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Abstract

There is no Hadamard circulant matrices H of order n > 4 with (a) �rst
column [x1; : : : ; xn]� where x1(xi + xn

2
+i) > �2 for all i = 1; : : : ; n=2 and (b)

such that A + B is symmetric, where A;B are matrices of order n=2 such that
the �rst n=2 lines of H have the form [A;B].

1 Introduction

We discovered recently Ryser�s conjecture as Problem 3 in [10, page 97]. Let n > 0 be
a positive integer. Let �n be the matrix in the standard basis of the left-shift operator
that transforms a vector (x1; x2; : : : ; xn)� (where � means �conjugate-transpose�) to
the vector (x2; : : : ; xn; x1)�:
Analogously let de�ne  n be the matrix in the standard basis of the right-shift

operator that transforms a vector (x1; x2; : : : ; xn)� to the vector (xn; x1; : : : ; xn�1)�:
A circulant matrix C of order n is a matrix that is a polynomial in �n, i.e., C =

P (�n) where P 2 Z[t] is a polynomial in one variable t with rational integral coe¢ cients.
More precisely, P (t) = c1 + c2t + : : : + cnt

n�1 where [c1; c2; : : : ; cn] is the �rst row of
C: P is called the representer polynomial of C: We also write

C = circ(c1; c2; : : : ; cn)

and therefore, we have
C = P (�n):

Analogously, a left-circulant matrix S of order n is a matrix that is a polynomial
in  n:
For example, all circulant matrices of order 4 are polynomials with integer coe¢ -

cients in the matrix �4 = circ(0; 1; 0; 0); namely

�4 =

2664
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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A Hadamard matrix H = (hi;j) of order n is a matrix with integer coe¢ cients that
satis�es the following two conditions:

(a) For all 1 � i; j � n one has hi;j 2 f�1; 1g:

(b) One has H�H = nIn where In is the identity matrix of order n:

An example of a Hadamard circulant matrix is: H = circ(�1;�; 1;�1; 1), namely

H =

2664
�1 �1 �1 1
1 �1 �1 �1
�1 1 �1 �1
�1 �1 1 �1

3775
Indeed, the complete list of all known Hadamard circulant matrices consists of �H and
� the other shifts of H by �4, plus �I1 where I1 = [1] is the trivial identity matrix of
order 1: More precisely, all known Hadamard circulant matrices belong to the following
list of ten matrices:

fH;�H;�4H;��4H;�24H;��24H;�34H;��34H; I1;�I1g:
Ryser�s conjecture (see [13, page 134]) is the inexistence of matrices of order n > 4

that are circulant and Hadamard matrices simultaneously. There are many published
papers in this area (see e.g., [13], [6], [16] [17], [12], [2], [14], [7], [15], [14], [3], [9] and
the bibliography therein).
The existence or nonexistence of circulant Hadamard matrices is important since

the problem is at the intersection of several branches of mathematics. First of all we
have a classical linear algebra problem (as in the special case considered in the present
paper). But the problem is also related to the classical orthogonal group, since H
circulant Hadamard of order n is equivalent to H=

p
n belongs to the orthogonal group

O(n;Q); where Q is the �eld of rational numbers. Moreover, there is also a complex
analysis aspect on the problem since H being circulant, it is diagonalized over the
complex numbers by the unitary Fourier matrix F de�ned by F � = ( 1p

n
w(i�1)(j�1))

where w = e
2�i
n is an n-th complex root of unity. Second, there is a number theory

aspect on the problem, since the n-th classical cyclotomic polynomial �n(t) over Q is a
divisor of the representer polynomial of H, so the condition on H implies conditions on
�n(t): Third, the problem has a combinatorial aspect also since the columns of H whose
entries are in f�1; 1g should be two by two orthogonal. Furthermore, the conjecture
is a long-standing one since remains unresolved since 1963. A recent short survey of
what is known about Ryser�s conjecture appear (among other results) in [3].
We prove in the present paper (see Theorem 1) a simple special case of the full

conjecture, not noticed in the literature, by using a nice result of Ma [11, Theorem
3]. Craigen and Kharaghani [5], had already used this result to reprove (among other
results) a 1965�s result of Brualdi [4], namely that the only Hadamard circulant sym-
metric matrices H of order n occur when n 2 f1; 4g: Observe that H circulant and
symmetric is equivalent to H circulant and HMn = MnH; where Mn is the mirror
matrix of order n de�ned in section 2. This matrix is also called counteridentity in [10,
p. 28]. See also section 2 for de�nitions of the matrices In=2; Jn=2 used in (1) below.
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We prove also in section 3 (see Corollary 1) that we cannot improve the result
by considering a more general commutation condition. Namely, one has for suitable
rational numbers u; v 2 Q with (u; v) 6= (1; 0):

(A+B)Mn=2 =Mn=2(A+B)(uIn=2 + vJn=2) (1)

(see also Lemma 6), instead of the simple commutation property: (A + B)Mn=2 =
Mn=2(A + B) that we used in the proof of Theorem 1. Indeed (see Lemma 6 and
Corollary 3), (1) implies that n = 4 or (u; v) = (1; 0) so that the result is optimal for
these kind of modi�cations.

2 Some Tools

Let n > 0 be a positive integer. We denote by In the identity matrix of order n:
The following two square matrices of order n play a signi�cant role: Jn = (Jr;s)
where Jr;s = 1 for all r; s and Mn = (Mi;j) the mirror matrix de�ned by Mi;j = 1 if
i + j = n + 1 and Mi;j = 0 otherwise. Let r be a real number. We say that a matrix
A of order n with real entries is r-regular if AJn = JnA = rJn: Observe that for a
r-regular matrix A, r is the common sum of all the entries in a given line or column of
A: If all entries of a matrix M are in f0; 1g we say that M is a f0; 1g matrix.
The following is well known but useful.

LEMMA 1. Let H be a Hadamard matrix of order n > 4: Then 4 j n.
LEMMA 2. Let H be a Hadamard and circulant matrix of order n > 0: Set

M =Mn: Then the matrix HM is Hadamard, symmetric, and left-circulant.

PROOF. One has (HM)(HM)� = HMM�H� = HH� = H�H = nI; the other
conditions are also easily checked.

LEMMA 3. Let H be a circulant and Hadamard matrix of order n > 0: Then n is
a perfect square. So n = 4h2 for some nonzero integer h 6= 0:
PROOF. The matrix H = circ(c1; : : : ; cn) is r-regular, with r = c1 + � � �+ cn since

H is circulant. Since we have also H�Jn = rJn we obtain nJn = HH�Jn = r2Jn: The
result follows.

LEMMA 4. Let H be a circulant Hadamard matrix of order n = r2 > 0 and with
�rst column C1 = [x1; : : : ; xn]�: Set

�i = x1(xi + xn
2+i
)

for each i = 1; : : : ; n=2: Then

(a)

H =

�
A B
B A

�
where A;B are matrices of order n=2:

(b) K = A+B is circulant and r-regular.
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(c) If for all i = 1; : : : ; n=2 one has
�i > �2;

then all entries of C = K
2 are in f0; x1g:

PROOF. Since H is circulant we have (a). It is well known that H is r-regular. By
de�nition of K, K is circulant with �rst column

[x1 + xn
2+1

; : : : ; xi + xn
2+i

; : : : ; xn
2
+ xn]

�

and the sum of the entries on any line or column of K equals r, the sum of all elements
in C1: This proves (b). Since xj 2 f�1; 1g for all j = 1; : : : ; n; one has

�j 2 f�2; 0; 2g

so that (c) implies the result.

The next crucial lemma is [11, Theorem 3], which is also appeared as [5, Theorem
3.1].

LEMMA 5. Let A be a circulant matrix of order n > 0 with entries in f0; 1g: Let
m be an even positive integer. Assume that Am = dIn + kJn for some integers d; k:
Then A 2 f0; P; Jn; Jn � Pg where P is a permutation matrix of order n:

The following lemma is useful in order to establish Corollary 1.

LEMMA 6. Set n = 4h2 for an odd integer h: De�ne r by n = r2 so that r is even
and r

2 is odd. Let u; v 2 Q be rational numbers. Let S = (si;j) 6= Jn
2
be a f0; 1g matrix

of order n2 ;
r
2 -regular and such that T = S(uI + vJ) = (ti;j); where I = In

2
; J = Jn

2
; is

also a f0; 1g matrix. Then (u; v) = (1; 0) or n = 4.
PROOF. Set n2 = n

2 ; r2 =
r
2 : Observe that SJ = r2J since S is r2-regular. Since

T = uS + vr2J , T is t-regular with

t =

n2X
j=1

usi;j + vr2 = r2(u+ vn2): (2)

But t = r2 and r 6= 0 so that (2) implies

u+ vn2 = 1: (3)

Now we exploit the fact that T is a f0; 1g matrix. One has ti;j = usi;j + wr2: Case 1:
si;j = 0 so that ti;j = wr2: If v = 0 then u = 1 from (3). If v 6= 0 then ti;j = 1 so that
v = r�12 : We obtain u = 1 � r from (3). But S 6= 0 since S is r2-regular, so there are
a pair (k; l) 6= (i; j) with sk;l 6= 0 so that sk;l = 1 and tk;l = u + vr2 = (1 � r) + 1 =
2 � r 2 f0; 1g: This implies r = 2 so that n = 4; or r = 1 and n = 1: Case 2: si;j = 1
so ti;j = u+ vr2 2 f0; 1g: If ti;j = 0 we get from (3) 2 = v(n� r) so that v = 2

n�r 6= 0:
Using again (3) we obtain u = r

r�n : But S 6= J; so for some (k; l) 6= (i; j); one has
sk;l = 0; so that tk;l = wr2 2 f0; 1g: If tk;l = 0 then we get the contradiction v = 0; so
tk;l = 1; i.e., n = 2r: It follows that r(r � 2) = 0 so that r = 2 and n = 4: This proves
the lemma.
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3 The Main Result and its Proof

We deduce our main result:

THEOREM 1. SetM =Mn
2
; J = Jn

2
and I = In

2
. There is no Hadamard circulant

matrices H =

�
A B
B A

�
of order n = 4h2 > 4 with �rst column [x1; : : : ; xn]� where

x1(xi + xn
2+i
) > �2 for all i = 1; : : : ; n2 and such that

(A+B)M =M(A+B) (4)

or in equivalent form: such that

A+B is symmetric

PROOF. Assume to the contrary the existence of such a matrix H: Observe that
n = 4h2 from Lemma 2. We can assume that x1 = 1; since if this is not true we change
H by �H: By Lemma 2 we have n = r2: Set M =Mn

2
; J = Jn

2
and I = In

2
. One has

by Lemma 2 (a)

H =

�
A B
B A

�
where A;B are matrices of order n

2 : So

K = HMn =

�
BM AM
AM BM

�
(5)

is Hadamard symmetric by Lemma 2 so that

K2 = nI: (6)

So from (5) and (6) we get

(BM)2 + (AM)2 = nI; AMBM +BMAM = 0:

It follows that
(BM +AM)2 = nI: (7)

Set C = (A+B)M
2 ; D = A+B

2 = CM . We have then from (7)

C2 =
n

4
I: (8)

So
D2 = CMCM = CMMC = C2; (9)

from (4).
Thus, we get

D2 = h2I; (10)
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from n = 4h2.
By the condition and Lemma 2, D is circulant, r

2 -regular and has all its entries
in f0; 1g: We see from (10) that D2 is an integral combination of I and J: Thus, we
conclude from Lemma 5 that

D 2 f0; P; J � P; Jg:

where P is a permutation matrix of order n
2 : Since from (8) C = DM is non singular,

we obtain
C 2 fPM; (J � P )Mg:

Observe that C is r2 -regular and that P is 1-regular. So C = PM implies n = 4: Since
J � P is (n2 � 1)-regular, C = (J � P )M implies n

4 = (
n
2 � 1)

2. In other words

(n� 1)(n� 4) = 0:

The result follows.

Following our discussion at the end of the Introduction, our second result follows
immediately from Theorem 1:

COROLLARY 1. Set M = Mn
2
; J = Jn

2
and I = In

2
. There is no Hadamard

circulant matrices H =

�
A B
B A

�
of order n = 4h2 > 4 with �rst column [x1; : : : ; xn]�

where x1(xi + xn
2+i
) > �2 for all i = 1; : : : ; n=2 and such that

(A+B)M =M(A+B)(uI + vJ)

for suitable rational numbers u; v 2 Q such that (u; v) 6= (1; 0):
PROOF. Apply Lemma 6 with S =M(A+B): The result follows then by Theorem

1.
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