On A Sum Related By Non-trivial Zeros Of The Riemann Zeta Function*

Mehdi Hassani ${ }^{\dagger}$

Received 27 September 2010

Abstract

In this note we obtain explicit upper and lower bounds for the sum $\sum_{0<\gamma \leq T} \gamma^{-1}$, where γ is the imaginary part of the non-trivial zero $\rho=\beta+i \gamma$ of $\zeta(s)$.

1 Introduction

The Riemann zeta function is defined for $s \in \mathbb{C}$ with $\Re(s)>1$ by $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$, and extended by analytic continuation to the whole complex plan with a simple pole with residues 1 at $s=1$. A symmetric functional equation for $\zeta(s)$ is

$$
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

where $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t$ is the Euler's gamma function. $\Gamma(s)$ is meromorphic with simple poles at $s=0,-1,-2, \ldots$ (see [3]). By using these facts, we may see that trivial zeros (zeros on real line \mathbb{R}) of $\zeta(s)$ are $s=-2,-4,-6, \ldots$. Furthermore, we get symmetry of non-trivial zeros (other zeros $\rho=\beta+i \gamma$ with properties $0 \leq \beta \leq 1$ and $\gamma \neq 0)$ with respect to the vertical line $\Re(s)=1 / 2$. Our intention in writing this paper is to approximate the function

$$
A(T)=\sum_{\substack{0<\gamma \leq T \\ \zeta(\beta+i \gamma)=0}} \frac{1}{\gamma}
$$

More precisely, we show the following.
THEOREM 1. Let $\gamma_{1}=\min \{\gamma>0: \zeta(\beta+i \gamma)=0\} \approx 14.13472514$. Then, for any $T>\gamma_{1}$ we have

$$
\begin{equation*}
\frac{3}{50}<A(T)-\left(\frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T\right)<\frac{109}{250} \tag{1}
\end{equation*}
$$

Our strategy to prove this result is to consider the zero counting function $N(T)$ defined by

$$
N(T)=\sum_{\substack{0<\gamma \leq T \\ \zeta(\beta+i \gamma)=0}} 1
$$

[^0]and then translate known approximations about it to get desired approximations for $A(T)$. The key for doing such translation is using Stieljes integration and integrating by parts. Indeed, if we assume that $1<U \leq V$ and $\Phi(t) \in C^{1}(U, V)$ is a non-negative function, then we have
$$
\sum_{U<\gamma \leq V} \Phi(\gamma)=\int_{U}^{V} \Phi(t) d N(t)=-\int_{U}^{V} N(t) \Phi^{\prime}(t) d t+N(V) \Phi(V)-N(U) \Phi(U)
$$

Among his various conjectures about the function $\zeta(s)$ and its non-trivial zeros, B . Riemann [5] claimed that

$$
\begin{equation*}
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T) \tag{2}
\end{equation*}
$$

This conjecture of Riemann is proved by H. von Mangoldt more than 30 years later $[1,2]$. An immediate consequence of (2), which follows by partial summation, is the asymptotic approximation

$$
A(T)=O\left(\log ^{2} T\right)
$$

To obtain a more precise approximation, we use the relation (2) by replacing $\Phi(\gamma)=\frac{1}{\gamma}$, and putting $0<U<\gamma_{1}$ and $V=T$. We have

$$
\begin{equation*}
A(T)=\int_{U}^{T} \frac{d N(t)}{t}=\int_{U}^{T} \frac{N(t)}{t^{2}} d t+\frac{N(T)}{T} \tag{3}
\end{equation*}
$$

We substitute $N(T)$ from (2) to obtain
$A(T)=\frac{1}{2 \pi} \int_{U}^{T} \frac{\log \left(\frac{t}{2 \pi}\right)}{t} d t-\frac{1}{2 \pi} \int_{U}^{T} \frac{d t}{t}+\frac{1}{2 \pi} \log \frac{T}{2 \pi}-\frac{1}{2 \pi}+O\left(\int_{U}^{T} \frac{\log (t)}{t^{2}} d t\right)+O\left(\frac{\log T}{T}\right)$.
Then, we simplify the right hand side of this relation, and we let $U \rightarrow \gamma_{1}^{-}$. Therefore, we get

$$
A(T)=\frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T+O(1)
$$

Now, we are very close to the truth of Theorem 1. Our remaining duty is to estimate the constant in error term $O(1)$ in the last relation.

2 Proof of Theorem

The working engine of our paper is a result due to J. B. Rosser (Theorem 19 of [6]), which asserts that

$$
\begin{equation*}
|N(T)-F(T)| \leq R(T) \quad(\text { for } T \geq 2) \tag{4}
\end{equation*}
$$

where

$$
F(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}, \quad \text { and } \quad R(T)=\frac{137}{1000} \log T+\frac{433}{1000} \log \log T+\frac{397}{250}
$$

This is indeed an explicit version of (2), and it allows us to obtain some explicit approximations of $A(T)$. In fact, by considering (4) and by using (3) with $2 \leq U<\gamma_{1}$, for every $T>\gamma_{1}$ we obtain

$$
-\int_{U}^{T} \frac{R(t)}{t^{2}} d t+\frac{F(T)-R(T)}{T} \leq A(T)-\int_{U}^{T} \frac{F(t)}{t^{2}} d t \leq \int_{U}^{T} \frac{R(t)}{t^{2}} d t+\frac{F(T)+R(T)}{T}
$$

A simple calculation shows

$$
\frac{F(t)}{t^{2}}=\frac{d}{d t}\left(\frac{1}{4 \pi} \log ^{2} t-\frac{1+\log (2 \pi)}{2 \pi} \log t+\frac{\log ^{2}(2 \pi)-2 \log (2 \pi)}{4 \pi}-\frac{7}{8 t}\right) .
$$

Also, we have

$$
\frac{R(t)}{t^{2}}=\frac{d}{d t}\left(-\frac{433}{1000} \frac{\log \log t}{t}-\frac{137}{1000} \frac{\log t}{t}-\frac{69}{40 t}-\frac{433}{1000} E(t)\right)
$$

where $E(t)=\int_{1}^{\infty} \frac{d s}{s t^{s}}$. This integral converges for $t>1$; in fact $E(t) \sim \frac{1}{t \log t}$ as $t \rightarrow \infty$. Moreover, by using the relation $\frac{d}{d t} E(t)=-\frac{1}{t^{2} \log t}$, we obtain

$$
\frac{1}{t \log t}-\frac{1}{t \log ^{2} t}<E(t)<\frac{1}{t \log t}-\frac{31}{95 t \log ^{2} t} \quad(\text { for } t \geq 2)
$$

Therefore, by letting $U \rightarrow \gamma_{1}^{-}$we get the following explicit upper bound
$A(T)<\frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T+\mathfrak{c}_{\mathfrak{a u}}-\frac{137 \log ^{2} T+433 \log T-433}{1000 T \log ^{2} T} \quad\left(\right.$ for $\left.T>\gamma_{1}\right)$,
where $\mathfrak{c}_{\mathfrak{a} u}=0.43596427 \cdots<\frac{109}{250}$. Since $137 \log ^{2} T+433 \log T>433$ is valid for $T \geq 2.222$, we obtain

$$
A(T)<\frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T+\frac{109}{250} \quad\left(\text { for } T>\gamma_{1}\right)
$$

This completes the proof of the right hand side of (1). To prove the left hand side of (1), we follow same steps to get

$$
\begin{aligned}
A(T)> & \frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T \\
& +\mathfrak{c}_{\mathfrak{a l}}+\frac{274 \log ^{3} T+866(\log \log T) \log ^{2} T+3313 \log ^{2} T+433 \log T-433}{1000 T \log ^{2} T}
\end{aligned}
$$

for $T>\gamma_{1}$, where $\mathfrak{c}_{\mathfrak{a} \mathfrak{l}}=0.06058187 \cdots>\frac{3}{50}$. We note that for $T \geq 2$ the last fraction in the above inequality is strictly positive. Thus, we obtain

$$
A(T)>\frac{1}{4 \pi} \log ^{2} T-\frac{\log (2 \pi)}{2 \pi} \log T+\frac{3}{50} \quad\left(\text { for } T>\gamma_{1}\right)
$$

References

[1] H. Davenport, Multiplicative Number Theory (Second Edition), Springer-Verlag, 1980.
[2] A. Ivić, The Riemann Zeta Function, John Wiley \& sons, 1985.
[3] N. N. Lebedev, Special Functions and their Applications, Translated and edited by Richard A. Silverman, Dover Publications, New York, 1972.
[4] A. Odlyzko, Tables of zeros of the Riemann zeta function: http://www.dtc.umn.edu/~odlyzko/zeta_tables/
[5] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse (On the Number of Prime Numbers less than a Given Quantity), Monatsberichte der Berliner Akademie, November 1859.
[6] J. B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math., 63(1941), 211-232.

[^0]: *Mathematics Subject Classifications: $11 \mathrm{M} 06,11 \mathrm{M} 26$.
 ${ }^{\dagger}$ Department of Mathematics, University of Zanjan, University Blvd., 45371-38111 Zanjan, Iran.

