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Abstract

Let r > 0. We consider the system �x(t) = Ax(t) + Bx(t� r) where A and B
are real square matrices of dimension 2. We assume that A has a single eigenvalue
and give su¢ cient conditions for the asymptotic stability of the null solution of the
system by deriving a pair of one dimensional delay di¤erential equations from the
system and comparing the Lyapunov exponents of the corresponding fundamental
solutions.

1 Introduction

Let A be an n�n real matrix. The solution x(t) � 0 of the system �x(t) = Ax(t); t � 0
of ordinary di¤erential equations is asymptotically stable if and only if all roots of the
corresponding characteristic function have negative real parts. Similar statements hold
for systems of linear delay di¤erential equations. It is known see e.g., Bellman and
Cooke [1] that if all the roots of the characteristic function of the equation

�x(t) = Ax(t) +Bx(t� r) (1)

have negative real parts, where A and B are real n�n matrices, then the zero solution
of the equation is asymptotically stable. We are using the following notions of stability
for systems of delay di¤erential equations: Let xg denote the solution of the system
(1) with the initial condition x(t) = g(t); t 2 [�r; 0] and for f : [�r; 0] ! Rn, let
kfk := supfkf(s)k : �r � s � 0g. The norm on Rn is any norm.

DEFINITION 1. The solution x' of (1) is said to be stable if for every " > 0, there
exists � > 0 such that

(i) if g : [�r; 0]! Rn and kg � 'k < �, then xg(t) exists for all t � 0; and

(ii) kxg(t)� x'(t)k < " for all t � 0.

We say that the stable solution x' is asymptotically stable if in addition to (ii),
limt!1 kxg(t)� x'(t)k = 0 for all g for which (i) holds.
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We say that the asymptotically stable solution x' is exponentially stable, if

lim sup
t!1

1

t
ln kxg(t)� x'(t)k < 0

for all g for which (i) holds.

Unfortunately, characteristic functions of delay di¤erential equations are not ordi-
nary polynomials as in the case of ordinary di¤erential equations. They are transcen-
dental functions whose roots are not easy to determine. As a consequence, a lot of
research has been done on questions related to the distribution of the zeroes of these
functions e.g., [9, 6, 4, 5] and the authors cited there. In higher dimensions, these
questions are considered in [3].
Given that the task of determining the distribution of characteristic roots in higher

dimensions is non-trivial, we are led to attempt to reduce the study of the stability of
systems in several dimensions to the study of the stability of suitable one dimensional
delay equations.
In what follows, we give su¢ cient conditions for the stability of a two dimensional

irreducible system by deriving a pair of one dimensional delay di¤erential equations
from the system and comparing the Lyapunov exponents of the associated fundamental
solutions. The method relies on an explicit formula for the solution of such a system
presented in [10]. We note that the method we have used here cannot be extended
trivially to systems where the matrix A has two distinct eigenvalues. The rest of the
paper is organized as follows: In Section 2 we give some notation and in section 3 we
present our results and proofs.

2 Prerequisites

We shall use the same symbol 0 for the real number 0, the zero vector in R2 and the
zero matrix in M(2; 2;R), where M(2; 2;R) denotes the set of 2� 2 matrices with real
entries. The symbol E shall denote the multiplicative identity in M(2; 2;R). Let r > 0,
A; B 2 M(2; 2;R) and consider the equation (1). We assume that A is irreducible in
the sense that it is not diagonalizable or is diagonalizable but has a single eigenvalue
� 2 C. In this case there exists an invertible matrix Q such that

Q�1AQ = �E +M (2)

where M = (mij)ij=1;2 with m11 = m21 = m22 = 0 and m12 = � ; � = 1 if A is
not diagonalizable and � = 0 otherwise. We de�ne H := Q�1BQ. We shall also
de�ne p(E) := 0; p(H) := p(M) := 1. If x 2 M(2; 2;R), then we de�ne x0 := E and

xm =

m�z }| {
x � � �x. If n � 1, xi 2 fH;M;Eg; i = 1; : : : ; n and x = x1 � � �xn, then we de�ne

p(x) = p(x1 � � �xn) :=
nP
i=1

p(xi). p(x) is the number of times that the matricesM andH

appear as factors in the given factorization of x over fM;H;Eg. For x 2M(2; 2;R), let
Tx denote the linear transformation onM(2; 2;R) de�ned by Tx(y) = xy; y 2M(2; 2;R)
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and for A �M(2; 2;R); Tx(A) := fTx(y) : y 2 Ag. For j 2 f0; 1g and k � 0, we de�ne

Ijk :=

�
fEg : k = 0

T(MjH)(Ik�1) : k � 1 ; Ik := I
0
k [ I1k :

DEFINITION 2. Let g : [�r; 0] ! R2. A function xg : [�r;1) ! R2 is called a
solution of (1) with the initial condition

xg(t) = g(t); t 2 [�r; 0] (3)

if it is continuous on [01), satis�es (1) Lebesgue almost everywhere on [0;1) and (3).

Let L1([�r; 0];R2) :=
(
g : [�r; 0]! R2 :

0R
�r
k g(s) k ds <1

)
. If g 2 L1([�r; 0];R2),

then a unique solution xg of (1) exists. Let G : [�r;1) ! M(2; 2;R) be the funda-
mental matrix associated with (1) i.e., for any � 2 R2,

x(t) := G(t)�; T 2 [�r;1);
is the solution of (1) with initial condition x(t) = �1f0g(t); t 2 [�r; 0], then it can be
shown that the solution xg of (1) with the initial condition (3) is given by

xg(t) :=

8<:
g(t) : t 2 [�r; 0]

G(t)g(0) +
0R
�r
G(t� s� r)Bg(s)ds : t � 0: (4)

In [10] it was shown that if A is irreducible in the sense given above, then the
fundamental matrix associated with (1) is the function G de�ned for t � 0 by

G(t) :=

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

QxQ�1
�
(t� kr)l

l!
E +

(t� kr)(l+1)
(l + 1)!

QMQ�1
�
:

(5)

3 Results and Proofs

We begin with the following Lemma.

LEMMA 1. There exists a constant K1 < 1 such that for all g for which the
solution xg of (1), (3) exists and t � 0,

kxg(t)k � K1 kgk kGtk where kGtk := supfkG(t+ #)k : # 2 [�r; 0]g
and G is the fundamental matrix associated with (1).

PROOF. From (4), it follows that for t � 0,

kxg(t)k � kG(t)k kg(0)k+
0Z

�r

kG(t� s� r)k kBk kg(s)k ds (6)

� kG(t)k kgk+
0Z

�r

kG(t� s� r)k kBk kgk ds: (7)
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If we now set K1 := (1 + r kBk), then the assertion follows.
The proof of the next Theorem relies on the following Lemmas:

LEMMA 2. For k � 1 and l 2 fk; : : : ; 2kg, ]fx 2 Ik : p(x) = lg =
�

k

l � k
�
, where

we denote the cardinality of a set A by ]A.

PROOF. Let k = 1. Then I1 := fH; (MH)g and l 2 f1; 2g. For l = 1 we have

1 = ]fHg = ]fx 2 I1 : p(x) = 1g. Also,
�

1
1� 1

�
= 1. For l = 2, ]fx 2 I1 : p(x) =

2g = ]f(MH)g = 1. We also have
�

1
2� 1

�
= 1. Therefore the statement is true for

k = 1. Assume that the statement is true for some k � 2. We now show that it is true
for k + 1.

fx 2 Ik+1 : p(x) = lg = fx 2 I0k+1 : p(x) = lg [ fx 2 I1k+1 : p(x) = lg
= fx 2 TH(Ik) : p(x) = lg [ fx 2 T(MH)(Ik) : p(x) = lg;

where the union is disjoint. Therefore

]fx 2 Ik+1 : p(x) = lg = ]fx 2 TH(Ik) : p(x) = lg+ ]fx 2 T(MH)(Ik) : p(x) = lg
= ]fx 2 Ik : p(x) = l � 1g+ ]fx 2 Ik : p(x) = l � 2g

=

�
k

l � 1� k
�
+

�
k

l � 2� k
�
=

�
k+1

l � 1� k
�
:

LEMMA 3. Let k � 1. If x 2 Ik and p(x) = l for any l 2 fk; : : : ; 2kg, then k factors
of x are H and l � k factors are M .
PROOF. We will also do this proof by induction on k. Let k = 1, then l 2 f1; 2g.

If x 2 I1 and p(x) = l = 1, then x = H which has k = 1 factor being H and l � k = 0
factors being M . Also, if p(x) = l = 2, then x = (MH) which has k = 1 factor being
H and l � k = 1 factor being M .
Assume that the statement is true for some k � 2 and let now x 2 Ik+1 with

p(x) = l; l 2 fk + 1; : : : ; 2(k + 1)g. Since x 2 Ik+1 = I0k+1 [ I1k+1, it follows that
x = Hy for some y 2 Ik or x = (MH)y for some y 2 Ik.
If x = Hy with y 2 Ik, then since p(x) = l, it follows that p(y) = l � 1. Since

y 2 Ik, it follows from the assumption of the induction that k factors of y are H and
l� 1� k = l� (k+1) factors are M . Therefore k+1 factors of x are H and l� (k+1)
factors are M .
Alternatively, if x = (MH)y with y 2 Ik, then since p(x) = l, it follows that

p(y) = l � 2. Since y 2 Ik, it again follows from the assumption of the induction that
k factors of y are H and l � 2 � k factors are M . Therefore k + 1 factors of x are H
and l � (k + 1) factors are M .
LEMMA 4. Let z� and y� denote the fundamental solutions of the scalar equations

�z(t) = kMk z(t� r) and �y(t) = Re(�)y(t)+�y(t� r) respectively, where Re(�) denotes
the real part of � and

� =

�
kBk : M = 0
kHk : M 6= 0 ;
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then for the fundamental matrix G associated with (1) and t � 0,

kG(t)k � (kQk
Q�1)2y�(t)z�(t)(1 + t kMk):

PROOF. Let G1(t) :=
[ tr ]P
k=0

Bk

k! (t� kr)
ke�(t�kr) and

G2(t) :=

[ tr ]X
k=0

e�(t�kr)
2kX
l=k

X
fx2Ik:p(x)=lg

QxQ�1
�
(t� kr)l

l!
QQ�1 +

(t� kr)l+1
(l + 1)!

QMQ�1
�
;

then G(t) = G1(t) if M = 0 and G(t) = G2(t) if M 6= 0. Assume �rst that M 6= 0 and
let K(Q) := (kQk

Q�1)2, then
kG(t)k � K(Q)

[ tr ]X
k=0

je�(t�kr)j
2kX
l=k

X
fx2Ik:p(x)=lg

kxk (t� kr)
l

l!

�
1 +

(t� kr)
(l + 1)

kMk
�
:

By Lemma 3, if x 2 Ik and p(x) = l, then kxk � kHkk kMkl�k. Note that je�(t�kr)j =
eRe(�)(t�kr) and hence by Lemma 2, we have

kG(t)k � K(Q)

[ tr ]X
k=0

eRe(�)(t�kr) kHkk
2kX
l=k

�
k

l � k
�
kMkl�k (t� kr)

l

l!

�
1 +

(t� kr)
(l + 1)

kMk
�

= K(Q)

[ tr ]X
k=0

eRe(�)(t�kr) kHkk
kX
l=0

�
k

l

�
kMkl (t� kr)

l+k

(l + k)!

�
1 +

(t� kr)
(l + k + 1)

kMk
�

= K(Q)

[ tr ]X
k=0

eRe(�)(t�kr) kHkk (t� kr)
k

k!
f(t; k; kMk);

where we set f(t; k;m) :=
kP
l=0

k!

�
k

l

�
ml (t�kr)l

(l+k)!

�
1 + (t�kr)

(l+k+1)m
�
: Using the convention

that for integers k � 0; l � 0; k � l,

k(k � 1)(k � 2) � � � (k � l + 1) =
�

1 : l = 0
k(k � 1)(k � 2) � � � (k � l + 1) : 1 � l � k ;

it is easy to show that k!
(k+l)!

�
k

l

�
� 1

l! . Therefore

f(t; k;m) �
kX
l=0

ml

l!
(t� kr)l

�
1 +

(t� kr)m
l + k + 1

�
�

kX
l=0

ml

l!
(t� kr)l(1 + tm)

�
kX
l=0

ml

l!
(t� lr)l(1 + tm) �

[ tr ]X
l=0

ml

l!
(t� lr)l(1 + tm):
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If we now replace m by kMk, then it follows that kG(t)k � K(Q)y�(t)z�(t)(1+ t kMk).
Assume now that M = 0, then it is easy to see that z�(t) = 1[0 1)(t); t � �r and

hence z�(t)(1 + t kMk) = 1; t � 0. Therefore

kG(t)k � K(Q)

[ tr ]X
k=0

eRe(�)(t�kr) kBkk (t� kr)
k

k!

= K(Q)

[ tr ]X
k=0

eRe(�)(t�kr) kBkk (t� kr)
k

k!
z�(t)(1 + t kMk)

= K(Q)y�(t)z�(t)(1 + t kMk):

For the scalar delay equation

�x(t) = ax(t) + bx(t� r); (8)

we call the function h(�) := �� a� be��r the characteristic function of (8). Its zeroes
are called the characteristic roots of (8). Let � denote the set of characteristic roots
of (8), �0 = �0(a; b; r) := maxfRe(�) : � 2 �g and x0 be its fundamental solution
(matrix). The following is known:

LEMMA 5.

(i) For every real c; � \ f� 2 C : Re(�) > cg is �nite. In particular, �0 <1.

(ii) For every � > �0 there exists a constant K(�) such that jx0(t)j � K(�)e�t.

PROOF. See Hale [7], Lemma 4.1 and Theorem 5.2 of Chapter 1:

From Lemma 4 and Lemma 5 we have the following theorem:

THEOREM 1. Consider the scalar delay di¤erential equations

�z(t) = kMk z(t� r); t � 0
�y(t) = Re(�)y(t) + �y(t� r); t � 0:

If �0(Re(�); �; r) < ��0(0; kMk ; r), then the null solution x'; ' � 0 of (1) is expo-
nentially stable.

PROOF. Let �� := �0(0; kMk ; r), then �� � 0. Further let �; � 2 R be chosen such
that �0(Re(�); �; r) < � and � < � < ��� and set d := ��� � � and � := �� + d, then
�� < � and �+ � = � � � < 0. By Lemma 5, jy�(t)j � K(�)e�t and jz�(t)j � K(�)e�t.
Therefore by Lemma 4,

kG(t)k � K(Q)y�(t)z�(t)(1 + t kMk) � K(Q)K(�)K(�)e(�+�)t(1 + t kMk):

Let ~K = K(Q)K(�)K(�): Then

kGtk = supfkG(t+ #)k : # 2 [�r; 0]g
� ~K supfe(�+�)(t+#)(1 + (t+ #) kMk) : # 2 [�r; 0]g
� ~Ke(�+�)t supfe(�+�)#((1 + t kMk) + # kMk) : # 2 [�r; 0]g
� ~Ke(�+�)te�(�+�)r(1 + t kMk):
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By Lemma 1, there exists a constant K1 such that for arbitrary g for which the solution
xg exists, kxg(t)k � K1 kgk kGtk : Let K2 := ~KK1e

�(�+�)r. Then

kxg(t)k � K2 kgk e(�+�)t(1 + t kMk): (9)

If now t� is the point at which the function t 7! expf(�+ �)tg(1+ t kMk); t � 0, takes
its global maximum and we set C := K2 expf(�+ �)t�g(1 + t� kMk), then C <1 and
for t � 0,

kxg(t)k � C kgk : (10)

For " > 0 chosen arbitrarily, let � := "
C and g : [�r; 0] ! R2 be such that kgk < �,

then g 2 L1([�r; 0];R2) and hence xg(t) exists for all t � 0. From (10), it follows that
kxg(t)k < " for all t � 0 and hence x'; ' � 0 is stable. Since � + � < 0, it follows
from (9) that limt!1 kxg(t)k = 0, hence x'; ' � 0 is asymptotically stable. Finally,
1
t ln kx

g(t)k � (�+�)+ 1
t ln[K2�(1+t kMk)] and hence lim sup

t!1
1
t ln kx

g(t)k � �+� < 0,
i.e., x'; ' � 0 is exponentially stable.
From the preceding Theorem we have the following Corollary which in essence

generalizes the one dimensional case:

COROLLARY 1. If A is a diagonal matrix, then a su¢ cient condition for the
exponential stability of x'; ' � 0 is that �0(Re(�); kBk ; r) < 0.
PROOF. Note that from (2), A is a diagonal matrix if and only if M = 0 and that

if M = 0, then �� = 0 and � = kBk. The assertion then follows immediately from
Theorem 1.
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