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Abstract

In this paper we develop maximum principles for solutions of metaharmonic
equations de�ned on arbitrary n dimensional domains. As a consequence we
obtain an uniqueness result for the corresponding metaharmonic boundary value
problem.

1 Introduction

In the paper [4] we showed that if a1; a3 � 0 (a1; a3 constants), a2(x) � 0; a4(x) > 0
in 
 � R2 and the curvature of @
 2 C2+" is strictly positive, then the boundary value
problem �

�4u� a1�3u+ a2(x)�2u� a3�u+ a4(x)u = f in 
;
u = g; �u = h; �2u = i; �3u = j on 


(1)

has at most a classical solution in C8(
) \ C6(
):
Using a generalized maximum principle we are able here to extend the above men-

tioned result for a the m metaharmonic problem�
�mu� am�1(x)�m�1u+ am�2(x)�m�2u+ � � �+ (�1)ma0(x)u = f in 
;
u = g1; �u = g2; : : : ; �

m�1u = gm on 

(2)

where ai; i = 0; : : : ;m� 1, are bounded in the bounded domain 
 � R2; n � 2. Here
we deal with classical solutions u of (2), i.e., u 2 C2m(
) \ C2m�2(
); m � 3:
This result generalizes the result of Dunninger [5] (the case m = 2; n � 2; a1 = 0,

a0 � constant � 0 and 
 arbitrary), Schaefer [7] (the case curvature of @
 > 0; m =
n = 2), Schaefer [8] (the case a2; a1 � 0; a0 > 0 with m = 3; n = 2, curvature of
@
 > 0), S. Goyal and V. Goyal [6] and Danet [3] (the variable coe¢ cient case with
m = 3 and 
 � Rn arbitrary).
Throughout this paper we shall assume that 
 � Rn; n � 2 is a bounded domain,

m � 3 and the coe¢ cients ai; i = 0; : : : ;m�1 are bounded in 
. Also we shall suppose
that a0 6� 0: diam
 will denote the diameter of 
.
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2 Main Results

The uniqueness result will be a consequence of the following generalized maximum
principle and the next lemmas.

THEOREM 1 ([4]). Let u 2 C2(
)\C0(
) satisfy the inequality Lu � �u+(x)u �
0 in 
, where  � 0 in 
. Suppose that

sup


 <

4n+ 4

(diam
)2
(3)

holds. Then, the function u=w1 satis�es a generalized maximum principle in 
; i.e.,
either the function u=w1 assumes its maximum value on @
 or is constant in 
: Here
w1(x) = 1� �(x21 + � � �+ x2n) 2 C1(Rn) and � = sup
 =2n:
If 
 lies in strip of width d and if we impose the restriction

sup


 <

�2

d2
; (4)

we obtain that u=w2 satis�es a generalized maximum principle in 
: Here

w2 = cos
�(2xi � d)
2(d+ ")

nY
j=1

cosh("xj) 2 C1(
);

for some i 2 f1; : : : ; ng, where " > 0 is small.
For simplicity, we shall consider only the case when m is even, i.e., we shall deal

with the equation

�mu� am�1(x)�m�1u+ am�2(x)�m�2u� � � �+ a0(x)u = 0 in 
: (5)

Similar results will hold if m is odd.

LEMMA 1. Let u be a classical solution of (5). Let

P1 =
1

2
(�m�1u)2 +

am�1
2

(�m�2u)2 + (�m�3u)2 + � � �+ u2:

Suppose that am�3; : : : ; a1 � 0; a2; a0 > 0 and �(1=am�2) � 0 in 
. If one of the
following conditions is satis�ed
(a)

4am�1 � am�3 � am�4 � � � � � a0 � 0 in 
 (6)

and

A = max

�
1 + sup



a0; 2 + sup



a1; : : : ; 2 + sup



am�3;max

�
1; sup




am�2
2

��
<

4n+ 4

(diam
)2
;

(7)
(b)

am�1 � 0 in 
 (8)
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and

max

�
A; sup




am�3 + � � �+ a0
2

�
<

4n+ 4

(diam
)2
; (9)

then either the function P1=w1 assumes its maximum value on @
 or is constant in 
:

PROOF. A computation (using equation (5)) shows that in 
;

1

2
�
�
(�m�1u)2

�
� �m�1u�mu

= am�1(�
m�1u)2 � am�2�m�2u�m�1u

�am�3�m�3u�m�1u� � � � � a0u�m�1u:

From the inequalities

(�1)iai�3�i�3u�m�1u � �
ai�3
4
(�m�1u)2 � ai�3(�i�3u)2; i = 3; : : : ;m; (10)

and
1

2
�
�
am�2(�

m�2u)2
�
� am�2�m�1u�m�2u;

we get

1

2
�
�
((�m�1u)2 + am�2(�

m�2u)2
�
)

� (am�1 � am�3=4� am�4=4� � � � � a0=4)(�m�1u)2

�am�3(�m�3u)2 � am�4(�m�4u)2 � � � � � a0u2:

Since

�
�
(�m�3u)2

�
� 2�m�2u�m�3u � �(�m�2u)2 � (�m�3u)2;

�
�
(�m�4u)2

�
� 2�m�3u�m�4u � �(�m�3u)2 � (�m�4u)2;

:::;

�u2 � 2u�u � ��u2 � u2;
we deduce that P1 satis�es the di¤erential inequality

�P1 � (am�1 � am�3=4� am�4=4� � � � � a0=4)(�m�1u)2 � (�m�2u)2

� (2 + am�3)(�
m�3u)2 � � � � � (2 + a1)(�u)2 � (1 + a0)u2:

Hence
�P1 + P1 � 0 in 
;

where

 = maxf1 + sup


a0; 2 + sup



a1; : : : ; 2 + sup



am�3;maxf1; sup



am�2=2gg:

By (7) we have

 <
4n+ 4

(diam
)2
:
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Now the proof of (a) follows from Theorem 1. The proof for (b) is similar.

LEMMA 2. Let u be a classical solution of (5). Let

P2 =
1

2
(�m�1u)2 + (�m�2u)2 + (�m�3u)2 + � � �+ u2:

Suppose that am�1; : : : ; a1 � 0 and a0 > 0 in 
. If

max

�
sup



a0
2
+ sup




a1
2
; : : : ; 2 + sup




am�2
2

; A1

�
<

4n+ 4

(diam
)2
; (11)

where A1 = maxf1 + sup
 a0; 2; sup
 a1; : : : ; 2 + sup
 am�2g, then either the function
P2=w1 assumes its maximum on @
 or is a constant in 
:

PROOF. As in the proof of Lemma 1, we get

1

2
�
�
(�m�1u)2

�
� �m�1u�mu

= am�1(�
m�1u)2 � am�2�m�2u�m�1u� � � � � a0u�m�1u:

Since
�a0u�m�1u � �

a0
4
(�m�1u)2 � a0u2;

:::

�am�2u�m�1u�m�2u � �
am�2
4

(�m�1u)2 � am�2(�m�2u)2;

and
�
�
(�m�2u)2

�
� �(�m�2u)2 � (�m�1u)2;

:::;

�u2 � ��u2 � u2;

we get that

�P2 � �(1 + am�2=4 + am�3=4 + � � �+ a1=4 + a0=4)(�m�1u)2 � (2 + am�2)(�m�2u)2

�(2 + am�3)(�m�3u)2 � � � � � (2 + a1)(�u)2 � (1 + a0)u2:

Hence
�P2 + P2 � 0 in 
;

where
 = maxfA1; fsup



a0=2 + sup



a1=2 + � � �+ sup



am�2=2 + 2gg:

LEMMA 3. Let u be a classical solution of (5). Suppose that am�2; : : : ; a0 � 0 in

. If one of the following conditions is ful�lled
(a)

maxf1 + sup


a20; 2 + sup



a21; : : : ; 2 + sup



a2m�2g <

4n+ 4

(diam
)2
(12)
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and 4am�1 � m+ 3 in 
; or
(b)

max

�
1 + sup



a20; 2 + sup



a21; : : : ; 2 + sup



a2m�2; 2 +

m� 1
2

�
<

4n+ 4

(diam
)2
(13)

and am�1 � 0 in 
,
then either the function P2=w1 assumes its maximum on @
 or is a constant in 
:

This may be proved exactly as Lemma 2, except the inequalities (10) are replaced
by

(�1)iai�3�i�3u�m�1u � �
1

4
(�m�1u)2 � a2i�3(�i�3u)2; i = 3; : : : ;m:

It is clear that Lemma 3 remains valid if the coe¢ cients am�2; : : : ; a0 have arbitrary
sign in 
:
The following particular result becomes sharper than Lemma 2 if we choose a0 and

a1 appropriately.

LEMMA 4. Let u be a classical solution of (5). Let

P3 =
1

2
(�m�1u� a1u)2 + P2:

Suppose that am�1 = � � � = a2 = 0 and a0 > 0 in 
. If a1 � constant > 0 and if

max

�
2 + 2 sup




a0
a1
+ 2a1; 2 +

a1
4

�
<

4n+ 4

(diam
)2
; (14)

then, the function P3=w1 assumes its maximum on @
 or is a constant in 
:

PROOF. A calculation gives

�

�
(
1

2
(�m�1u� a1u)2 +

1

2
(�m�1u)2

�
� �2a0u�m�1u+ a1�u�m�1u+ a0a1u2

= a0a1

�
u2 � 2

a1
u�m�1u+

1

a21
(�m�1u)2

�
� a0
a1
(�m�1u)2 + a1�u�

m�1u

� �a0
a1
(�m�1u)2 � a1

4
(�u)2 � a1(�m�1u)2

in 
: It follows that

�P3 � �
�
a0
a1
+ a1 + 1

�
(�m�1u)2 � 2(�m�2u)2 � � � � � 2(�3u)2 �

�
�a1
4
+ 2
�
(�u)2 � u2

in 
: Hence
�P3 + P3 � 0 in
;
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where  = maxf2 + 2 sup
(a0=a1) + 2a1; 2 + a1=4g:
We now state our main result.

THEOREM 2. There is at most one classical solution of the boundary value problem
(2) provided the coe¢ cients am�1; : : : ; a0 satisfy the conditions imposed in Lemma 1,
Lemma 2, Lemma 3 or Lemma 4.

PROOF. Suppose that the hypothesis of Lemma 1 is satis�ed. De�ne u = u1 � u2;
where u1 and u2 are solutions of (2). Then u1 and u2 satisfy the equation (5) and

u = �u = � � � = �m�1u = 0 on @
: (15)

Hence, by Theorem 1 either
i). there exists a constant k 2 R such that

P1
w1

� k in 
; (16)

or
ii). P1=w1 does not attain a maximum in 
:
Case i). By continuity (16) holds in 
: By the boundary conditions (15) we obtain

P1 = 0 on @
; i.e., k = 0. It follows that P1 � 0 in 
; which means u � 0 in 
. Hence
u1 = u2 in 
.
Case ii). From

max



P1
w1

= max
@


P1
w1

and (15) we get

0 � max



P1
w1

= 0;

i.e., u1 = u2 in 
.
We can argue similarly if we are under the hypotheses of Lemma 2, Lemma 3 or

Lemma 4. The proof is complete.

Of course, our method can also be applied to the problem (1) to get results in
arbitrary domains 
:
Next, we consider classical solutions of the equation

�4u+ a2(x)�
2u� a3(x)�u+ a4(x)u = 0 in 
: (17)

LEMMA 5. Let u be a classical solution of (17). Assume that

a2 > 0; �(1=a2) � 0 in 
; (18)

a4 > 0; �(1=a4) � 0 in 
; (19)

a2 � 2a4 � 1 > 0; �(1=(a2 � 2a4 � 1)) � 0 in 
: (20)

If

max

�
sup


a3; sup




1

a4
; sup



a24
a2 � 2a4 � 1

�
<

2n+ 2

(diam
)2
; (21)
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then, the function P4=w1 assumes its maximum on @
 or is a constant in 
: Here

P4 =
1

2
(�3u+�u)2 + a4(�

2u+ u)2 +
a2 � 2a4 � 1

2
(�2u)2 +

a2 � 2a4 � 1
2

(�u)2

+
1

2
(�3u)2 +

a2
2
(�2u)2 +

1

2
a4u

2:

Under the hypotheses of Lemma 5, an uniqueness result follows for problem (1).
We note that this uniqueness result is not a particular result of Theorem 2. Moreover
we do not impose any convexity assumption on @
:

Finally, we give an application of the uniqueness result that follows from Lemma 5.
We see that the boundary value problem�
�4u+ 4(x2 + y2 + 3)�2u� ((x2 + y2 + 3)2=4)�u+ (x2 + y2 + 3)u = 0 in 

u = 13=4; �u = 4; �2u = 0; �3u = 0 on @
;

has the solution u(x; y) = x2 + y2 + 3 in 
 = f(x; y)jx2 + y2 � 1=4g:
Since (18), (19), (20) and (21) are satis�ed, we get by the uniqueness result that

follows from Lemma 5 that u(x; y) = x2 + y2 + 3 is the unique solution.

As our �nal remarks, for some domains we may improve the maximum principle,
i.e. the constant C(n;diam
) = (4n+ 4)=(diam
) can be taken larger (see for details
[2] and [3]).
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