Meromorphic Solutions Of Conjugacy Equations*

Yong-Guo Shi ${ }^{\dagger}$, Li Chen ${ }^{\ddagger}$

Received 15 April 2011

Abstract

This paper characterizes the relation between a conjugacy equation $\varphi \circ f=g \circ \varphi$ and a permutable functional equation $\phi \circ f=f \circ \phi$ where $f: X \rightarrow X, g: Y \rightarrow Y$ are given self-maps, and φ, ϕ are unknown maps. When f and g are Möbius transformations, we prove that there exists a bijective meromorphic solution of a conjugacy equation if and only if f and g have the same normal form. Moreover, every bijective meromorphic solution is expressed by a permutable meromorphic function with their normal form.

1 Introduction

Let X and Y be topological spaces, and let $f: X \rightarrow X$ and $g: Y \rightarrow Y$ be continuous maps. We say that $f: X \rightarrow X$ is topologically conjugate (or simply conjugate) to $g: Y \rightarrow Y$ if there exists a homeomorphism $\varphi: X \rightarrow Y$ satisfying the conjugacy equation (cf. [1,2])

$$
\begin{equation*}
\varphi \circ f=g \circ \varphi \tag{1}
\end{equation*}
$$

where o denotes the composition of maps. For instance,

$$
\begin{equation*}
\varphi(z+1)=\frac{\varphi(z)}{\varphi(z)+1} \tag{2}
\end{equation*}
$$

once arose in mathematical competitions or applied mathematics. Taking $f(z)=z+1$ and $g(z)=z /(z+1)$, Eq.(2) becomes a conjugacy equation.

In particular, when $g=f$ and φ is replaced with ϕ, the conjugacy equation (1) becomes

$$
\begin{equation*}
\phi \circ f=f \circ \phi, \tag{3}
\end{equation*}
$$

which is called a permutable functional equation. f is said to be permutable with ϕ if the relation (3) holds. Permutable functions and close form solutions of functional equations have been extensively studied by many authors (see [3-9]). The monograph [2] collects many results including analytic solutions on a neighborhood of the origin of

[^0]Eq.(3). In 1996, Coonce [10] studied some families of permutable functions of several variables. Later, Singh and Wang [11] investigated Julia sets of permutable holomorphic functions. In [4], Ciepliński discussed commuting functions on the circle. Zheng et al. [12] considered permutable entire functions satisfying algebraic differential equations. Recently, for conjugacy equations, we constructed all non-monotonic solutions and continuously differentiable solutions of conjugacy equations in [13]. Using a conjugacy equation, all meromorphic iterative roots of Möbius transformations were calculated in [14].

This paper characterizes the relation between Eq.(1) and Eq.(3) for two given f : $X \rightarrow X$ and $g: Y \rightarrow Y$. When f and g are Möbius transformations, we prove that there exists a bijective meromorphic solution of a conjugacy equation if and only if f and g have the same normal form. Moreover, every bijective meromorphic solution is expressed by a permutable meromorphic function with their normal form. Some examples are illustrated to apply these results.

2 Preliminaries

The following lemma states a relation between permutable functional equation and conjugacy equation.

LEMMA 1. Let $\varphi_{0}: X \rightarrow Y$ be a particular solution of Eq.(1). Then every solution of (1) is given by

$$
\varphi=\varphi_{0} \circ \phi
$$

where $\phi: X \rightarrow X$ is a solution of Eq.(3).
PROOF. Since φ_{0} is a solution of Eq.(1), we have $g \circ \varphi_{0}=\varphi_{0} \circ f$. For any solution $\phi: X \rightarrow X$ of Eq.(3), let $\varphi=\varphi_{0} \circ \phi$, then

$$
\varphi \circ f=\varphi_{0} \circ \phi \circ f=\varphi_{0} \circ f \circ \phi=g \circ \varphi_{0} \circ \phi=g \circ \varphi
$$

This completes the proof.
A Möbius transformation on the complex plane is given by

$$
\ell(z)=\frac{a z+b}{c z+d}
$$

where a, c, b, d are any complex numbers satisfying $a d-b c \neq 0$. In case $c \neq 0$, this definition is extended to the whole Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ by defining $\ell(-d / c)=\infty$ and $\ell(\infty)=a / c$, if $c=0$ we define $\ell(\infty)=\infty$. This turns ℓ into a bijective meromorphic function from $\widehat{\mathbb{C}}$ to itself.

The set of all Möbius transformations forms a group under composition called the Möbius group. It is the automorphism group of the Riemann sphere, denoted by $\operatorname{Aut}(\widehat{\mathbb{C}})$.

Let $G L_{2}(\mathbb{C})$ denote the group of all non-singular 2×2 matrices in the field \mathbb{C}. Define $h: G L_{2}(\mathbb{C}) \rightarrow \operatorname{Aut}(\widehat{\mathbb{C}})$ by

$$
h\left(\left[\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}\right]\right)=\frac{a z+b}{c z+d}
$$

The map h is surjective, but not injective because $h(\mu A)=h(A)$ for all nonzero $\mu \in \mathbb{C}$. Define an equivalence in $G L_{2}(\mathbb{C})$ with $A \sim B$ if and only if $A=\mu B$ and consider the corresponding quotient space $\tilde{G L_{2}}(\mathbb{C}):=G L_{2}(\mathbb{C}) / \sim$. Then the induced map

$$
\begin{equation*}
\tilde{h}: \tilde{G L_{2}}(\mathbb{C}) \rightarrow \operatorname{Aut}(\widehat{\mathbb{C}}) \tag{5}
\end{equation*}
$$

is bijective.
The following is a well-known fact, which states that the composition of two Möbius transformations corresponds to the multiplication of their corresponding matrices.

LEMMA 2. Suppose that A_{1}, A_{2} are the corresponding matrices of $\ell_{1}, \ell_{2} \in \operatorname{Aut}(\widehat{\mathbb{C}})$, respectively. Then

$$
\ell_{1} \circ \ell_{2}=h\left(A_{1}\right) \circ h\left(A_{2}\right)=h\left(A_{1} A_{2}\right)
$$

In what follows, we consider Eq.(1) and Eq.(3) where $f, g \in \operatorname{Aut}(\widehat{\mathbb{C}})$.
Using the induced mapping \tilde{h} on the quotient space $\tilde{G L_{2}}(\mathbb{C})$, the following lemma gives a relation between solutions of the permutable functional equation (3) and a matrix equation

$$
X A=A X, \quad A=\left[\begin{array}{ll}
a & b \tag{6}\\
c & d
\end{array}\right]
$$

LEMMA 3. Let A be a corresponding matrix of $f \in \operatorname{Aut}(\widehat{\mathbb{C}})$. Then every bijective meromorphic solution of Eq.(3) is given by

$$
\phi(z)=\tilde{h}(X)
$$

where X is a solution of Eq.(6).
PROOF. It is known from the proof of [1, Theorem 11.1.1] that if ϕ is a bijective meromorphic function, then $\phi \in \operatorname{Aut}(\widehat{\mathbb{C}})$. So assume X is a corresponding matrix of ϕ. So we see that

$$
\tilde{h}(X) \circ \tilde{h}(A)=\tilde{h}(A) \circ \tilde{h}(X)
$$

It follows from Lemma 2 that

$$
\tilde{h}(X A)=\tilde{h}(A X)
$$

Since \tilde{h} is bijective, the matrix equation $X A=A X$ on the quotient space $\tilde{G L_{2}}(\mathbb{C})$ is equivalent to Eq.(3). Thus every bijective meromorphic solution of Eq.(3) is given by

$$
\phi(z)=\tilde{h}(X)
$$

The proof is complete.
If $A \in G L_{2}(\mathbb{C})$, there exists a nonzero constant $\mu \in \mathbb{C}$ such that μA can be transformed into one of the three Jordan canonical forms

$$
J_{1}=\left[\begin{array}{ll}
1 & 0 \tag{7}\\
0 & 1
\end{array}\right], J_{2}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right], J_{3}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

where $\lambda \in \mathbb{C}$ is a constant and $\lambda \neq 0,1$. By Lemmas 2 and 3 , it suffices to discuss the case that A can be transformed into one of the above three Jordan canonical forms.

For each $j=1,2,3$ we let \mathcal{A}_{j} denote the collection of matrices A which are similar to J_{j}.

LEMMA 4. Let Q be an invertible matrix such that $Q^{-1} A Q$ is of a Jordan canonical form. Then Eq.(3) has (i) all Möbius transformations as bijective meromorphic solutions when $A \in \mathcal{A}_{1}$; (ii) infinitely many bijective meromorphic solutions

$$
\phi(z)=\tilde{h}\left(Q\left[\begin{array}{cc}
c_{1} & 0 \tag{8}\\
0 & c_{2}
\end{array}\right] Q^{-1}\right)
$$

where c_{1}, c_{2} are both arbitrary nonzero complex numbers, when $A \in \mathcal{A}_{2}$; (iii) infinitely many bijective meromorphic solutions

$$
\phi(z)=\tilde{h}\left(Q\left[\begin{array}{cc}
c_{1} & c_{2} \tag{9}\\
0 & c_{1}
\end{array}\right] Q^{-1}\right)
$$

where c_{1}, c_{2} are both arbitrary complex numbers and $c_{1} \neq 0$, when $A \in \mathcal{A}_{3}$.
PROOF. Case (i). When $Q^{-1} A Q=J_{1}, f(z)=z$, which commutes with arbitrary functions.

Case (ii). $Q^{-1} A Q=J_{2}$. All matrices commuting with J_{2} are of the form

$$
C_{2}=\left[\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right]
$$

where c_{1}, c_{2} are both arbitrary constants such that C_{2} is invertible, i.e., $c_{1} c_{2} \neq 0$. It implies that all matrices commuting with $A=Q J_{2} Q^{-1}$ are of the form $P_{2}=Q C_{2} Q^{-1}$. Thus $X=P_{2}$ is the general solution of Eq.(6). By Lemma 3, the result (8) follows.

Case (iii). $Q^{-1} A Q=J_{3}$. All matrices commuting with J_{3} are of the form

$$
C_{3}=\left[\begin{array}{cc}
c_{1} & c_{2} \\
0 & c_{1}
\end{array}\right]
$$

where c_{1}, c_{2} are both arbitrary constants such that C_{3} is invertible, i.e., $c_{1} \neq 0$. It implies that all matrices commuting with $A=Q J_{3} Q^{-1}$ are of the form $P_{3}=Q C_{3} Q^{-1}$. Thus $X=P_{3}$ is the general solution of Eq.(6). By Lemma 3, the result (9) follows.

We give an example to illustrate the use of the formulae obtained above.
EXAMPLE 1. Consider $f(z)=\frac{7 z-3}{18 z-8}$, which corresponds to

$$
A=\left[\begin{array}{cc}
7 & -3 \\
18 & -8
\end{array}\right]
$$

Choosing

$$
Q=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

we have

$$
Q^{-1} A Q=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]
$$

Then $A \in \mathcal{A}_{2}$. From (8), we see that Eq.(3) has infinitely many bijective meromorphic solutions

$$
\begin{aligned}
\phi(z) & =\tilde{h}\left(Q\left[\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right] Q^{-1}\right) \\
& =\tilde{h}\left(\left[\begin{array}{cc}
-2 c_{1}+3 c_{2} & c_{1}-c_{2} \\
-6 c_{1}+6 c_{2} & 3 c_{1}-2 c_{2}
\end{array}\right]\right) \\
& =\frac{\left(-2 c_{1}+3 c_{2}\right) z+c_{1}-c_{2}}{\left(-6 c_{1}+6 c_{2}\right) z+3 c_{1}-2 c_{2}} \\
& =\frac{(-2+3 \mu) z+1-\mu}{(-6+6 \mu) z+3-2 \mu}
\end{aligned}
$$

where $\mu:=c_{2} / c_{1}$ and $\mu \in \mathbb{C}$ is an arbitrary nonzero constant.
We consider normal forms of the Möbius group under Aut($\widehat{\mathbb{C}})$-conjugacy.
LEMMA 5. Under Aut($\widehat{\mathbb{C}})$-conjugacy, the Möbius group has only three normal forms:
(1) $e_{1}(z)=z$;
(2) $e_{2}(z)=\lambda z, \lambda \neq 0,1$;
(3) $e_{3}(z)=z+1$.

PROOF. Suppose that $\ell \in \operatorname{Aut}(\widehat{\mathbb{C}})$ corresponds to a matrix A which can be transformed into one of the three Jordan canonical forms in (7). So assume that the Jordan canonical form of A is J_{i} for some i. Then there exists a nonsingular 2×2 matrix Q such that $J_{i}=Q^{-1} A Q$. By Lemma 2, we have

$$
\begin{aligned}
e_{i}(z) & =\tilde{h}\left(J_{i}\right)=\tilde{h}\left(Q^{-1} A Q\right)=\tilde{h}\left(Q^{-1}\right) \circ \tilde{h}(A) \circ \tilde{h}(Q) \\
& =\tilde{h}^{-1}(Q) \circ \tilde{h}(A) \circ \tilde{h}(Q)=\tilde{h}^{-1}(Q) \circ \ell(z) \circ \tilde{h}(Q) .
\end{aligned}
$$

Since $\tilde{h}^{-1}(Q), \tilde{h}(Q) \in \operatorname{Aut}(\widehat{\mathbb{C}}), \ell(z)$ is conjugate to $e_{i}(z)$ under $\operatorname{Aut}(\widehat{\mathbb{C}})$-conjugacy.
Obviously the three normal forms above are not conjugate to each other under Aut $(\widehat{\mathbb{C}})$-conjugacy. This completes the proof.

3 Conjugacy Equation

We have the following main result.
THEOREM 1. Suppose that $f, g \in \operatorname{Aut}(\widehat{\mathbb{C}})$. Then there exists a bijective meromorphic solution of Eq.(1) if and only if f and g have the same normal form. Moreover, suppose $\varphi_{j} \in \operatorname{Aut}(\widehat{\mathbb{C}}), j=1,2$ satisfy

$$
\begin{equation*}
\varphi_{1}^{-1} \circ f \circ \varphi_{1}=\varphi_{2}^{-1} \circ g \circ \varphi_{2}=e_{i} \quad \text { for some } i . \tag{10}
\end{equation*}
$$

Then every bijective meromorphic solutions of Eq.(1) is given by

$$
\varphi=\varphi_{2} \circ \phi \circ \varphi_{1}^{-1}
$$

where ϕ is a bijective meromorphic solution of the equation $\phi \circ e_{i}=e_{i} \circ \phi$.

PROOF. By (10), we have $\varphi_{1}^{-1} \circ f=e_{i} \circ \varphi_{1}^{-1}$ and $g \circ \varphi_{2}=\varphi_{2} \circ e_{i}$. For any bijective meromorphic solution solution ϕ of the equation $\phi \circ e_{i}=e_{i} \circ \phi$, let $\varphi=\varphi_{2} \circ \phi \circ \varphi_{1}^{-1}$. Then

$$
\begin{aligned}
\varphi \circ f & =\varphi_{2} \circ \phi \circ \varphi_{1}^{-1} \circ f \\
& =\varphi_{2} \circ \phi \circ e_{i} \circ \varphi_{1}^{-1} \\
& =\varphi_{2} \circ e_{i} \circ \phi \circ \varphi_{1}^{-1} \\
& =g \circ \varphi_{2} \circ \phi \circ \varphi_{1}^{-1} \\
& =g \circ \varphi .
\end{aligned}
$$

Conversely, if there exists a bijective meromorphic solution φ of Eq.(1), then $f=$ $\varphi^{-1} \circ g \circ \varphi$. Therefore f and g have the same normal form. This completes the proof.

EXAMPLE 2. Consider Eq.(2). Choosing $\varphi_{0}(z)=1 / z$, we have $\varphi_{0} \circ f=g \circ \varphi_{0}$. By Lemma 1, it suffices to solve $\phi \circ f=f \circ \phi$. In fact, the general solution of $\phi(z+1)=$ $\phi(z)+1$ is given by $\phi(z)=\Theta(z)+z$, where $\Theta(z)=\Theta(z+1)$ is an arbitrary periodic function with unit period. By Lemma 1, the general solution of Eq.(2) is given by

$$
\varphi(z)=\varphi_{0} \circ \phi(z)=\frac{1}{\Theta(z)+z}
$$

Remark that Eq.(2) was discussed in [2, pp.390-391, Theorem 10.1.2]. Their result shows that the only convex or concave solutions $\varphi:(0, \infty) \rightarrow \mathbb{R}$ of Eq.(2) are $\varphi=0$ and $\varphi(x)=1 /(x+d)$, where $d \in \mathbb{R}^{+}$is an arbitrary constant. Clearly they are two particular solutions.

EXAMPLE 3. Consider the functional equation

$$
\begin{equation*}
\varphi\left(\frac{31 z-12}{70 z-27}\right)=\frac{43 \varphi(z)-24}{70 \varphi(z)-39} \tag{11}
\end{equation*}
$$

Put

$$
f(z)=\frac{31 z-12}{70 z-27}, \quad g(z)=\frac{43 z-24}{70 z-39}
$$

By Lemma 5, choose

$$
\varphi_{1}(z)=\frac{3 z+2}{7 z+5}, \quad \varphi_{2}(z)=\frac{3 z+4}{5 z+7}
$$

Then $\varphi_{1}^{-1} \circ f \circ \varphi_{1}(z)=\varphi_{2}^{-1} \circ g \circ \varphi_{2}(z)=3 z$. From Lemma 4, all bijective meromorphic solutions of $\phi(3 z)=3 \phi(z)$ are given by $\phi(z)=\mu z$, where $\mu \in \mathbb{C}$ is an arbitrary nonzero constant. By Theorem 1, all bijective meromorphic solutions of Eq.(11) are given by

$$
\varphi(z)=\varphi_{2} \circ \phi \circ \varphi_{1}^{-1}(z)=\frac{(15 \mu-28) z-6 \mu+12}{(25 \mu-49) z-10 \mu+21}
$$

Acknowledgment. The research is supported by NSFC \# 11101295.

References

[1] M. Kuczma, Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warsaw, 1968.
[2] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Cambridge Univ. Press, Cambridge, 1990.
[3] I. N. Baker, Permutable entire functions, Mathematische Zeitschrift, 79(1962), 243-240.
[4] K. Ciepliński, Schröder equation and commuting functions on the circle, J. Math. Anal. Appl., 342(2008), 394-397.
[5] H. B. Coonce, Permutable polynomials for several variables, Aequationes Math., 44(1992), 292-303.
[6] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc., 25(1923), 398-448.
[7] W. R. Li, S. S. Cheng and T. T. Lu, Closed form solutions of iterative functional differential equations, Appl. Math. E-Notes, 1(2001), 1-4.
[8] G. J. Tee. Permutable Polynomials and Rational Functions, 1st Joint Int. Meeting between the Amer. Math. Soc. and the New Zealand Math. Soc. December 12-15, 2007, Victoria, Univ. of Wellington, Wellington, New Zealand.
[9] S. S. Cheng and W. R. Li, Analytic Solutions of Functional Equations, World Scientific Publishing Co., Singapore, 2008.
[10] H. B. Coonce, Permutable functions, Aequationes Math., 52(1996), 201-214.
[11] A. P. Singh, Y. Wang, Julia sets of permutable holomorphic maps, Sci. China Ser. A, 49(2006), 1715-1721.
[12] J. H. Zheng, P. Niamsup and K. Maneeruk, Permutable entire functions satisfying algebraic differential equations, J. Math. Anal. Appl., 354(2009), 177-183.
[13] Y. G. Shi, Non-monotonic solutions and continuously differentiable solutions of conjugacy equations, Appl. Math. Computation, 215(2009), 2399-2404.
[14] Y. G. Shi and L. Chen, Meromorphic iterative roots of linear fractional functions, Sci. China Ser. A, 52(2009), 941-948.

[^0]: *Mathematics Subject Classifications: 30D05, 15A24.
 \dagger Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P. R. China. Email: scumat@163.com.
 \ddagger Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China. Corresponding author: scuchenli@126.com.

