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Abstract

The aim of this research note is to provide a new proof of the classical Watson�s
theorem for the generalized hypergeometric series 3F2.

1 Introduction

We start with the classical Watson�s summation theorem for the generalized hyperge-
ometric series 3F2, [1, P. 16, Eq. 1] viz.
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provided Re(2c� a� b) > �1.
The proof of this theorem when one of the parameters a or b is a negative integer

was given in Watson [7]. Subsequently, it was established more generally in the non-
terminating case by Whipple [8]. The standard proof of the non-terminating case was
given in Bailey�s tract [1] by employing the fundamental transformation due to Thomae
combined with the classical Dixon�s theorem of the sum of a 3F2.
An alternative and more involved proof was given by MacRobert [4] by employing

the well known quadratic transformation for the Gauss�s hypergeometric function [5,
P. 67, Theorem 25]
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valid for jxj < 1 and j4x(1� x)j < 1.
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Another proof is due to Bhatt [2], by employing a known relation between F2
and F4 Appell functions combined with a comparison of the coe¢ cients in their series
expansions.
Very recently, Rathie and Paris [6] have given a very simple and elegant proof of

(1) that relies only on the well known Gauss summation theorems for the series 2F1.
In this research note, we give a simple proof of (1) by employing the Gauss�s second

summation theorem. However our method is similar to that given in MacRobert [4]
but without using the quadratic transformation (2).

2 Results Required

The following results will be required in our present investigations.

� Finite integral [3]
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provided Re(c) > 0;Re(d� c) > 0 and Re(d+ c� a� b� c) > 0:

� Transformation formula [5, P. 65, Theorem 24]
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valid for jyj < 1
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� Integral representation for the hypergeometric function 2F1 [5, P. 47, Theorem
16]

2F1

24 a; b
; z

c

35 = �(c)

�(b)�(c� b)

1Z
0

tb�1(1� t)c�b�1(1� zt)�adt (5)

valid for jzj < 1; and Re(c) > Re(b) > 0:

� Gauss�s summation theorem [1, P. 2, Eq. 1]
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� Gauss�s second summation theorem [1, P. 10, Eq. 2]
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� Elementary identity
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3 Derivation of (1)

In order to derive (1), we proceed as follows. In (3), taking e = 2b, we have
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where the second equality is obtained by using (4) and replacing y by 1

2zt.
Expressing the 2F1 involved in the process as a series and changing the order of

integration and summation, which is easily seen to be justi�ed due to the uniform
convergence of the series in the interval (0; 1), we have, after a little algebra
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which, by using (5) and simpli�cation, is
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Now, interchanging b and c and taking d = 1
2 (a+ b+ 1), we have
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Taking z = 1, we have
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which, by (7) and (8) and after simpli�cation, is
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Summing up the series, we have
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using (6), we �nally arrive at (1).
This completes the proof of (1).
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