On A Metaharmonic Boundary Value Problem*

Cristian Paul Danet ${ }^{\dagger}$

Received 1 November 2010

Abstract

In this paper we develop maximum principles for solutions of metaharmonic equations defined on arbitrary n dimensional domains. As a consequence we obtain an uniqueness result for the corresponding metaharmonic boundary value problem.

1 Introduction

In the paper [4] we showed that if $a_{1}, a_{3} \geq 0\left(a_{1}, a_{3}\right.$ constants), $a_{2}(x) \geq 0, a_{4}(x)>0$ in $\Omega \subset \mathbb{R}^{2}$ and the curvature of $\partial \Omega \in C^{2+\varepsilon}$ is strictly positive, then the boundary value problem

$$
\begin{cases}\Delta^{4} u-a_{1} \Delta^{3} u+a_{2}(x) \Delta^{2} u-a_{3} \Delta u+a_{4}(x) u=f & \text { in } \Omega, \tag{1}\\ u=g, \Delta u=h, \Delta^{2} u=i, \Delta^{3} u=j & \text { on } \Omega\end{cases}
$$

has at most a classical solution in $C^{8}(\Omega) \cap C^{6}(\bar{\Omega})$.
Using a generalized maximum principle we are able here to extend the above mentioned result for a the m metaharmonic problem

$$
\begin{cases}\Delta^{m} u-a_{m-1}(x) \Delta^{m-1} u+a_{m-2}(x) \Delta^{m-2} u+\cdots+(-1)^{m} a_{0}(x) u=f & \text { in } \Omega, \tag{2}\\ u=g_{1}, \Delta u=g_{2}, \ldots, \Delta^{m-1} u=g_{m} & \text { on } \Omega\end{cases}
$$

where $a_{i}, i=0, \ldots, m-1$, are bounded in the bounded domain $\Omega \subset \mathbb{R}^{2}, n \geq 2$. Here we deal with classical solutions u of (2), i.e., $u \in C^{2 m}(\Omega) \cap C^{2 m-2}(\bar{\Omega}), m \geq 3$.

This result generalizes the result of Dunninger [5] (the case $m=2, n \geq 2, a_{1}=0$, $a_{0} \equiv$ constant ≥ 0 and Ω arbitrary), Schaefer [7] (the case curvature of $\partial \Omega>0, m=$ $n=2$), Schaefer [8] (the case $a_{2}, a_{1} \geq 0, a_{0}>0$ with $m=3, n=2$, curvature of $\partial \Omega>0$), S. Goyal and V. Goyal [6] and Danet [3] (the variable coefficient case with $m=3$ and $\Omega \subset \mathbb{R}^{n}$ arbitrary).

Throughout this paper we shall assume that $\Omega \subset \mathbb{R}^{n}, n \geq 2$ is a bounded domain, $m \geq 3$ and the coefficients $a_{i}, i=0, \ldots, m-1$ are bounded in Ω. Also we shall suppose that $a_{0} \not \equiv 0$. $\operatorname{diam} \Omega$ will denote the diameter of Ω.

[^0]
2 Main Results

The uniqueness result will be a consequence of the following generalized maximum principle and the next lemmas.

THEOREM $1([4])$. Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfy the inequality $\mathrm{L} u \equiv \Delta u+\gamma(x) u \geq$ 0 in Ω, where $\gamma \geq 0$ in Ω. Suppose that

$$
\begin{equation*}
\sup _{\Omega} \gamma<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}} \tag{3}
\end{equation*}
$$

holds. Then, the function u / w_{1} satisfies a generalized maximum principle in Ω, i.e., either the function u / w_{1} assumes its maximum value on $\partial \Omega$ or is constant in $\bar{\Omega}$. Here $w_{1}(x)=1-\alpha\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\alpha=\sup _{\Omega} \gamma / 2 n$.

If Ω lies in strip of width d and if we impose the restriction

$$
\begin{equation*}
\sup _{\Omega} \gamma<\frac{\pi^{2}}{d^{2}} \tag{4}
\end{equation*}
$$

we obtain that u / w_{2} satisfies a generalized maximum principle in Ω. Here

$$
w_{2}=\cos \frac{\pi\left(2 x_{i}-d\right)}{2(d+\varepsilon)} \prod_{j=1}^{n} \cosh \left(\varepsilon x_{j}\right) \in C^{\infty}(\bar{\Omega})
$$

for some $i \in\{1, \ldots, n\}$, where $\varepsilon>0$ is small.
For simplicity, we shall consider only the case when m is even, i.e., we shall deal with the equation

$$
\begin{equation*}
\Delta^{m} u-a_{m-1}(x) \Delta^{m-1} u+a_{m-2}(x) \Delta^{m-2} u-\cdots+a_{0}(x) u=0 \quad \text { in } \Omega \tag{5}
\end{equation*}
$$

Similar results will hold if m is odd.
LEMMA 1. Let u be a classical solution of (5). Let

$$
P_{1}=\frac{1}{2}\left(\Delta^{m-1} u\right)^{2}+\frac{a_{m-1}}{2}\left(\Delta^{m-2} u\right)^{2}+\left(\Delta^{m-3} u\right)^{2}+\cdots+u^{2}
$$

Suppose that $a_{m-3}, \ldots, a_{1} \geq 0, a_{2}, a_{0}>0$ and $\Delta\left(1 / a_{m-2}\right) \leq 0$ in Ω. If one of the following conditions is satisfied
(a)

$$
\begin{equation*}
4 a_{m-1}-a_{m-3}-a_{m-4}-\cdots-a_{0} \geq 0 \quad \text { in } \Omega \tag{6}
\end{equation*}
$$

and
$A=\max \left\{1+\sup _{\Omega} a_{0}, 2+\sup _{\Omega} a_{1}, \ldots, 2+\sup _{\Omega} a_{m-3}, \max \left\{1, \sup _{\Omega} \frac{a_{m-2}}{2}\right\}\right\}<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}} ;$
(b)

$$
\begin{equation*}
a_{m-1} \geq 0 \quad \text { in } \Omega \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left\{A, \sup _{\Omega} \frac{a_{m-3}+\cdots+a_{0}}{2}\right\}<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}} \tag{9}
\end{equation*}
$$

then either the function P_{1} / w_{1} assumes its maximum value on $\partial \Omega$ or is constant in $\bar{\Omega}$.
PROOF. A computation (using equation (5)) shows that in Ω,

$$
\begin{aligned}
\frac{1}{2} \Delta\left(\left(\Delta^{m-1} u\right)^{2}\right) \geq & \Delta^{m-1} u \Delta^{m} u \\
= & a_{m-1}\left(\Delta^{m-1} u\right)^{2}-a_{m-2} \Delta^{m-2} u \Delta^{m-1} u \\
& -a_{m-3} \Delta^{m-3} u \Delta^{m-1} u-\cdots-a_{0} u \Delta^{m-1} u
\end{aligned}
$$

From the inequalities

$$
\begin{equation*}
(-1)^{i} a_{i-3} \Delta^{i-3} u \Delta^{m-1} u \geq-\frac{a_{i-3}}{4}\left(\Delta^{m-1} u\right)^{2}-a_{i-3}\left(\Delta^{i-3} u\right)^{2}, i=3, \ldots, m \tag{10}
\end{equation*}
$$

and

$$
\frac{1}{2} \Delta\left(a_{m-2}\left(\Delta^{m-2} u\right)^{2}\right) \geq a_{m-2} \Delta^{m-1} u \Delta^{m-2} u
$$

we get

$$
\begin{aligned}
& \frac{1}{2} \Delta\left(\left(\left(\Delta^{m-1} u\right)^{2}+a_{m-2}\left(\Delta^{m-2} u\right)^{2}\right)\right) \\
& \quad \geq \quad\left(a_{m-1}-a_{m-3} / 4-a_{m-4} / 4-\cdots-a_{0} / 4\right)\left(\Delta^{m-1} u\right)^{2} \\
& \quad-a_{m-3}\left(\Delta^{m-3} u\right)^{2}-a_{m-4}\left(\Delta^{m-4} u\right)^{2}-\cdots-a_{0} u^{2}
\end{aligned}
$$

Since

$$
\begin{gathered}
\Delta\left(\left(\Delta^{m-3} u\right)^{2}\right) \geq 2 \Delta^{m-2} u \Delta^{m-3} u \geq-\left(\Delta^{m-2} u\right)^{2}-\left(\Delta^{m-3} u\right)^{2} \\
\Delta\left(\left(\Delta^{m-4} u\right)^{2}\right) \geq 2 \Delta^{m-3} u \Delta^{m-4} u \geq-\left(\Delta^{m-3} u\right)^{2}-\left(\Delta^{m-4} u\right)^{2} \\
\ldots \\
\Delta u^{2} \geq 2 u \Delta u \geq-\Delta u^{2}-u^{2}
\end{gathered}
$$

we deduce that P_{1} satisfies the differential inequality

$$
\begin{aligned}
\Delta P_{1} & \geq\left(a_{m-1}-a_{m-3} / 4-a_{m-4} / 4-\cdots-a_{0} / 4\right)\left(\Delta^{m-1} u\right)^{2}-\left(\Delta^{m-2} u\right)^{2} \\
& -\left(2+a_{m-3}\right)\left(\Delta^{m-3} u\right)^{2}-\cdots-\left(2+a_{1}\right)(\Delta u)^{2}-\left(1+a_{0}\right) u^{2}
\end{aligned}
$$

Hence

$$
\Delta P_{1}+\gamma P_{1} \geq 0 \quad \text { in } \Omega
$$

where

$$
\gamma=\max \left\{1+\sup _{\Omega} a_{0}, 2+\sup _{\Omega} a_{1}, \ldots, 2+\sup _{\Omega} a_{m-3}, \max \left\{1, \sup _{\Omega} a_{m-2} / 2\right\}\right\}
$$

By (7) we have

$$
\gamma<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}}
$$

Now the proof of (a) follows from Theorem 1. The proof for (b) is similar.
LEMMA 2. Let u be a classical solution of (5). Let

$$
P_{2}=\frac{1}{2}\left(\Delta^{m-1} u\right)^{2}+\left(\Delta^{m-2} u\right)^{2}+\left(\Delta^{m-3} u\right)^{2}+\cdots+u^{2}
$$

Suppose that $a_{m-1}, \ldots, a_{1} \geq 0$ and $a_{0}>0$ in Ω. If

$$
\begin{equation*}
\max \left\{\sup _{\Omega} \frac{a_{0}}{2}+\sup _{\Omega} \frac{a_{1}}{2}, \ldots, 2+\sup _{\Omega} \frac{a_{m-2}}{2}, A_{1}\right\}<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}}, \tag{11}
\end{equation*}
$$

where $A_{1}=\max \left\{1+\sup _{\Omega} a_{0}, 2, \sup _{\Omega} a_{1}, \ldots, 2+\sup _{\Omega} a_{m-2}\right\}$, then either the function P_{2} / w_{1} assumes its maximum on $\partial \Omega$ or is a constant in $\bar{\Omega}$.

PROOF. As in the proof of Lemma 1, we get

$$
\begin{aligned}
\frac{1}{2} \Delta\left(\left(\Delta^{m-1} u\right)^{2}\right) & \geq \Delta^{m-1} u \Delta^{m} u \\
& =a_{m-1}\left(\Delta^{m-1} u\right)^{2}-a_{m-2} \Delta^{m-2} u \Delta^{m-1} u-\cdots-a_{0} u \Delta^{m-1} u
\end{aligned}
$$

Since

$$
\begin{aligned}
-a_{0} u \Delta^{m-1} u & \geq-\frac{a_{0}}{4}\left(\Delta^{m-1} u\right)^{2}-a_{0} u^{2} \\
-a_{m-2} u \Delta^{m-1} u \Delta^{m-2} u & \geq-\frac{a_{m-2}}{4}\left(\Delta^{m-1} u\right)^{2}-a_{m-2}\left(\Delta^{m-2} u\right)^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\Delta\left(\left(\Delta^{m-2} u\right)^{2}\right) \geq-\left(\Delta^{m-2} u\right)^{2}-\left(\Delta^{m-1} u\right)^{2} \\
\cdots \\
\Delta u^{2} \geq-\Delta u^{2}-u^{2}
\end{gathered}
$$

we get that

$$
\begin{aligned}
\Delta P_{2} \geq & -\left(1+a_{m-2} / 4+a_{m-3} / 4+\cdots+a_{1} / 4+a_{0} / 4\right)\left(\Delta^{m-1} u\right)^{2}-\left(2+a_{m-2}\right)\left(\Delta^{m-2} u\right)^{2} \\
& -\left(2+a_{m-3}\right)\left(\Delta^{m-3} u\right)^{2}-\cdots-\left(2+a_{1}\right)(\Delta u)^{2}-\left(1+a_{0}\right) u^{2} .
\end{aligned}
$$

Hence

$$
\Delta P_{2}+\gamma P_{2} \geq 0 \quad \text { in } \Omega
$$

where

$$
\gamma=\max \left\{A_{1},\left\{\sup _{\Omega} a_{0} / 2+\sup _{\Omega} a_{1} / 2+\cdots+\sup _{\Omega} a_{m-2} / 2+2\right\}\right\} .
$$

LEMMA 3. Let u be a classical solution of (5). Suppose that $a_{m-2}, \ldots, a_{0} \geq 0$ in Ω. If one of the following conditions is fulfilled
(a)

$$
\begin{equation*}
\max \left\{1+\sup _{\Omega} a_{0}^{2}, 2+\sup _{\Omega} a_{1}^{2}, \ldots, 2+\sup _{\Omega} a_{m-2}^{2}\right\}<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}} \tag{12}
\end{equation*}
$$

and $4 a_{m-1} \geq m+3$ in Ω; or
(b)

$$
\begin{equation*}
\max \left\{1+\sup _{\Omega} a_{0}^{2}, 2+\sup _{\Omega} a_{1}^{2}, \ldots, 2+\sup _{\Omega} a_{m-2}^{2}, 2+\frac{m-1}{2}\right\}<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}} \tag{13}
\end{equation*}
$$

and $a_{m-1} \geq 0$ in Ω, then either the function P_{2} / w_{1} assumes its maximum on $\partial \Omega$ or is a constant in $\bar{\Omega}$.

This may be proved exactly as Lemma 2, except the inequalities (10) are replaced by

$$
(-1)^{i} a_{i-3} \Delta^{i-3} u \Delta^{m-1} u \geq-\frac{1}{4}\left(\Delta^{m-1} u\right)^{2}-a_{i-3}^{2}\left(\Delta^{i-3} u\right)^{2}, i=3, \ldots, m
$$

It is clear that Lemma 3 remains valid if the coefficients a_{m-2}, \ldots, a_{0} have arbitrary sign in Ω.

The following particular result becomes sharper than Lemma 2 if we choose a_{0} and a_{1} appropriately.

LEMMA 4. Let u be a classical solution of (5). Let

$$
P_{3}=\frac{1}{2}\left(\Delta^{m-1} u-a_{1} u\right)^{2}+P_{2}
$$

Suppose that $a_{m-1}=\cdots=a_{2}=0$ and $a_{0}>0$ in Ω. If $a_{1} \equiv$ constant >0 and if

$$
\begin{equation*}
\max \left\{2+2 \sup _{\Omega} \frac{a_{0}}{a_{1}}+2 a_{1}, 2+\frac{a_{1}}{4}\right\}<\frac{4 n+4}{(\operatorname{diam} \Omega)^{2}} \tag{14}
\end{equation*}
$$

then, the function P_{3} / w_{1} assumes its maximum on $\partial \Omega$ or is a constant in $\bar{\Omega}$.
PROOF. A calculation gives

$$
\begin{aligned}
& \Delta\left(\left(\frac{1}{2}\left(\Delta^{m-1} u-a_{1} u\right)^{2}+\frac{1}{2}\left(\Delta^{m-1} u\right)^{2}\right)\right. \\
& \quad \geq-2 a_{0} u \Delta^{m-1} u+a_{1} \Delta u \Delta^{m-1} u+a_{0} a_{1} u^{2} \\
& \quad=a_{0} a_{1}\left(u^{2}-\frac{2}{a_{1}} u \Delta^{m-1} u+\frac{1}{a_{1}^{2}}\left(\Delta^{m-1} u\right)^{2}\right)-\frac{a_{0}}{a_{1}}\left(\Delta^{m-1} u\right)^{2}+a_{1} \Delta u \Delta^{m-1} u \\
& \quad \geq-\frac{a_{0}}{a_{1}}\left(\Delta^{m-1} u\right)^{2}-\frac{a_{1}}{4}(\Delta u)^{2}-a_{1}\left(\Delta^{m-1} u\right)^{2}
\end{aligned}
$$

in Ω. It follows that

$$
\begin{aligned}
\Delta P_{3} \geq & -\left(\frac{a_{0}}{a_{1}}+a_{1}+1\right)\left(\Delta^{m-1} u\right)^{2}-2\left(\Delta^{m-2} u\right)^{2}-\cdots-2\left(\Delta^{3} u\right)^{2}- \\
& -\left(\frac{a_{1}}{4}+2\right)(\Delta u)^{2}-u^{2}
\end{aligned}
$$

in Ω. Hence

$$
\Delta P_{3}+\gamma P_{3} \geq 0 \quad \text { in } \Omega
$$

where $\gamma=\max \left\{2+2 \sup _{\Omega}\left(a_{0} / a_{1}\right)+2 a_{1}, 2+a_{1} / 4\right\}$.
We now state our main result.
THEOREM 2. There is at most one classical solution of the boundary value problem
(2) provided the coefficients a_{m-1}, \ldots, a_{0} satisfy the conditions imposed in Lemma 1, Lemma 2, Lemma 3 or Lemma 4.

PROOF. Suppose that the hypothesis of Lemma 1 is satisfied. Define $u=u_{1}-u_{2}$, where u_{1} and u_{2} are solutions of (2). Then u_{1} and u_{2} satisfy the equation (5) and

$$
\begin{equation*}
u=\Delta u=\cdots=\Delta^{m-1} u=0 \quad \text { on } \partial \Omega \tag{15}
\end{equation*}
$$

Hence, by Theorem 1 either
i). there exists a constant $k \in \mathbb{R}$ such that

$$
\begin{equation*}
\frac{P_{1}}{w_{1}} \equiv k \quad \text { in } \Omega \tag{16}
\end{equation*}
$$

or
ii). P_{1} / w_{1} does not attain a maximum in Ω.

Case i). By continuity (16) holds in $\bar{\Omega}$. By the boundary conditions (15) we obtain $P_{1}=0$ on $\partial \Omega$, i.e., $k=0$. It follows that $P_{1} \equiv 0$ in Ω, which means $u \equiv 0$ in Ω. Hence $u_{1}=u_{2}$ in Ω.

Case ii). From

$$
\max _{\bar{\Omega}} \frac{P_{1}}{w_{1}}=\max _{\partial \Omega} \frac{P_{1}}{w_{1}}
$$

and (15) we get

$$
0 \leq \max _{\bar{\Omega}} \frac{P_{1}}{w_{1}}=0
$$

i.e., $u_{1}=u_{2}$ in Ω.

We can argue similarly if we are under the hypotheses of Lemma 2, Lemma 3 or Lemma 4. The proof is complete.

Of course, our method can also be applied to the problem (1) to get results in arbitrary domains Ω.

Next, we consider classical solutions of the equation

$$
\begin{equation*}
\Delta^{4} u+a_{2}(x) \Delta^{2} u-a_{3}(x) \Delta u+a_{4}(x) u=0 \quad \text { in } \Omega . \tag{17}
\end{equation*}
$$

LEMMA 5. Let u be a classical solution of (17). Assume that

$$
\begin{gather*}
a_{2}>0, \quad \Delta\left(1 / a_{2}\right) \leq 0 \quad \text { in } \Omega, \tag{18}\\
a_{4}>0, \quad \Delta\left(1 / a_{4}\right) \leq 0 \quad \text { in } \Omega, \tag{19}\\
a_{2}-2 a_{4}-1>0, \quad \Delta\left(1 /\left(a_{2}-2 a_{4}-1\right)\right) \leq 0 \quad \text { in } \Omega . \tag{20}
\end{gather*}
$$

If

$$
\begin{equation*}
\max \left\{\sup _{\Omega} a_{3}, \sup _{\Omega} \frac{1}{a_{4}}, \sup _{\Omega} \frac{a_{4}^{2}}{a_{2}-2 a_{4}-1}\right\}<\frac{2 n+2}{(\operatorname{diam} \Omega)^{2}}, \tag{21}
\end{equation*}
$$

then, the function P_{4} / w_{1} assumes its maximum on $\partial \Omega$ or is a constant in $\bar{\Omega}$. Here

$$
\begin{aligned}
P_{4}= & \frac{1}{2}\left(\Delta^{3} u+\Delta u\right)^{2}+a_{4}\left(\Delta^{2} u+u\right)^{2}+\frac{a_{2}-2 a_{4}-1}{2}\left(\Delta^{2} u\right)^{2}+\frac{a_{2}-2 a_{4}-1}{2}(\Delta u)^{2} \\
& +\frac{1}{2}\left(\Delta^{3} u\right)^{2}+\frac{a_{2}}{2}\left(\Delta^{2} u\right)^{2}+\frac{1}{2} a_{4} u^{2} .
\end{aligned}
$$

Under the hypotheses of Lemma 5, an uniqueness result follows for problem (1). We note that this uniqueness result is not a particular result of Theorem 2. Moreover we do not impose any convexity assumption on $\partial \Omega$.

Finally, we give an application of the uniqueness result that follows from Lemma 5.
We see that the boundary value problem

$$
\begin{cases}\Delta^{4} u+4\left(x^{2}+y^{2}+3\right) \Delta^{2} u-\left(\left(x^{2}+y^{2}+3\right)^{2} / 4\right) \Delta u+\left(x^{2}+y^{2}+3\right) u=0 & \text { in } \Omega \\ u=13 / 4, \Delta u=4, \Delta^{2} u=0, \Delta^{3} u=0 & \text { on } \partial \Omega\end{cases}
$$

has the solution $u(x, y)=x^{2}+y^{2}+3$ in $\Omega=\left\{(x, y) \mid x^{2}+y^{2} \leq 1 / 4\right\}$.
Since (18), (19), (20) and (21) are satisfied, we get by the uniqueness result that follows from Lemma 5 that $u(x, y)=x^{2}+y^{2}+3$ is the unique solution.

As our final remarks, for some domains we may improve the maximum principle, i.e. the constant $C(n, \operatorname{diam} \Omega)=(4 n+4) /(\operatorname{diam} \Omega)$ can be taken larger (see for details [2] and [3]).

References

[1] S. N. Chow and D. R. Dunninger, A maximum principle for n-metaharmonic functions, Proc. Amer. Math. Soc., 43(1974), 79-83.
[2] C. P. Danet, On the elliptic inequality $\mathrm{L} u \leq 0$, Math. Inequal. \& Appl., 11(2008), 559-562.
[3] C. P. Danet, Uniqueness in some higher order elliptic boundary value problems in n dimensional domains, Electronic J. of Qualitative Theory of Diff. Eq., 54(2011), 1-12
[4] C. P. Danet, A remark on a uniqueness result for a boundary value problem of eighth-order, AMEN, 9(2009), 192-196.
[5] D. R. Dunninger, Maximum principles for solutions of some fourth-order elliptic equations, J. Math. Anal. Appl., 37(1972), 655-658.
[6] S. Goyal and V. B. Goyal, Liouville-type and uniqueness results for a class of sixthorder elliptic equations, J. Math. Anal. Appl., 139(1989), 586-599.
[7] P. W. Schaefer, On a maximum principle for a class of fourth-order semilinear elliptic equations, Proc. Roy. Soc. Edinburgh, 77A(1977), 319-323.
[8] P. W. Schaefer, Uniqueness in some higher order elliptic boundary value problems, Z. Angew. Math. Phys. 29(1978), 693-697.

[^0]: *Mathematics Subject Classifications: 35B50, 35G15, 35J40.
 ${ }^{\dagger}$ Department of Applied Mathematics, University of Craiova, Al. I. Cuza St., 13, 200585 Craiova, Romania

