ful�lling the three-term
recurrence relation (5) with

�n = (�1)n ; n � 0: (10)
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Such a (MOPS) is characterized by the following quadratic decomposition [4]

W2n(x) = Pn(x
2) ; W2n+1(x) = (x� 1)P �n(x2); n � 0; (11)

where fPngn�0 is a (MOPS) and fP �ngn�0 is the sequence of monic Kernel polynomials
of K-parameter 1 associated with fPngn�0 de�ned by [1, 2]

P �n(x) =
1

x� 1

�
Pn+1(x)�

Pn+1(1)

Pn(1)
Pn(x)

�
; n � 0: (12)

Furthermore the sequences fPngn�0 and fP �ngn�0 satisfy respectively the recurrence
relation (5) with8>><>>:

�P0 = 1 + 1;

�Pn+1 = 2n+2 + 2n+3 + 1;

Pn+1 = 2n+1 2n+2;

8>><>>:
��0 = 1 + 2 + 1;

��n+1 = 2n+3 + 2n+4 + 1;

�n+1 = 2n+2 2n+3:

(13)

for all n � 0: Denoting by u and v the forms associated with fPngn�0 and fP �ngn�0
respectively, we get [4]

u = �w = �(xw); (14)

v = �11 (x� 1)�w: (15)

The regularity of v means that [1]

Pn+1(1) 6= 0; n � 0: (16)

Moreover, the form (x� 1)w is antisymmetric, that is,

((x� 1)w)2n = 0 ; n � 0: (17)

Let now � be a non-zero complex number and # be the form such that

�x# = (x� 1)w: (18)

According to (17)-(18) we get (x#)2n = 0 ; n � 0: Hence # is a symmetric form.
Multiplying (18) by x, applying the operator � and using (15) we get �x�# = 1v:
Consequently, according to [3], the form # is regular if and only if


n(�) = 1P
�(1)
n�1(0) + �P

�
n(0) 6= 0; n � 0; (19)

with P �(1)n (x) = (v�0P
�
n+1)(x) ; n � 0 and P

�(1)
�1 (x) := 0.

LEMMA 2. There exists a non zero constant � such that the form # given by (18)
is regular.

PROOF. According to the following relation [2]

P
�(1)
n+1(x)P

�
n+1(x)� P �n+2(x)P �(1)n (x) =

nY
�=0

��+1 6= 0; n � 0;
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it is easy to see that
jP �(1)n�1(0)j+ jP �n(0)j 6= 0; 8n � 0: (20)

Let n be a �xed nonnegative integer. If P �(1)n�1(0) = 0, then P
�
n(0) 6= 0 from (20). So,

condition (19) is satis�ed for � 6= 0. If P �n(0) = 0, then P �(1)n�1(0) 6= 0 from (20). So,

condition (19) satis�ed for � 6= 0. If P �(1)n�1(0) 6= 0 and P �n(0) 6= 0, then for all � 6= �n,
(20) is satis�ed, where we have posed

�n = �1
P
�(1)
n�1(0)

P �n
; n � 0: (21)

In any case there exists a constant � 6= 0 such that (19) is ful�lled and so # is a regular
form.

In what follows we assume that the (MOPS) fWngn�0 associated with (5),(10) is
semiclassical of class sw. Its corresponding regular form w is then semiclassical of class
sw satisfying the functional equation (6). Multiplying the equation (6) by (x � 1)2
and on account of (1) and (18), we deduce that the form #, when it is regular, is also
semiclassical of class s# at most sw + 2 satisfying the functional equation

(E#)
0
+ F# = 0; (22)

with
E(x) = x(x� 1)�(x); F(x) = x ((x� 1)	(x)� 2�(x)) : (23)

The next technical lemma is needed in the sequel.

LEMMA 3. For all root c of �, we have

a)


#; �2cE + �cF

�
= 1

� (c� 1)
2


w; �c	+ �

2
c�
�
+ (1� 1

� )(c� 1) (�
0(c) + 	(c)) ;

b) E0(c) + F(c) = c(c� 1) (�0(c) + 	(c)) : (24)

PROOF. Let c be a root of �. Write �(x) = (x� c)�c(x) with �c(x) = (�c�)(x).
From (22)-(23) we have�

�2cE + �cF
�
(x) = �c f�(� � 1) (�c(�) + 	(�))g (x)� 2x�c(x): (25)

Taking g(x) = (�c +	)(x) and f(x) = x(x� 1) in the following relation

�c(fg)(x) = g(x)(�cf)(x) + f(c)(�cg)(x); for all f; g 2 P; (26)

(25) becomes�
�2cE + �cF

�
(x) = (c� 1) f(�c +	)(x) + c (�c(�c +	)) (x)g+ x(	� �c)(x): (27)

From the second identity in (4), relation (18) is equivalent to

# =
1

�
(w � x�1w) + (1� 1

�
)�0: (28)
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We may also write�
1

�
(w � x�1w); �2cE + �cF

�
=
1

�



w; �2cE + �cF� �0(�2cE + �cF)

�
: (29)

Taking f(x) = (�c(�c +	)) (x) in the following

c�0(�cf) = �cf � �0f; f 2 P; c 2 C; (30)

and applying the operator �0 to (27), we obtain�
�0(�

2
cE + �cF)

�
(x) = (	� �c)(x) + (c� 1) (�c(�c +	)) (x): (31)

This gives

(�2cE+�cF)(x)�
�
�0(�

2
cE + �cF)

�
(x) = (c�1)2 (�c(�c +	)) (x)+(x+c�2)	��: (32)

Thus (29) becomes�
1

�
(w � x�1w); �2cE + �cF

�
=
1

�
(c� 1)2 hw; �c�c + �c	i ; (33)

since hw;	i = 0 and hw; x	(x)� �(x)i = 0 from (6). Next, by a simple calculation,
we have �

(1� 1

�
)�0; �

2
cE + �cF

�
= (1� 1

�
)(c� 1)(�c +	)(c): (34)

Adding (33) and (34) we obtain the �rst relation in (24). From (22)-(23), we have
E0(c) = c(c� 1)�0(c) and F(c) = c(c� 1)	(c), hence the second relation in (24) holds.

Let us recall the following result about the class s# of the form #.

THEOREM 1. The form # is semiclassical and its class depends only on the zero
x = 1 for any � 6= �n, n � �1 where �n; n � 0 is given by (21) and

��1 =



w; �0	+ �

2
0�
�
+�0(0) + 	(0)

�0(0) + 	(0)
: (35)

Moreover, the semiclassical form # is of class s# satisfying the functional equation�eE#�0 + eF# = 0; (36)

such that
a) if �(1) 6= 0, then s# = sw + 2,

eE(x) = x(x� 1)�(x) and eF(x) = x ((x� 1)	(x)� 2�(x)) ;

b) if �(1) = 0 and 	(1) 6= 0, then s# = sw + 1,

eE(x) = x�(x) and eF(x) = x (	(x)� (�1�)(x)) ;
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c) if �(1) = 0 and 	(1) = 0, then s# = sw,

eE(x) = x(�1�)(x) and eF(x) = x(�1	)(x):

PROOF. By our assumption, on account of Lemma 2, and by (22)-(23), the form
# is regular and so is semiclassical of class s# � sw + 2. Let c be a root of E such
that c 6= 1. According to (23) we get c�(c) = 0. If c 6= 0, then c is a root of �. We
suppose E0(c)+F (c) = 0. From (24) we obtain �0(c)+	(c) = 0 and



#; �2cE + �cF

�
=

1
� (c � 1)

2


w; �c	+ �

2
c�
�
6= 0, because w is semiclassical and so satis�es (9). If c = 0

and �(0) 6= 0, then E0(0) + F(0) = ��(0) 6= 0 from (23). If c = 0 and �(0) = 0,
then E0(0) + F(0) = 0. We are led to the following: When �0(0) + 	(0) = 0, we
get



#; �20E + �0F

�
= 1

�



w; �0	+ �

2
0�
�
6= 0 from (24a). When �0(0) + 	(0) 6= 0 and

because � 6= ��1, then according to (24a) with c = 0, we obtain


#; �20E + �0F

�
6= 0.

Therefore equation (6) is not simpli�ed by x � c for c 6= 1. Next, from (23) we have
E0(1) + F(1) = ��(1).
a) If �(1) 6= 0, then E0(1) + F(1) 6= 0 and the equation (22) cannot be simpli�ed.

This means that

s# = max(deg E� 2;deg F� 1) = max(deg�� 2;deg	� 1) = sw + 2:

b) If �(1) = 0, then E0(1) + F(1) = 0 and


#; �21E + �1F

�
= 0 from (24). Therefore

(22) can be simpli�ed by x � 1. After simpli�cation, it becomes
�eE#�0 + eF# = 0,

with eE(x) = x�(x) and eF(x) = x (	(x)� (�1�)(x)) : We have eE0(1) + eF(1) = 	(1).
When 	(1) 6= 0, the above functional equation is not simpli�ed. Consequently, s# =
max(deg eE� 2;deg eF� 1) = sw + 1.

c) If �(1) = 0 and 	(1) = 0, then eE0(1) + eF(1) = 	(1) = 0. By virtue of (18)

and (6) we get
D
#; �21

eE + �1eFE = 1
� hw;	i = 0. Therefore (34) is simpli�ed by x � 1,

and # ful�ls
�bE#�0 + bF# = 0, where bE(x) = x(�1�)(x) and bF(x) = x(�1	)(x). If 1

is a root of �1�, then �0(1) + 	(1) = 0. Assuming that bE0(1) + bF(1) = 0, a simple

calculation gives
D
#; �21bE + �1bFE = 1

�



w; �1	+ �

2
1�
�
6= 0 since w is a semiclassical of

class 1 satisfying (9). Hence the functional equation
�bE#�0 + bF# = 0 is not simpli�ed

and s# = max(deg bE� 2;deg bF� 1) = sw.

2 Main Results

In the sequel we deal with the semiclassical sequence fWngn�0 of class one satisfying
(10). Its corresponding regular form w is then semiclassical of class sw = 1 ful�lling
the functional equation (6) with 0 � deg� � 3 and 1 � deg	 � 2.
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2.1 Characterization of the Polynomials � and 	

We can usually decompose the polynomials � and 	 through their odd and even parts.
Set

�(x) = �(x2) + x'(x2); 	(x) =  (x2) + x!(x2);
(�1�)(x) = �1(x

2) + x'1(x
2) and (�1	)(x) =  1(x

2) + x!1(x
2):

(37)

PROPOSITION 1. Let w be a semiclassical form of class one satisfying (6) and
fWngn�0 be its corresponding MOPS ful�lling (10).
a) If �(1) 6= 0, then �(x) = '(x) = 1

2 (x!(x)�  (x)) :
b) If �(1) = 0 and 	(1) 6= 0, then �(x) = 0 and '1(x) = !(x).
c) If �(1) = 0 and 	(1) = 0, then �(x) + '(x) = 0 and  (x) + x!(x) = 0.

PROOF. Set

eE(x) = eEe(x2) + xeEo(x2); eF(x) = eFe(x2) + xeFo(x2): (38)

a) �(1) 6= 0. According to (37)-(38) and from Theorem 1., we obtain eEe(x) = x(��
')(x); eEo(x) = x'(x)��(x); eFe(x) = x( �!�2')(x); eFo(x) = x!(x)� (x)�2�(x):
On account of Lemma 1. and the fact that # is of odd class, we get eEe = eFo = 0. This
leads to the result a).
b) �(1) = 0 and 	(1) 6= 0. Similar to a), we have eEe(x) = x'(x); eEo(x) =

�(x); eFe(x) = x(! � '1)(x) and eFo(x) = ( � �1)(x): The form # is of odd class, theneEe = eFo = 0. Hence the conclusion.
c) �(1) = 0 and 	(1) = 0. In this case we have eEe(x) = x'1(x); eEo(x) =

�1(x); eFe(x) = x!1(x); eFo(x) =  1(x): Since # is of odd class, eEe = eFo = 0. Therefore
'1 = 0 and  1 = 0. Moreover we can write �(x) = (x � 1)(�1�)(x) = (x � 1)�1(x2)
and 	(x) = (x� 1)x!1(x2). So � = ��1, ' = ��1, ! = �!1 and  = x!1. This gives
the desired result.

THEOREM 2. Let w be a semiclassical form of class one satisfying (6) and fWngn�0
be its corresponding (MOPS) ful�lling (10). The functional equation (6) has only one
solution given by

�(x) = x3 � x; 	(x) = ax2 + x+ c; a 6= 0; (w)0 = (w)1 = 1; (39)

with

a+ c+ 1 6= 0; ja+ 2j+ ja+ c+ 3j 6= 0 and ja+ 2j+ jc� 3j 6= 0: (40)

PROOF. When deg� � 2 and deg	 = 2, we consider a 6= 0, b and c as three
complex numbers such that 	(x) = ax2 + bx + c: From Proposition 1, we have the
following.
i) If �(1) 6= 0, then �(x) = '(x), and so �(x) = (x+1)�(x2) from (37). Because �

is a monic polynomial of degree at most two, then necessarily �(x) = 1. In addition,
we have x!(x) �  (x) = 2. This implies that a = b and c = �2. Thus �(x) = x + 1
and 	(x) = ax2 + ax � 2; a 6= 0: According to equation (6), we have hw;	(x)i =
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hw; x	(x) � �(x)i = 0: Then hw; ax2 + ax � 2i = hw; ax3 + ax2 � 3x � 1i = 0: It is
equivalent to

a(1 + 2)� 2 = 0 and a(1 + 1)� 2 = 0; (41)

since hw; xi = 1 and hw; x3i = hw; x2i = 1 + 1. It is easy to see from (41) that a = 0,
that is a contradiction with deg	 = 2.
ii) If �(1) = 0 and 	(1) 6= 0, then �(x) = 0. Therefore �(x) = x, because � is

monic and deg� � 2. This contradicts �(1) = 0.
iii) If �(1) = 0 and 	(1) = 0, then �(x) = x � 1 and 	(x) = a(x2 � x) with

a 6= 0. Writing hw;	(x)i = hw; a(x2 � x)i = 0, then a1 = 0 and so 1 = 0. It is a
contradiction, by virtue of the regularity of the form w.
When deg� = 3, we obtain deg � � 1 and deg' = 1 from (37). According to

Proposition 1, we have the following.
i) If �(1) 6= 0, then �(x) = '(x) and  (x) = �2�(x)+x!(x). We obtain �(x) = (x+

1)'(x2) and 	(x) = (x2+x)!(x2)�2'(x2). Therefore ! is a constant polynomial and '
is a monic polynomial of degree one since deg	 � 2 and deg� = 3. Denoting by '(x) =
x+d and !(x) = e. We write �(x) = (x+1)(x2+d) and 	(x) = (e�2)x2+ex�2d: As
above, we have hw;	i = hw; x	(x)��(x)i = 0. It follows (e� 2)(1+1)+ e� 2d = 0
and (e � 2)(1 + 1) � 2d = 0: Hence e = 0 and 1 + d + 1 = 0. Again, according to
equation (6), we have h(�(x)w)0 + 	(x)w; x2i = 0; then hw; x2(x2 + d)i = 0. Since
x2 = W2(x) + 1 + 1, we then obtain hw; (W2(x) + 1 + 1)W2(x)i = 0: This gives
hw;W 2

2 (x)i = 0. It is a contradiction with the orthogonality of fWngn�0.
ii) If �(1) = 0 and 	(1) = 0, then �(x) = �'(x) and  (x) = �x!(x). Therefore

	(x) = (x � x2) (x2), and on account of 1 � deg	 � 2, deg = 0. Denoting by
 (x) = a1, where a1 2 C n f0g, since hw;	i = hw; a1(x� x2)i = 0, we have a11 = 0.
It is a contradiction.
iii) If �(1) = 0 and 	(1) 6= 0, then �(x) = 0 and !(x) = '1(x). So �(x) = x(x2�1)

and 	(x) = ax2 + x+ c. If a = 0, then c+1 = 0, since hw;	i = 0. Thus 	(x) = x� 1
which contradicts 	(1) 6= 0. Necessarily a 6= 0. Moreover the form w is of class one,
we shall have the condition (9) with Z� = f�1; 0; 1g, which leads to relation (40).

2.2 The Computation of n+1
We will study the form w given in Theorem 2. Denoting by � = 1

2 (c � 1) and � =
� 1
2 (a+ c+ 3): The form w ful�lls the following equation�

x(x2 � 1)w
�0
+
�
�2(�+ � + 2)x2 + x+ 2�+ 1

�
w = 0;

(w)0 = (w)1 = 1;
(42)

where

j�+ � + 1j+ j�j 6= 0; � + 1 6= 0; j�+ � + 1j+ j�j 6= 0; �+ � + 2 6= 0: (43)

Applying the operator � in (42) and on account of (2) and (3), we get�
(x2 � x)u

�0
+ (�(�+ � + 2)x+ �+ 1)u = 0; (u)0 = 1: (44)
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Multiplying (44) by x� 1, we obtain the functional equation satis�ed by the form v�
(x2 � x)v

�0
+ (�(�+ � + 3)x+ �+ 2) v; (v)0 = 1: (45)

Therefore the forms u and v are classical. Moreover from a suitable shifting, we obtain

u =
�
� 1
2
� h 1

2

�
J (�; �) ; v =

�
� 1
2
� h 1

2

�
J (�; � + 1): (46)

Where J (�; �) is the Jacobi form of parameters � and � satisfying the following func-
tional equation�

(x2 � 1)J (�; �)
�0
+ (�(�+ � + 2)x+ �� �)J (�; �) = 0; (J (�; �))0 = 1:

It is regular if and only if � 6= �n; � 6= �n; � + � 6= �n; n � 1: Moreover, the
coe¢ cients of its corresponding orthogonal polynomials fP (�;�)n gn�0 are given by [1]

�(�;�)n = �2��2
(2n+�+�)(2n+�+�+2) ; n � 0;


(�;�)
n+1 = 4 (n+1)(n+�+�+1)(n+�+1)(n+�+1)

(2n+�+�+1)(2n+�+�+2)2(2n+�+�+3) ; n � 0:
(47)

PROPOSITION 2. Let w be the form of class one satisfying (42). The coe¢ cients
of its corresponding (MOPS) fWngn�0 are given by

2n+1 = �
(n+�+�+1)(n+�+1)

(2n+�+�+1)(2n+�+�+2) ; n � 0;
2n+2 = �

(n+1)(n+�+1)
(2n+�+�+2)(2n+�+�+3) ; n � 0:

(48)

PROOF. Let fPngn�0 be a (MOPS) with respect to the regular form u and fP �ngn�0
be the (MOPS) with respect to the regular form v. From (46), we have

Pn(x) = 2
�nP (�;�)n (2x� 1); P �n(x) = 2

�nP (�;�+1)n (2x� 1); n � 0: (49)

By comparing with (13), (47) and using (8) we get

2n+12n+2 =
(n+1)(n+�+�+1)(n+�+1)(n+�+1)

(2n+�+�+1)(2n+�+�+2)2(2n+�+�+3) ; n � 0;
2n+22n+3 =

(n+1)(n+�+�+2)(n+�+1)(n+�+2)
(2n+�+�+2)(2n+�+�+3)2(2n+�+�+4) ; n � 0:

(50)

This gives

2n+3
2n+1

=
(n+ �+ � + 2)(n+ � + 2)(2n+ �+ � + 1)(2n+ �+ � + 2)

(n+ �+ � + 1)(n+ � + 1)(2n+ �+ � + 3)(2n+ �+ � + 4)
; n � 0:

By virtue of (50) and from a simple calculation we deduce (48).

REMARK 1. In particular, when � = 2�1 and � = �2�1, we obtain the so-called
second-order self-associated orthogonal sequence, see [4].
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2.3 Integral Representation

Regarding the integral representation of the form w given by (42), we start with the
representation of the form u. For <(�) > �1 and <(�) > �1, we have for all f 2 P [1]

hu; fi =

�
J (�; �); f

�
x+ 1

2

��
=

1

2�+�+1
�(�+ � + 2)

�(�+ 1)�(� + 1)

Z 1

�1
(1 + x)�(1� x)�f

�
x+ 1

2

�
dx:

Using the substitution t = x+1
2 , we get

hu; fi = �(�+ � + 2)

�(�+ 1)�(� + 1)

Z 1

0

t�(1� t)�f(t)dt ; f 2 P: (51)

Next, we decompose the polynomial f as follows: f(x) = f1(x
2)+ (x� 1)f2(x2). From

the fact that (x � 1)w is antisymmetric, we obtain hw; fi = hu; f1i: Using again the
substitution t = y2 in (51), we obtain

hw; fi = 2 �(�+ � + 2)

�(�+ 1)�(� + 1)

Z 1

0

y2�+1(1� y2)�f1(y2)dy:

Since for <(�) > � 1
2 and <(�) > �1,

R 1
�1 y j y j

2��1 (1� y2)�f1(y
2)dy = 0, the above

representation may be written as follows

hw; fi = �(�+ � + 2)

�(�+ 1)�(� + 1)

Z 1

�1
(y2 + y) j y j2��1 (1� y2)�f1(y2)dy:

Moreover, we haveZ 1

�1
(y2 + y) j y j2��1 (1� y2)�(y � 1)f2(y2)dy = 0:

Consequently, we get an integral representation of the form w for all f 2 P; <� >
� 1
2 ; <� > �1,

hw; fi = �(�+ � + 2)

�(�+ 1)�(� + 1)

Z 1

�1
(y2 + y) j y j2��1 (1� y2)�f(y)dy:
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