Dichotomy Of Poincare Maps And Boundedness Of Some Cauchy Sequences*

Akbar Zada †, Sadia Arshad ${ }^{\ddagger}$, Gul Rahmat ${ }^{\S}$, Rohul Amin ${ }^{〔}$

Received 14 March 2011

Abstract

Let $\{U(p, q)\}_{p \geq q \geq 0}$ be the N-periodic discrete evolution family of $m \times m$ matrices having complex scalers as entries generated by $L\left(\mathbb{C}^{m}\right)$-valued, N-periodic sequence of $m \times m$ matrices $\left(A_{n}\right)$ where $N \geq 2$ is a natural number. We proved that the Poincare map $U(N, 0)$ is dichotomic if and only if the matrix $V_{\mu}=\sum_{\nu=1}^{N} U(N, \nu) e^{i \mu \nu}$ is invertible and there exists a projection P which commutes with the map $U(N, 0)$ and the matrix V_{μ}, such that for each $\mu \in \mathbb{R}$ and each vector $b \in \mathbb{C}^{m}$ the solutions of the discrete Cauchy sequences $x_{n+1}=$ $A_{n} x_{n}+e^{i \mu n} P b, x_{0}=0$ and $y_{n+1}=A_{n}^{-1} y_{n}+e^{i \mu n}(I-P) b, y_{0}=0$ are bounded.

1 Introduction

It is well-known, see [2], that a matrix A is dichotomic, i.e. its spectrum does not intersect the unit circle if and only if there exists a projector, i.e. an $m \times m$ matrix P satisfying $P^{2}=P$, which commutes with A and has the property that for each real number μ and each vector $b \in \mathbb{C}^{m}$, the following two discrete Cauchy problems

$$
\left\{\begin{align*}
x_{n+1} & =A x_{n}+e^{i \mu n} P b, \quad n \in \mathbb{Z}_{+} \tag{1}\\
x_{0} & =0
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
y_{n+1} & =A^{-1} y_{n}+e^{i \mu n}(I-P) b, \quad n \in \mathbb{Z}_{+} \tag{2}\\
y_{0} & =0
\end{align*}\right.
$$

have bounded solutions. In particular, the spectrum of A belongs to the interior of the unit circle if and only if for each real number μ and each m-vector b, the solution of the Cauchy problem (1) is bounded. Continuous version of the above result is given in [4].

On the other hand, in [3], it is shown that an N-periodic evolution family $\mathcal{U}=$ $\{U(p, q)\}_{p \geq q \geq 0}$ of bounded linear operators acting on a complex space X, is uniformly

[^0]exponentially stable, i.e. the spectral radius of the Poincare map $U(N, 0)$ is less than one, if and only if for each real number μ and each N-periodic sequence $\left(z_{n}\right)$ decaying to $n=0$, we have
$$
\sup _{n \geq 1}\left\|\sum_{k=1}^{n} e^{i \mu k} U(n, k) z_{k-1}\right\|=M(\mu, b)<\infty
$$

Recently in [1], it is proved that the spectral radius of the matrix $U(N, 0)$ is less than one, if for each real μ and each m-vector b, the operator $V_{\mu}:=\sum_{\nu=1}^{N} e^{i \mu \nu} U(N, \nu)$ is invertible and

$$
\sup _{n \geq 1}\left\|\sum_{j=1}^{k N} e^{i \mu(j-1)} U(k N, j) b\right\|<\infty
$$

This note is a continuation of the latter quoted paper. In fact, we prove that the matrix $U(N, 0)$ is dichotomic if and only if for each real μ and each m-vector b, the operator $V_{\mu}:=\sum_{\nu=1}^{N} e^{i \mu \nu} U(N, \nu)$ is invertible and solutions of the two discrete Cauchy sequences like $\left(A, P b, x_{0}, 0\right)$ are bounded.

2 Preliminary Results

Consider the following Cauchy Problem

$$
\left\{\begin{array}{l}
z_{n+1}=A z_{n}, \quad z_{n} \in \mathbb{C}^{m}, \quad n \in \mathbb{Z}_{+} \tag{3}\\
z_{n}(0)=z_{0}
\end{array}\right.
$$

where A is an $m \times m$ matrix. It is easy to check that the solution of (3) is $A^{n} z_{0}$.
Consider the following lemma which is used in Theorem 1.
LEMMA 1. Let $N \geq 1$ be a natural number. If q_{n} is a polynomial of degree n and $\Delta^{N} q_{n}=0$ for all $n=0,1,2 \ldots$ where $\Delta z_{n}=z_{n+1}-z_{n}$ then q is a \mathbb{C}^{m}-valued polynomial of degree less than or equal to $N-1$.

For proof see [2].
Let p_{A} be the characteristic polynomial associated with the matrix A and let $\sigma(A)=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}, k \leq m$ be its spectrum. There exist integer numbers $m_{1}, m_{2}, \ldots, m_{k} \geq$ 1 such that

$$
p_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \ldots\left(\lambda-\lambda_{k}\right)^{m_{k}}, \quad m_{1}+m_{2}+\cdots+m_{k}=m .
$$

Then in [2] we have the following theorem.
THEOREM 1. For each $z \in \mathbb{C}^{m}$ there exists $w_{j} \in W_{j}:=\operatorname{ker}\left(A-\lambda_{j} I\right)^{m_{j}},(j \in$ $\{1,2, \ldots, k\})$ such that

$$
A^{n} z=A^{n} w_{1}+A^{n} w_{2}+\cdots+A^{n} w_{k}
$$

Moreover, if $w_{j}(n):=A^{n} w_{j}$ then $w_{j}(n) \in W_{j}$ for all $n \in \mathbb{Z}_{+}$and there exist a $\mathbb{C}^{m_{-}}$ valued polynomials $q_{j}(n)$ with $\operatorname{deg}\left(q_{j}\right) \leq m_{j}-1$ such that

$$
w_{j}(n)=\lambda_{j}^{n} q_{j}(n), \quad n \in \mathbb{Z}_{+}, j \in\{1,2, \ldots, k\}
$$

FROOF. Indeed from the Cayley-Hamilton theorem and using the well known fact that

$$
\operatorname{ker}[p q(A)]=\operatorname{ker}[p(A)] \oplus \operatorname{ker}[q(A)]
$$

whenever the complex valued polynomials p and q are relatively prime, it follows that

$$
\begin{equation*}
\mathbb{C}^{m}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k} \tag{4}
\end{equation*}
$$

Let $z \in \mathbb{C}^{m}$. For each $j \in\{1,2, \ldots, k\}$ there exists a unique $w_{j} \in W_{j}$ such that

$$
z=w_{1}+w_{2}+\cdots+w_{k}
$$

and then

$$
A^{n} z=A^{n} w_{1}+A^{n} w_{2}+\cdots+A^{n} w_{k}, \quad n \in \mathbb{Z}_{+}
$$

Let $q_{j}(n)=\lambda_{j}^{-n} w_{j}(n)$. Successively one has

$$
\begin{aligned}
\Delta q_{j}(n) & =\Delta\left(\lambda_{j}^{-n} w_{j}(n)\right) \\
& =\Delta\left(\lambda_{j}^{-n} A^{n} w_{j}\right) \\
& =\lambda_{j}^{-(n+1)} A^{n+1} w_{j}-\lambda_{j}^{-n} A^{n} w_{j} \\
& =\lambda_{j}^{-(n+1)}\left(A-\lambda_{j} I\right) A^{n} w_{j}
\end{aligned}
$$

Again taking Δ,

$$
\begin{aligned}
\Delta^{2} q_{j}(n) & =\Delta\left[\Delta q_{j}(n)\right] \\
& =\Delta\left[\lambda_{j}^{-(n+1)}\left(A-\lambda_{j} I\right) A^{n} w_{j}\right] \\
& =\lambda_{j}^{-(n+2)}\left(A-\lambda_{j} I\right) A^{(n+1)} w_{j}-\lambda_{j}^{-(n+1)}\left(A-\lambda_{j} I\right) A^{n} w_{j} \\
& =\lambda_{j}^{-(n+2)}\left(A-\lambda_{j} I\right)^{2} A^{n} w_{j}
\end{aligned}
$$

Continuing up to m_{j} we get $\Delta^{m_{j}} q_{j}(n)=\lambda_{j}^{-\left(n+m_{j}\right)}\left(A-\lambda_{j} I\right)^{m_{j}} A^{n} w_{j}$. But $w_{j}(n)$ belongs to W_{j} for each $n \in \mathbb{Z}_{+}$. Thus $\Delta^{m_{j}} q_{j}(n)=0$. Using Lemma 1 , we can say that the degree of polynomial $q_{j}(n)$ is less than or equal to $m_{j}-1$.

3 Dichotomy and Boundedness

A family $\mathcal{U}=\left\{U(p, q):(p, q) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}\right\}$of an $m \times m$ complex valued matrices is called discrete periodic evolution family if it satisfies the following properties.

1. $U(p, q) U(q, r)=U(p, r)$ for all $p \geq q \geq r \geq 0$;
2. $U(p, p)=I$ for all $p \geq 0$ and
3. there exists a fixed $N \geq 2$ such that $U(p+N, q+N)=U(p, q)$ for all $p, q \in$ $\mathbb{Z}_{+}, \quad p \geq q$.

Let us consider the following discrete Cauchy problem:

$$
\left\{\begin{aligned}
z_{n+1} & =A_{n} z_{n}+e^{i \mu n} b, \quad n \in \mathbb{Z}_{+} \\
z_{0} & =0
\end{aligned}\right.
$$

where the sequence $\left(A_{n}\right)$ is N-periodic, i.e. $A_{n+N}=A_{n}$ for all $n \in \mathbb{Z}_{+}$and a fixed $N \geq$ 2. Let

$$
U(n, j)= \begin{cases}A_{n-1} A_{n-2} \cdots A_{j} & \text { if } j \leq n-1 \\ I & \text { if } j=n\end{cases}
$$

then, the family $\{U(n, j)\}_{n \geq j \geq 0}$ is a discrete N-periodic evolution family and the solution $\left(z_{n}\right)$ of the Cauchy problem $\left(A_{n}, \mu, b\right)_{0}$ is given by:

$$
z_{n}=\sum_{j=1}^{n} U(n, j) e^{i \mu(j-1)} b
$$

Let us denote by $C_{1}=\{z \in \mathbb{C}:|z|=1\}, C_{1}^{+}=\{z \in \mathbb{C}:|z|>1\}$ and $C_{1}^{-}=\{z \in \mathbb{C}$: $|z|<1\}$. Clearly $\mathbb{C}=C_{1} \cup C_{1}^{+} \cup C_{1}^{-}$. Then with the help of above partition of \mathbb{C} for matrix A we give the following definition:

DEFINITION 1. The matrix A is called:
(i) stable if $\sigma(A)$ is the subset of C_{1}^{-}or, equivalently, if there exist two positive constants N and ν such that $\left\|A^{n}\right\| \leq N e^{-\nu n}$ for all $n=0,1,2 \ldots$,
(ii) expansive if $\sigma(A)$ is the subset of C_{1}^{+}and
(iii) dichotomic if $\sigma(A)$ have empty intersection with set C_{1}.

It is clear that any expansive matrix A whose spectrum consists of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ is an invertible one and its inverse is stable, because

$$
\sigma\left(A^{-1}\right)=\left\{\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots, \frac{1}{\lambda_{k}}\right\} \subset C_{1}^{-}
$$

Let $L:=U(N, 0), V_{\mu}=\sum_{\nu=1}^{N} U(N, \nu) e^{i \mu \nu}$ and $A_{i} A_{j}=A_{j} A_{i}$ for any $i, j \in\{1,2, \ldots, n\}$. We recall that a linear map P acting on \mathbb{C}^{m} is called projection if $P^{2}=P$.

THEOREM 2. Let $N \geq 2$ be a fixed integer number. The matrix L is dichotomic if and only if the matrix V_{μ} is invertible and there exists a projection P having the property $P L=L P$ and $P V_{\mu}=V_{\mu} P$ such that for each $\mu \in \mathbb{R}$ and each vector $b \in \mathbb{C}^{m}$ the solutions of the following discrete Cauchy problems

$$
\left\{\begin{align*}
x_{n+1} & =A_{n} x_{n}+e^{i \mu n} P b, \quad n \in \mathbb{Z}_{+} \tag{5}\\
x_{0} & =0
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
y_{n+1} & =A_{n}^{-1} y_{n}+e^{i \mu n}(I-P) b, \quad n \in \mathbb{Z}_{+} \tag{6}\\
y_{0} & =0
\end{align*}\right.
$$

are bounded.
PROOF. Necessity: Working under the assumption that L is a dichotomic matrix we may suppose that there exists $\eta \in\{1,2, \ldots, \xi\}$ such that

$$
\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \cdots \leq\left|\lambda_{\eta}\right|<1<\left|\lambda_{\eta+1}\right| \leq \cdots \leq\left|\lambda_{\xi}\right| .
$$

Having in mind the decomposition of \mathbb{C}^{m} given by (4) let us consider

$$
X_{1}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{\eta}, \quad X_{2}=W_{\eta+1} \oplus W_{\eta+2} \oplus \cdots \oplus W_{\xi}
$$

Then $\mathbb{C}^{m}=X_{1} \oplus X_{2}$. Define $P: \mathbb{C}^{m} \rightarrow \mathbb{C}^{m}$ by $P x=x_{1}$, where $x=x_{1}+x_{2}, x_{1} \in X_{1}$ and $x_{2} \in X_{2}$. It is clear that P is a projection. Moreover for all $x \in \mathbb{C}^{m}$ and all $n \in \mathbb{Z}_{+}$, this yields

$$
P L^{k} x=P\left(L^{k}\left(x_{1}+x_{2}\right)\right)=P\left(L^{k}\left(x_{1}\right)+L^{k}\left(x_{2}\right)\right)=L^{k}\left(x_{1}\right)=L^{k} P x
$$

where the fact that X_{1} is an $L^{k}-$ invariant subspace, was used. Then $P L^{k}=L^{k} P$. Similarly by using the fact that X_{1} and X_{2} are V_{μ} invariant subspaces we can prove that $P V_{\mu}=V_{\mu} P$. We know that the solution of the Cauchy problem (5) is:

$$
x_{n}=\sum_{j=1}^{n} U(n, j) e^{i \mu(j-1)} P b
$$

Put $n=N k+r$, where $r=0,1,2, \ldots, N-1$. Then

$$
x_{N k+r}=\sum_{j=1}^{N k+r} U(N k+r, j) e^{i \mu(j-1)} P b
$$

Let

$$
\mathcal{A}_{\nu}=\{\nu, \nu+N, \ldots, \nu+(k-1) N\}, \text { where } \nu \in\{1,2, \ldots, N\}
$$

and

$$
\mathcal{R}=\{k N+1, k N+2, \ldots, k N+r\}
$$

Then

$$
\mathcal{R} \cup\left(\cup_{\nu=1}^{N} A_{\nu}\right)=\{1,2, \ldots, n\}
$$

Thus

$$
\begin{aligned}
x_{N k+r}= & e^{-i \mu} \sum_{\nu=1}^{N} \sum_{j \in \mathcal{A}_{\nu}} U(N k+r, j) e^{i \mu j} P b+e^{-i \mu} \sum_{j \in \mathcal{R}} U(N k+r, j) e^{i \mu j} P b \\
= & e^{-i \mu} \sum_{\nu=1}^{N} \sum_{s=0}^{k-1} U(N k+r, \nu+s N) e^{i \mu(\nu+s N)} P b+ \\
& e^{-i \mu} \sum_{\rho=1}^{r} U(N k+r, N k+\rho) e^{i \mu(k N+\rho)} P b
\end{aligned}
$$

$$
\begin{aligned}
= & e^{-i \mu} \sum_{\nu=1}^{N} \sum_{s=0}^{k-1} U(r, 0) U(N, 0)^{(k-s-1)} U(N, \nu) e^{i \mu(\nu+s N)} P b+ \\
& e^{-i \mu} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu(k N+\rho)} P b
\end{aligned}
$$

Let $z_{\mu}=e^{i \mu N}$, also we know that $L=U(N, 0)$, thus

$$
\begin{aligned}
x_{N k+r}= & e^{-i \mu} U(r, 0) \sum_{s=0}^{k-1} L^{(k-s-1)} z_{\mu}^{s} \sum_{\nu=1}^{N} U(N, \nu) e^{i \mu \nu} P b+ \\
& e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b \\
= & e^{-i \mu} U(r, 0)\left(L^{k-1} z_{\mu}^{0}+L^{k-2} z_{\mu}^{1}+\cdots+L^{0} z_{\mu}^{k-1}\right) \sum_{\nu=1}^{N} U(N, \nu) e^{i \mu \nu} P b \\
& +e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b
\end{aligned}
$$

We know that $\sum_{\nu=1}^{N} U(N, \nu) e^{i \mu \nu}=V_{\mu}$ thus

$$
\begin{aligned}
x_{N k+r}= & e^{-i \mu} U(r, 0)\left(L^{k-1} z_{\mu}^{0}+L^{k-2} z_{\mu}^{1}+\cdots+L^{0} z_{\mu}^{k-1}\right) V_{\mu} P b+ \\
& e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b
\end{aligned}
$$

By our assumption we know that L is dichotomic and $\left|z_{\mu}\right|=1$ thus z_{μ} is contained in the resolvent set of L therefore the matrix $\left(z_{\mu} I-L\right)$ is an invertible matrix. Thus

$$
\begin{aligned}
x_{N k+r} & =e^{-i \mu} U(r, 0)\left(z_{\mu} I-L\right)^{-1}\left(z_{\mu}^{k} I-L^{k}\right) V_{\mu} P b+e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b \\
& =e^{-i \mu} U(r, 0)\left(z_{\mu} I-L\right)^{-1}\left(z_{\mu}^{k} I-L^{k}\right) P V_{\mu} b+e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b
\end{aligned}
$$

We know that V_{μ} is a surjective map, so there exists b^{\prime} such that $V_{\mu} b=b^{\prime}$ then

$$
x_{N k+r}=e^{-i \mu} U(r, 0)\left(z_{\mu} I-L\right)^{-1}\left(z_{\mu}^{k} I-L^{k}\right) P b^{\prime}+e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b
$$

Taking norm of both sides

$$
\left\|x_{N k+r}\right\|=\left\|e^{-i \mu} U(r, 0)\left(z_{\mu} I-L\right)^{-1}\left(z_{\mu}^{k} I-L^{k}\right) P b^{\prime}+e^{-i \mu} z_{\mu}^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu \rho} P b\right\|
$$

$$
\begin{aligned}
\left\|x_{N k+r}\right\| \leq & \left\|U(r, 0)\left(z_{\mu} I-L\right)^{-1} z_{\mu}^{k} P b^{\prime}\right\|+\left\|U(r, 0)\left(z_{\mu} I-L\right)^{-1} P L^{k} b^{\prime}\right\|+ \\
& \sum_{\rho=1}^{r}\|U(r, \rho) P b\| \\
= & \|U(r, 0)\|\left\|\left(z_{\mu} I-L\right)^{-1}\right\|\left\|P b^{\prime}\right\|+\|U(r, 0)\|\left\|\left(z_{\mu} I-L\right)^{-1}\right\|\left\|P L^{k} b^{\prime}\right\| \\
& +\sum_{\rho=1}^{r}\|U(r, \rho) P b\|
\end{aligned}
$$

Using THEOREM 1, We have

$$
L^{k} b^{\prime}=\lambda_{1}^{k} p_{1}(k)+\lambda_{2}^{k} p_{2}(k)+\cdots+\lambda_{\xi}^{k} p_{\xi}(k),
$$

Thus

$$
P L^{k} b^{\prime}=\lambda_{1}^{k} p_{1}(k)+\lambda_{2}^{k} p_{2}(k)+\cdots+\lambda_{\eta}^{k} p_{\eta}(k),
$$

where each $p_{i}(k)$ are \mathbb{C}^{m}-valued polynomials with degree at most $\left(m_{i}-1\right)$ for any $i \in\{1,2, \ldots, \xi\}$. From hypothesis we know that $\left|\lambda_{i}\right|<1$ for each $i \in\{1,2, \ldots, \eta\}$. Thus $\left\|P L^{k} b^{\prime}\right\| \rightarrow 0$ when $k \rightarrow \infty$ and so $x_{N k+r}$ is bounded for any $r=0,1,2, \ldots, N-1$. Thus x_{n} is bounded. For the second Cauchy problem: We have

$$
y_{n}=\sum_{j=1}^{n} U^{-1}(n, j) e^{i \mu(j-1)}(I-P) b
$$

where

$$
U^{-1}(n, j)= \begin{cases}A_{n-1}^{-1} A_{n-2}^{-1} \cdots A_{j}^{-1} & \text { if } j \leq n-1 \\ I & \text { if } j=n .\end{cases}
$$

It is easy to check that $U^{-1}(n, j)$ is also a discrete evaluation family. By putting $n=N k+r$, where $r=0,1,2, \ldots, N-1$. Then

$$
y_{N k+r}=\sum_{j=1}^{N k+r} U^{-1}(N k+r, j) e^{i \mu(j-1)}(I-P) b
$$

As $A_{i} A_{j}=A_{j} A_{i}$ for all $i, j \in\{1,2, \ldots, n\}$ thus $L^{-1}=U^{-1}(N, 0)$. By similar procedure as above we obtained that

$$
\begin{aligned}
\left\|y_{N k+r}\right\|= & \left\|U^{-1}(r, 0)\right\|\left\|\left(z_{\mu} I-L^{-1}\right)^{-1}\right\|\left\|(I-P) V_{\mu}(b)\right\|+ \\
& \left\|U^{-1}(r, 0)\right\|\left\|\left(z_{\mu} I-L^{-1}\right)^{-1}\right\|\left\|L^{-k}(I-P) V_{\mu}(b)\right\|+ \\
& \sum_{\rho=1}^{r}\left\|U^{-1}(r, \rho)(I-P) b\right\| .
\end{aligned}
$$

Since $(I-P) V_{\mu} b \in X_{2}$ the assertion would follow. But

$$
X_{2}=W_{\eta+1} \oplus W_{\eta+2} \oplus \cdots \oplus W_{\xi}
$$

Each vector from X_{2} can be represented as a sum of $\xi-\eta$ vectors $w_{\eta+1}, w_{\eta+2}, \ldots, w_{\xi}$. It would be sufficient to prove that $L^{-k} w_{j} \rightarrow 0$, for any $j \in\{\eta+1, \ldots, \xi\}$. Let $W \in$
$\left\{W_{\eta+1}, W_{\eta+2}, \ldots, W_{\xi}\right\}$, say $W=\operatorname{ker}(L-\lambda I)^{\gamma}$, where $\gamma \geq 1$ is an integer number and $|\lambda|>1$. Consider $r_{1} \in W \backslash\{0\}$ such that $(L-\lambda I) r_{1}=0$ and let $r_{2}, r_{3}, \ldots, r_{\gamma}$ given by $(L-\lambda I) r_{j}=r_{j-1}, \quad j=2,3, \ldots, \gamma$. Then $B:=\left\{r_{1}, r_{2}, \ldots, r_{\gamma}\right\}$ is a basis in Y. It is then sufficient to prove that $L^{-k} r_{j} \rightarrow 0$, for any $j=1,2, \ldots, \gamma$. For $j=1$ we have that $L^{-k} r_{1}=\frac{1}{\lambda^{k}} r_{1} \rightarrow 0$. For $j=2,3, \ldots, \gamma$, denote $X_{k}=L^{-k} r_{j}$. Then $(L-\lambda I)^{\gamma} X_{k}=0$ i.e.

$$
\begin{equation*}
X_{k}-C_{\gamma}^{1} X_{k-1} \alpha+C_{\gamma}^{2} X_{k-2} \alpha^{2}+\cdots+C_{\gamma}^{\gamma} X_{k-\gamma} \alpha^{\gamma}=0, \text { for all } k \geq \gamma \tag{7}
\end{equation*}
$$

where $\alpha=\frac{1}{\lambda}$. Passing for instance at the components, it follows that there exists a \mathbb{C}^{m}-valued polynomial P_{γ} having degree at most $\gamma-1$ and verifying (7) such that $X_{k}=\alpha^{k} P_{\gamma}(k)$. Thus $X_{k} \rightarrow 0$ as $k \rightarrow \infty$, i.e. $L^{-k} r_{j} \rightarrow 0$ for any $j \in\{1,2, \ldots, \gamma\}$. Thus $\left(y_{n}\right)$ is bounded.

Sufficiency: Suppose to the contrary that the matrix L is not dichotomic. Then $\sigma(L) \cap \Gamma_{1} \neq \phi$. Let $\omega \in \sigma(L) \cap \Gamma_{1}$. Then there exists a nonzero $y \in \mathbb{C}^{m}$ such that $L y=\omega y$. It is easy to see that $L^{k} y=w^{k} y$. Choose $\mu_{0} \in \mathbb{R}$ such that $e^{i \mu_{0} N}=\omega$. We know that

$$
\begin{aligned}
x_{N k+r}\left(\mu_{0}, b\right)= & e^{-i \mu_{0}} U(r, 0)\left(L^{k-1} z_{\mu_{0}}^{0}+L^{k-2} z_{\mu_{0}}^{1}+\cdots+L^{0} z_{\mu_{0}}^{k-1}\right) P V_{\mu_{0}} b+ \\
& e^{-i \mu_{0}} z^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu_{0} \rho} P b
\end{aligned}
$$

But $V_{\mu_{0}}$ is surjective, thus there exists $b_{0} \in \mathbb{C}^{m}$ such that $V_{\mu_{0}} b_{0}=y$, so

$$
\begin{aligned}
x_{N k+r}\left(\mu_{0}, b_{0}\right)= & e^{-i \mu_{0}} U(r, 0)\left(L^{k-1} z_{\mu_{0}}^{0}+L^{k-2} z_{\mu_{0}}^{1}+\cdots+L^{0} z_{\mu_{0}}^{k-1}\right) P y+ \\
& e^{-i \mu_{0}} z^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu_{0} \rho} P b_{0} \\
= & e^{-i \mu_{0}} U(r, 0)\left(P L^{k-1} y z_{\mu_{0}}^{0}+P L^{k-2} y z_{\mu_{0}}^{1}+\cdots+P L^{0} y z_{\mu_{0}}^{k-1}\right)+ \\
& e^{-i \mu_{0}} z^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu_{0} \rho} P b \\
= & e^{-i \mu_{0}} U(r, 0) P\left(L^{k-1} y z_{\mu_{0}}^{0}+L^{k-2} y z_{\mu_{0}}^{1}+\cdots+L^{0} y z_{\mu_{0}}^{k-1}\right)+ \\
& e^{-i \mu_{0}} z^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu_{0} \rho} P b \\
= & e^{-i \mu_{0}} U(r, 0) P\left[k e^{-i \mu_{0}} z^{k-1}{ }_{\mu_{0}}\right]+e^{-i \mu_{0}} z^{k} \sum_{\rho=1}^{r} U(r, \rho) e^{i \mu_{0} \rho} P b
\end{aligned}
$$

Clearly

$$
x_{k N}\left(\mu_{0}, b_{0}\right) \rightarrow \infty \text { when } k \rightarrow \infty
$$

Thus a contradiction arises. In [1] an example, in terms of stability is given which shows that the assumption on invertibility of V_{μ}, for each real number μ, cannot be removed.

References

[1] S. Arshad, C. Buse, A. Nosheen and A. Zada, Connections between the stability of a Poincare map and boundedness of certain associate sequences, Electronic Journal of Qualitative Theory of Differential Equations, 16(2011), 1-12.
[2] C. Buse and A. Zada, Dichotomy and bounded-ness of solutions for some discrete Cauchy problems, Proceedings of IWOTA-2008, Operator Theory, Advances and Applications, (OT) Series Birkhäuser Verlag, Eds: J. A. Ball, V. Bolotnikov, W. Helton, L. Rodman and T. Spitkovsky, 203(2010), 165-174.
[3] C. Buse, P. Cerone, S. S. Dragomir and A. Sofo, Uniform stability of periodic discrete system in Banach spaces, J. Difference Equ. Appl., 12(11)(2005), 10811088.
[4] A. Zada, A characterization of dichotomy in terms of boundedness of solutions for some Cauchy problems, Electronic Journal of Differential Equations, 94(2008), 1-5.

[^0]: *Mathematics Subject Classifications: 35B35
 ${ }^{\dagger}$ Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan
 \ddagger Abdus Salam School of Mathematical Sciences (ASSMS), GCU, Lahore, Pakistan
 §Abdus Salam School of Mathematical Sciences (ASSMS), GCU, Lahore, Pakistan
 『Department of Mathematics, University of Peshawar, Peshawar, Pakistan

