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Abstract

In this paper, we study the existence and multiplicity of solutions of third
order periodic boundary value problems.

1 Introduction

The third-order equations arise in many areas of applied mathematics and physics,
such as the de�ection of a curved beam having a constant or a varying cross-section,
three layer beam, electromagnetic waves or gravity-driven �ows [1]. So the third-
order boundary value problems were discussed by many authors and existence and
multiplicity of solutions have been obtained in recent years, see for instance [2-17]
and the references therein. However, most of the boundary conditions in the above
mentioned references are two-point or three-point boundary conditions, the periodic
boundary conditions are quite rarely seen [2,5,9-12,15].
Recently in [15], Yu and Pei considered the existence of solutions for a third-order

periodic boundary value problem

u000(t) + bu00(t) + g(t; u(t)) = e(t); t 2 (0; 2�); (1)

u(i)(0) = u(i)(2�); i = 0; 1; 2; (2)

where b is a nonnegative constant. By using Leray-Schauder continuation theorem, Yu
and Pei established the following result:

THEOREM A ([15]). Let g : [0; 2�]�R! R be a given L2-Carathéodory function.
Assume that there exist a1 � a2; r1 < 0; r < r2 such that

g(t; u) � a2 for u � r2; a:e:t 2 [0; 2�];

and
g(t; u) � a2 for u � r2; a:e:t 2 [0; 2�]:
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Suppose also that there exists a function 
(t) 2 L1(0; 2�) with k
k1 < 2 such that

lim sup
jxj!1

g(t; u)

u
� 
(t);

uniformly in a:e:t 2 [0; 2�]. Then, for every given function e(t) 2 L2(0; 2�) with
a1 � 1

2�

R 2�
0
e(t)dt � a2, problem (1)(2) has at least one solution.

However, their result gives no information on the interesting problem that nonlin-
earity crosses the eigenvalues. It is easy to see that 0 is the �rst eigenvalue of the
following problem

u000(t) + bu00(t) = �u(t); (3)

u(i)(0) = u(i)(T ); i = 0; 1; 2: (4)

An interesting problem is what would happen if the nonlinearity crosses the eigenvalue
0.
In this paper, we use Leray-Schauder degree and bifurcation technique to consider

the existence and multiplicity of solutions of third order periodic boundary value prob-
lems

u000(t) + bu00(t) + �u(t) + g(u(t)) = h(t); t 2 (0; T ); (5)

u(i)(0) = u(i)(T ); i = 0; 1; 2; (6)

where b is a nonnegative constant. g : R ! R is continuous, h 2 L1(0; T ), and the
parameter � runs near 0 which is the �rst eigenvalue of (3)(4). In the paper, we make
the following assumptions:
(H1) g : R! R is continuous, and there exist � 2 [0; 1), p; q 2 (0;1), such that

jg(u)j � pjuj� + q; u 2 R:

(H2) There exist constants A; a; R; r such that r < 0 < R and

g(u) � A for all u � R;

g(u) � a for all u � r:
(H20) There exist constants A; a; R; r such that r < 0 < R and

g(u) � A for all u � R;

g(u) � a for all u � r:
(H3)

g�1 <
1

T

Z T

0

h(s)ds < g+1;

where
g�1 = lim sup

s!�1
g(s); g+1 = lim inf

s!+1
g(s):

(H30)

g+1 <
1

T

Z T

0

h(s)ds < g�1;
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where
g+1 = lim sup

s!+1
g(s); g�1 = lim inf

s!�1
g(s):

Our main results are the following

THEOREM 1.1. Assume that (H1)-(H3) hold. Then there exist �+; �� with
�+ > 0 > �� such that
(i) (5),(6) has at least one solution if � 2 [0; �+];
(ii) (5),(6) has at least three solutions if � 2 [��; 0).
THEOREM 1.2. Assume that (H1),(H20) and (H30) hold. Then there exist �+; ��

with �+ > 0 > �� such that
(i) (5),(6) has at least one solution if � 2 [��; 0];
(ii) (5),(6) has at least three solutions if � 2 (0; �+].
Motivated by bifurcation technique and Leray-Schauder degree developed in [16],

which is concerned with second order periodic boundary value problem, in this paper
we are concerned with the existence and multiplicity solutions of (5),(6). Since (5),(6)
has odd order, there exist di¢ culty in the proof. The rest of the paper is arranged as
follows. In Section 2, we discuss the Lyapunov-Schmidt procedure for (5),(6). Section
3 is devoted to the proof of our main results. Finally, we give an example in Section 4.

2 Lyapunov-Schmidt Procedure

LetX; Y be respectively the Banach spaces C2[0; T ] and L1[0; T ] with respective norms
kxk = maxfkxk0; kx0k0; kx00k0g and kuk1 =

R T
0
ju(s)jds, where kxk0 = maxfjx(t)j : t 2

[0; T ]g. De�ne the linear operator L : D(L) � X ! Y by

Lu = u000 + bu00; u 2 D(L); (7)

where D(L) = fu 2W 3;1(0; T ) : u(i)(0) = u(i)(T ); i = 0; 1; 2g. Let N : X ! X be the
nonlinear operator de�ned by

(Nu)(t) = g(u(t)); t 2 [0; T ]; u 2 D(L): (8)

It is easy to see that N is continuous. (5),(6) is equivalent to

Lu+ �u+Nu = h; u 2 D(L): (9)

LEMMA 2.1. Let L be de�ned as (7). Then

KerL = fx 2 X : x(t) = c; c 2 Rg;

ImL = fy 2 Y :
Z T

0

y(s)ds = 0g:

PROOF. It is easy to see that KerL = fx 2 X : x(t) = c; c 2 Rg. The following
will prove that ImL = fy 2 Y :

R T
0
y(s)ds = 0g:
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If y 2 ImL, then there exists u 2 D(L) such that u000(t) + bu00(t) = y(t): So

u00(t)� u00(0) + bu0(t)� bu0(0) =
Z T

0

y(s)ds:

Combining with u(i)(0) = u(i)(T ); i = 0; 1; 2, we have
R T
0
y(s)ds = 0: The proof is

complete.

De�ne the operator P : X ! KerL by

(Pu)(t) =
1

T

Z T

0

u(s)ds; u 2 X: (10)

Let Q : Y ! Y be such that

(Qy)(t) =
1

T

Z T

0

y(s)ds; y 2 Y: (11)

Then it is easy to check that P and Q are continuous projectors. Let K(t; s) be the
Green�s function of

u000(t) + bu00(t) = 0; t 2 [0; T ];Z T

0

u(t)dt = 0; u(i)(0) = u(i)(T ); i = 0; 1; 2:

Then K : ImL! D(L) \KerP can be given by

(Ky)(t) =

Z T

0

K(t; s)y(s)ds: (12)

Obviously, the linear map K : ImL! D(L) \KerP is continuous.
LEMMA 2.2. Let P and Q be de�ned by (10) and (11) respectively. Then

X = KerP �KerL; Y = ImL� ImQ:

Therefore, for every u 2 X , we have unique decomposition u(t) = � + v(t); t 2
[0; T ], where � 2 R; v 2 KerP . Similarly, for every h 2 Y , we have unique decompo-
sition h(t) = � + �h(t); t 2 [0; T ], where � 2 R; �h 2 ImL. Let the operators Q and K
be de�ned by (11),(12). Then K(I �Q)N : X ! X is completely continuous and (9)
is equivalent to the systems

v(t) + �Kv(t) +K(I �Q)N(�+ v(t)) = K�h(t); (13)

��+QN(�+ v(t)) = � : (14)

LEMMA 2.3 ([17]). Assume that (H1) and (H2) hold. Then for each real number
s > 0, there exists a decomposition g(u) = qs(u) + gs(u) of g by qs and gs satisfying
the following conditions:

uqs(u) � 0; u 2 R; (15)
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jqs(u)j � pjuj+ q + s; u � 1; (16)

there exists �s depending on a;A and g such that

jgs(u)j � �s; u 2 R: (17)

LEMMA 2.4. Assume that (H1)-(H3) hold. If � satis�es

0 � � � �1 :=
1

2kKkImL!KerP
; (18)

then there exists constant R0 > 0 such that any solution u of (5),(6) satis�es kuk < R0:
PROOF. We divide the proof into several steps.
Step 1. By the assumption (H1), there exists a constant b such that

jg(u)j � p juj+ b; u 2 R;

where p = 1
4�1. Using Lemma 2.3 with s = 1, (5),(6) is equivalent to

u000(t) + bu(t) + �u(t) + g1(u(t)) + q1(u(t)) = h(t); t 2 [0; T ]; u 2 D(L); (19)

where q1 and g1 satisfy conditions (15) and (17). Moreover, by (16),

jq1(u)j � p juj+ b+ 1: (20)

Let �� > 0 and choose B 2 R such that

(b+ 1)

���� 1u
���� � 1

4
�� (21)

for all u 2 R with juj � B. It follows from (20) (21) that

0 � q1(u)u�1 � p+
1

4
�� (22)

for all u 2 R with juj � B.
Step 2. Let us de�ne 
 : R! R by


(u) =

8>>><>>>:
u�1q1(u); juj � B;

B�1q1(B)(
u

B
) + (1� u

B
)p; 0 � u < B;

B�1q1(�B)(
u

B
) + (1 +

u

B
)p; �B < u � 0:

(23)

It is easy to see that 
 is continuous. Moreover, by (22) one has

0 � 
(u) � p+ 1
4
�� (24)

for all u 2 R. De�ning f : R! R by

f(u) = g1(u) + q1(u)� 
(u)u; (25)
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it follows from (22) that for some � 2 R,

jf(u)j � � (26)

for all u 2 R, where � depends only on p and h. Finally, (19) is equivalent to

u000(t) + bu(t) + �u(t) + f(u(t)) + 
(u(t))u(t) = h(t); t 2 [0; T ]; u 2 D(L):

Step 3. It is to see that (L+ �I)jKerP\D(L) : KerP ! ImL is invertible. From (18),

k(L+ �I)j�1KerP\D(L)kImL!KerP = kL�1jKerP\D(L)(I + �K)�1kImL!KerP

= kKkImL!KerP k(I + �K)�1kImL!KerP

� 2kKkImL!KerP :

Let u = �+ v be a solution of (19), where � 2 R; v 2 KerP . Then from (13),

kvk = k(L+ �I)j�1KerP\D(L)(I �Q)(�h� g(�+ v(t)))k

� k(L+ �I)j�1KerP\D(L)kImL!KerP k(I �Q)kY!ImL[k�hk1 + p(j�j+ kvk)� + q]
� 2kKkImL!KerP k(I �Q)kY!ImL[k�hk1 + p(j�j+ kvk)� + q]

= 2kKkImL!KerP k(I �Q)kY!ImL[k�hk1 + p(j�j)�(1 +
kvk
j�j )

� + q]

� 2kKkImL!KerP k(I �Q)kY!ImL[k�hk1 + p(j�j)�(1 +
�kvk
j�j ) + q]

= 2kKkImL!KerP k(I �Q)kY!ImL[k�hk1 + p(j�j)�(1 +
�

(j�j)1�� �
kvk
(j�j)� ) + q]:

Therefore, kvk
(j�j)� � c0

(j�j)� + c1 +
�c1

(j�j)1�� �
kvk
(j�j)� , where c0 = 2kKkImL!KerP k(I �

Q)kY!ImL(k�hk1 + q); c1 = 2pkKkImL!KerP k(I �Q)kY!ImL.
If

j�j � (2�c1)
1

1�� := ~c;

then
kvk
(j�j)� �

2c0
(~c)�

+ 2c1 := �c: (27)

Step 4. If we now assume that the conclusion of the lemma is false, we obtain a
sequence f�ng : 0 � �n � �1; �n ! 0 and a sequence fung : un = �n + vn; �n 2
R; vn 2 KerP with kunk ! 1 such that

�n�n +Qg(�n + vn(t)) = � : (28)

It follows immediately from (27) that

j�nj ! 1; kvnk(j�nj)�1 ! 0; n!1: (29)



124 Multiple Solutions of Third Order Periodic BVP

So we infer that there exists su¢ ciently large n0 2 N such that for n � n0
jvn(t)j(j�nj)�1 � 1; t 2 [0; T ]: (30)

Without loss of generality, let �n ! +1 if n ! +1 (the other case be proved by
similar method), then there exists su¢ ciently large n0 2 N. If n � n0; �n�n � 0, thus

� � 1

T

Z T

0

g(�n + vn(s))ds � 0;

� � 1

T
lim inf
n!1

Z T

0

g(�n + vn(s))ds: (31)

Now in order to apply the Fatou lemma to (31), we need the existence of a function
K̂ 2 L1[0; T ] such that for s 2 [0; T ]; g (un(s)) � K̂(s). Indeed, from the relation (30),
there exists nonnegative function k1 2 L1[0; T ] such that for n � n0;

jvn(t)j(�n)�1 � k1(t); t 2 [0; T ];
and for every s 2 [0; T ],


(un(s))un(s) + f(un(s)) = 
(un(s))(�n + vn(s)) + f(un(s))

� 
(un(s))
�n + vn(s)

j�nj
+ f(un(s))

� 
(un(s))(1� k1(s))� jf(un(s))j

� �(p+ 1
4
��)(1� k1(s))� �:

Let
K̂(s) := �(p+ 1

4
��)(1� k1(s))� �:

It follows from g (un(s)) � K̂(s) that
g(�n + vn(s)) � K̂(s); s 2 [0; T ]:

Thus, appling Fatou lemma to (31), we have

� � 1

T
lim inf
n!1

Z T

0

g(�n + vn(s))ds

� 1

T

Z T

0

lim inf
n!1

g(�n + vn(s))ds

� 1

T

Z T

0

g+1ds:

This contradicts with (H3).
LEMMA 2.40. Assume that (H1),(H20),(H30) hold. If � satis�es

0 � � � �1 :=
1

2kKkImL!KerP
;

then there exists constant R0 > 0 such that any solution u of (5),(6) satis�es

kuk < R0:
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3 The Proof of the Main Result

We have the following

LEMMA 3.1. Assume that (H1)-(H3) hold. Then there exists R1 � R0 such that
for 0 � � � �, and R � R1 one has

deg(L+ �I +N � h; B(R); 0) = deg(L+ �I; B(R); 0) = �1;

where B(R) = fu 2 C[0; T ] : kuk < Rg, and the �deg�denotes Leray-Schauder degree
when � 6= 0 and coincidence degree when � = 0. Then (5),(6) has a solution in �B(R)
for 0 � � � �.
PROOF. From Lemma 2.4 and the de�nition of L, if � 2 [0; �], then

deg(L+ �I; B(R); 0)

is de�ned and is relevant to �. Let (�; u) 2 [0; 1]�X be a solution of (9). Then

Lu+ �u+ �(Nu� h) = 0:

So

kuk = �k(L+ �)�1(h�Nu)k
� k(L+ �)�1kY!X(khk1 + pkuk� + q):

Therefore there exists R00 > 0 such that kuk < R00: Choosing R1 = maxfR00; R0g, then
for arbitrary R > R1,

deg(L+ �I +N � h; B(R); 0) = deg(L+ �I; B(R); 0) = �1:

LEMMA 3.10. Assume that (H1),(H20),(H30) hold. Then there exists R1 � R0
such that for 0 � � � �, and R � R1 one has

deg(L+ �I +N � h; B(R); 0) = deg(L+ �I; B(R); 0) = �1;

where B(R) = fu 2 C[0; T ] : kuk < Rg.
LEMMA 3.2. Assume that (H1)-(H3) hold. Then there exists � � 0 such that for

�� � � � 0 one has

deg(L+ �I +N � h; B(R); 0) = deg(L+ �I; B(R); 0) = �1;

where R is de�ned in Lemma 3.1. Then (5),(6) has a solution in B(R) for �� � � � �.
PROOF. Let

�0 = inf
u2@B(R)\X

kLu+Nu� hk:

It is easy to verify that �0 > 0. Choosing su¢ ciently small � > 0 such that �R <
�0, then if � 2 [��; �],

deg(L+ �I +N � h; B(R); 0) = deg(L+N � h; B(R); 0):
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Combined with Lemma 3.1, the result can be proved. That is to say, if � 2 [��; �],
then (9) has at least one solution in �B(R).
LEMMA 3.20. Assume that (H1),(H20)(H30) hold. Then there exists � � 0 such

that for �� � � � 0 one has

deg(L+ �I +N � h; B(R); 0) = deg(L+ �I; B(R); 0) = �1;

where R is de�ned in Lemma 3.1. Then (5),(6) has a solution in B(R) for �� � � � �.
REMARK 1 Since g is L-completely continuous and satis�es (H2) and since � = 0

is a simple eigenvalue of L, it follows from bifurcation results of [18] that there exist
two connected sets C+; C� � R�X of solutions of (5),(6) such that for all su¢ ciently
small � > 0,

C+ \ U� 6= ;; C� \ U� 6= ;;
where U� := f(�; u) 2 R�X; j�j < �; kuk > 1

� g.
PROOF OF THEOREM 1.1. Set �+ = �. Then it follows from Lemma 3.1 and

Lemma 3.2 that (5),(6) has at least one solution in B(R) for � 2 [��; �+]. On the other
hand, Remark 1 shows that there exist two connected sets C+ and C� of solutions of
(5),(6) bifurcating from in�nity at � = 0. Hence by Lemma 2.4, the connected sets C+
and C� of Remark 1 must satisfy

C+; C� � f(�; u) : kuk � 1

�
; � � < � < 0g:

and hence 1
� � R, i.e. � �

1
k . Choosing �� = maxf��; �

1
kg, we obtain two solutions

u1; u2 : u1 2 C+; u2 2 C�, and kuik � R; i = 1; 2.

Theorem 1.2 can be proved in similar manners.

4 Example

To illustrate Theorem 1.1, we consider the existence and multiplicity of solutions of
the following third order periodic boundary value problems

u000(t) + bu00(t) + �u(t) + g(u(t)) = cos t; t 2 (0; T ); (32)

u(i)(0) = u(i)(T ); i = 0; 1; 2; (33)

where b is a nonnegative constant.

g(x) =

8>>><>>>:
1 + j sin �

16
xj; x > 8;

3
p
x; jxj � 8;

� 1� j sin �
16
xj; x < �8:

(34)

Choose p = q = 1; � = 1
2 ; A = 1; a = �1;�8 = r < 0 < R = 8: It is easy to check that

(H1) and (H2) hold. It follows from (34) that g�1 = 0; g+1 = 1. Thus (H3) is also
satis�ed. By Theorem 1.1, there exist �+; �� such that �+ > 0 > �� and (32),(33)
has at least one solution if � 2 [0; �+]; and (32),(33) has at least three solutions if
� 2 [��; 0).
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