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Abstract

We construct explicit solutions for a system of generalized Burgers equation
in the quater plane f(x; t) : x > 0; t > 0g with initial and boundary conditions
when viscosity is present and also when viscosity is zero.

1 Introduction

Initial value problem for the system of �rst order equation,

(uj)t +

 
nX
k=1

ckuk

!
(uj)x =

�

2
(uj)xx; j = 1; 2; :::; n (1)

where ck are real constants and � > 0, was studied by by Joseph [3]. Using a generalized
Hopf-Cole transformation, explicit solution was constructed for each � > 0 and weak
solutions were constructed for the generalized Hopf equation

(uj)t +

 
nX
k=1

ckuk

!
(uj)x = 0 (2)

by passing to the limit as � goes to 0.
There are two important special cases of the system (1). When n = 1; c1 = 1 and

with u1 = u, (1) is just the Burgers�equation

ut + uux =
�

2
uxx;

which was studied by Hopf [2]. The second important case is when n = 2; c1 = 1; c2 = 0,
setting u1 = u and u2 = v, the system (1) becomes

ut + uux =
�

2
uxx; vt + uvx =

�

2
vxx

and then by taking the derivative of the second equation w.r.t. x and taking � = vx
we get the one dimensional adhesion model for large scale structures.
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Our aim in this paper is to get explicit formula for the solution of (1) in the quarter
plane 
 = [0;1)� [0;1) with initial condition

uj(x; 0) = u0j(x); x > 0; (3)

and boundary condition
uj(0; t) = uBj(t); t > 0: (4)

Also we construct explicit solution of initial boundary value problem for (2), for special
type of boundary data.
It is well-known that with a strong form of boundary conditions (4), existence of

solutions is not guaranteed for the system (2). So the vanishing viscosity limit satis�es
boundary conditions only in a weak sense.
In section 2, we construct explicit formula for solution of initial value problem for

(1) with initial conditions (3) and boundary conditions (4) with viscous parameter
� > 0 when uBj are constants. In section 3, we construct exact solution of (2) with
general initial data and homogeneous boundary data by passing to the limit as � goes
to 0. Finally we get an explicit formula for (2) with Riemann type initial and boundary
data.

2 Explicit Solution with Viscous Term

In this section we construct explicit formula for the initial boundary value problem for
the viscous system (1),(3) and (4). First we note that this problem is equivalent to
�nding uj ; j = 1; 2; :::; n, in a domain 
 = [0;1)� [0;1)

(uj)t + �(uj)x =
�

2
(uj)xx; x > 0; t > 0

uj(x; 0) = u0j(x); x > 0

uj(0; t) = uBj ; t > 0

(5)

where

� =
nX
k=1

ckuk (6)

satis�es the Burgers equation with corresponding initial and boundary conditions,
namely

�t +
1

2
(�2)x =

�

2
�xx;

�(x; 0) = �0(x);

�(0; t) = �B(t):

(7)

Here �0 and �B are given by

�0(x) =
nX
k=1

cku0k(x); �(0; t) = �B(t) =
nX
k=1

ckuBk: (8)
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For future use, it is convenient to introduce the function

w0(x) =

Z x

0

�0(y)dy: (9)

We use a generalized Hopf-Cole transformation to solve the system (5).

THEOREM 1. Let u0j(x) be bounded and measurable, uBj , j = 1; 2; :::; n are
constants, and let a� and aj� be given by

a�(x; t) =
1

(2�t�)
1=2

Z 1

0

(e�
1
� f

(x�y)2
2t +w0(y)g + e�

1
2�f

(x+y)2

2t +w0(y)gdzdy

+
2�B=�

(2�t�)
1=2

Z 1

0

Z 1

0

e�
1
� f(

(x+y+z)2

2t ��Bz)+w0(y)gdz

(10)

aj
�(x; t) =

1

(2�t�)1=2

Z +1

0

u0j(y)(e
�1
� f

(x�y)2
2t +g � e� 1

� f
(x+y)2

2t +w0yg)dy

+
uBjx

(2��)1=2

Z t

0

a�(0; s)

(t� s)3=2 e
� 1

�
x2

2(t�s) ds:

(11)

Then the functions

u�j(x; t) =
a�j(x; t)

a�(x; t)
; j = 1; 2; 3; :::; n (12)

are in�nitely di¤erentiable in the variables (x; t) and is the exact solution of the initial
boundary value problem (5).

PROOF. First we note that if w(x; t) is a solution of

wt +
(wx)

2

2
=
�

2
wxx;

w(x; 0) = w0(x);

wx(0; t) = �B ;

(13)

in f(x; t) : x > 0; t > 0g; then
�(x; t) = wx(x; t) (14)

is a solution of (7). We introduce new unknown variables a; aj ; j = 1; 2; :::; n. The
unknown a is de�ned by the usual Hopf-Cole transformation and aj ; j = 1; 2; 3; :::; n,
by a modi�ed version of it in the following way

a = e�
w
� ; aj = uje

�w
� ; j = 1; 2; 3; ::::; n: (15)

An easy calculation shows that

at �
�

2
axx = �

1

�
[wt +

(wx)
2

2
� �

2
wxx]e

�w
� ; (16)

and for j = 1; 2; :::; n

(aj)t �
�

2
(aj)xx = [(uj)t + �(uj)x �

�

2
wxx]e

�w
� � 1

�
[wt +

(wx)
2

2
� �

2
wxx]uje

�w
� : (17)
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It follows from (16) and (17) that uj and w are solutions of (5) and (13) i¤ a and
aj ; j = 1; 2; :::; n are solutions of

at =
�

2
axx;

a(x; 0) = e�
1
�w0(x);

�ax(0; t) + �B(t))a(0; t) = 0

(18)

and
(aj)t =

�

2
(aj)xx;

aj(x; 0) = u0j(x)e
� 1

�w0(x); j = 1; 2; ; :::; n;

aj(0; t) = a
�(0; t)uBj

(t):

(19)

When �B is a constant we can �nd explicit formula for the solution of (18) and (19)
see [6]. The expressions for a� and a�j are given by (10) and (11). Then substituting
them in (15) we get the formula (12) for u�j .

3 Explicit Formula for Vanishing Viscosity Limit

In this section we study the limit as � goes to 0 of solutions (12), with homogeneous
boundary conditions uBj(t) = 0 and show that this limit satis�es the generalized Hopf
equation (2) with the initial conditions (3). The boundary condition (4) may not be
satis�ed in the strong sense.

THEOREM 2. Let u�j ; j = 1; 2; :::; n be the solution given by (12) with Lipschitz
continuous initial conditions u0(x) which are bounded, and boundary data uBj = 0.
Then the limit uj(x; t) = lim�!0 u

�
j(x; t) exists a.e. x > 0; t > 0 and is given by

uj(x; t) =

(
u0j(y(x; t)); if y(x; t) > 0;

u0j(0)Pn
k=1 u0k(0)

x=t; if y(x; t) = 0
(20)

j = 1; 2; :::; n, where y(x; t) is a minimizer of

min
y�0

�
w0(y) +

(x� y)2
2t

�
: (21)

Further the limit functions uj ; j = 1; 2; :::; n satisfy the equation (2) and the initial
conditions (3).

PROOF. When uBj(t) = 0, the formula (10)-(12) becomes

u�j(x; t) =

R1
0
u0j(y)(e

� 1
� f

(x�y)2
2t +w0(y)g � e� 1

2�f
(x+y)2

2t +w0(y)g)dyR1
0
(e�

1
� f

(x�y)2
2t +w0(y)g + e�

1
2�f

(x+y)2

2t +w0(y)g)dy
: (22)

Let us introduce the functions A(x; t) and B(x; t) by

A(x; t) = min
y�0

�
w0(y) +

(x� y)2
2t

�
; B(x; t) = min

y�0

�
w0(y) +

(x+ y)2

2t

�
:
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If the minimizer y(x; t) in (21) is positive, then we must have A(x; t) < B(x; t), so by
Laplace asymptotic formula the �rst terms in the numerator and denominator of the
expression (22) dominate and we get

u�j(x; t) �
R1
0
u0j(y)e

� 1
� f

(x�y)2
2t +w0(y)gdyR1

0
e�

1
� f

(x�y)2
2t +w0(y)gdy

:

as � goes to zero. Thus if y(x; t) > 0 we get

lim
�!0

u�j(x; t) = u0j(y(x; t)): (23)

Now consider the case when the minimizer y(x; t) = 0. In this case A(x; t) = B(x; t)
and w00(0) � x=t � 0. The set on which w00(0) � x=t = 0 is a line and has measure 0.
On the set of points (x; t) with w00(0)�x=t > 0, use the following asymptotic formulaeZ 1

0

u0j(y)e
� 1

� f
(x�y)2

2t +w0(y)g � u0j(0)�t

�x+ tw00(0)
e
�1
� (w0(0)+

x2

2t )

Z 1

0

u0j(y)e
� 1

� f
(x+y)2

2t +w0(y)g � u0j(0)
�u0j(0)t

x+ tw00(0)
e
�1
� (w0(0)+

x2

2t )

in (22), to get

lim
�!0

u�j(x; t) =
u0j(0)

w00(0)
x=t: (24)

Since w00(x) =
Pn

k=0 cku0k(x), from (23) and (24) we have the formula (20) almost
everywhere.
The fact that limit functions (20) satisfy the equation (2) and the initial conditions

(3) follows exactly as in [3] and is omitted.

4 Boundary Riemann Problem

When u0j are all constant then the limit (20) has a simple form. For �0 =
Pn

j=0 u0j > 0,

uj(x; t) =

8<:
u0j
�0
x=t; if 0 < x < �0t

u0j ; if x > �0t

and for �0 � 0,
uj(x; t) = u0j ;

which clearly does not satisfy the boundary condition uj(0; t) = 0, when �0 < 0. In
this section we use a weak formulation of the initial and boundary value problem for
(2) and obtain an explicit formula when the data are of Riemann type, namely

uj(x; 0) = u0j ; (25)
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and boundary condition
uj(0; t) = uBj ; (26)

where u0j and uBj are constants for j = 1; 2; :::; n: For the weak formulation of the
boundary condition, we note that the equation (2), can be written as

(uj)t + �(uj)x = 0; x > 0; t > 0; (27)

where the characteristic speed � =
Pn

k=1 ckuk satis�es the inviscid Burgers�equation

�t +

�
�2

2

�
x

= 0; x > 0; t > 0: (28)

It is well-known that for (28), a weak form of the boundary condition is required as
characteristic speed of the system, � does not have a de�nite sign at the boundary
x = 0. For � we take boundary conditions in the sense of Bardos, Leroux and Nedelec
[1], which for the present case take the form

�(0+; t) 2 f�+BgU(�1;��
+
B) (29)

and initial condition
�(x; 0) = �0 (30)

where �0 =
Pn

k=1 cku0k and �B =
Pn

k=1 ckuBk. Explicit formula for the entropy weak
solution � of (28), (29) and (30) was obtained in [4]. The speed of the system (2) or
equivalently (27) is � and boundary condition uj(0+; t) is required only when the speed
�(0+; t) > 0. Thus (26) is replaced by the weak formulation of boundary condition

if �(0+; t) > 0, then uj(0+; t) = uBj : (31)

As earlier �0 =
Pn

k=1 cku0k and �B =
Pn

k=1 ckuBk.

THEOREM 3. Explicit formula for the solution of (2) with initial conditions (25)
and boundary conditions (31) is given by the following.
Case 1 �0 = �r = �B > 0:

uj(x; t) =

(
uBj ; if x < �0t;

u0j ; if x > �0t:

Case 2 �0 = �B < 0:
uj(x; t) = u0j :

Case 3 0 � �B < �0:

uj(x; t) =

8><>:
uBj ; if 0 � x < �Bt;
u0j�uBj
�0��B :xt +

uBj�0�u0j�B
�0��B ; if �Bt < x < �0t

u0j ; if x > �0t:

Case 4 �B � 0 < �0:

uj(x; t) =

(
u0j
�0
x=t; if 0 < x < �0t

u0j ; if x > �0t:
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and
Case 5 �0 < �B, s = �0+�B

2 > 0:

uj(x; t) =

(
uBj ; if x < st;

u0j ; if x > st:

PROOF. The unique entropy weak solution of (28),(29) and (30) is known [4] and
is given by
Case 1: �0 = �B > 0,

�(x; t) = �0;

Case 2: �0 = �B � 0,
�(x; t) = �0;

Case 3: 0 < �B < �0,

�(x; t) =

8><>:
�B ; if x < �Bt;

x=t; if �Bt < x < �0t

�0; if x > �0t

Case 4: �B < 0 < �0,

�(x; t) =

(
x=t; if 0 < x < �0t

�0; if x > �0t

Case 5: �B < 0 and �0 � 0,
�(x; t) = �0

Case 6: �0 < �B and �B + �0 > 0,

�(x; t) =

(
�B ; if x < st;

�0; if x > st

where s = �0+�B
2 .

Now the equation (27) is a linear system with discontinuous coe¢ cient � with initial
conditions (25) and boundary condition (31). To construct solution we use the method
of characteristics and use the fact that solution is constant along characteristics.
In the cases 1 and 2, the equation for uj is (uj)t + �(uj)x = 0 with � is constant

through out x > 0; t > 0 and the formula follows easily.
In the cases, the equation for uj is (uj)t + �(uj)x = 0 with � is takes the constant

value �B in the region 0 < x < �Bt and �0 in the region x > �0t. Thus in the region 0 <
x � �Bt, the characteristics from (x; t) drawn backward in time hit the boundary point
at (0; t�x=�B) and uj constant and it is equal to uBj . Similarly in the region x > �0t
uj takes the constant value u0j . Now in the region �Bt � x � �0t the characteristics
converge to the origin (0; 0). Here we �ll the value of uj smoothly as a rarefaction wave
connecting uBj from left to u0j on the right such that � =

Pn
k=1 ckuk = x=t. An easy

computation shows that uj(x; t) =
u0j�uBj
�0��B :xt +

uBj�0�u0j�B
�0��B if �Bjt < x < �0t.
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The case 4 is similar to case 3. In the case 5, the speed of the characteristics � are
constants on either side of the shock x = ul+ur

2 t and impinge on the shock curve. The
formula then follows by the method of characteristics on either side of the shock curve.
The proof that uj(x; t) satis�es the initial and boundary conditions is clear from

the construction. As the functions uj(x; t); j = 1; 2; :::; n are not smooth, we need to
justify the equation (2) in the sense of Volpert [7], which can be done exactly as in [3].
The details are omitted.
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