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Abstract
The aim of this paper is to improve the Burnside formula for approximation

the gamma function.

1 Introduction

The Euler gamma function de�ned for x > 0 by

� (x) =
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tx�1e�tdt

extends the factorial function and it is of great interest in many branches of science.
Undoubtedly, one of the most used formula for approximation the big factorials is the
following
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now known as Stirling formula. Although in probabilities or statistical physics this
formula is satisfactory, in pure mathematics more accurate formulas are necessary.
Recently Mortici [4] introduced the approximation
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being slightly less accurate than Burnside formula [1]
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Inspired by the Lanczos integral approximations [3] and by a double series representa-
tion of Hsu [2], Mortici [4] uni�ed the relations (1)-(2) in the following general approx-
imations family
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As the privileged values ! =
�
3�

p
3
�
=6; � =

�
3 +

p
3
�
=6 provide the best results,

there are proven in [4] the following sharp inequalities
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where � = 1:072042464::: and � = 0:988503589::: .
Other recent results about the gamma function and related functions are stated in

[5]-[17].

2 The Results

In this paper we continue the direction opened by the family (4) and in particular by
the Burnside approximation (3) by replacing the constant 1=2 by a quantity depending
on n; which tends to 1=2; as n!1:
More precisely, we propose the following under-approximation
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and upper-approximation
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The superiority of our new formulas over the Stirling and Burnside formulas are proved
in the following table.

n n!� �n �n � n! n!� �n �n � n!
10 30104 14421 730 25
25 5:161 5� 1022 2:536 4� 1022 5:100 1� 1020 7:054� 1018
50 5:064 7� 1061 2:510 4� 1061 2:517 2� 1059 1:730 5� 1057
100 7:773 9� 10154 3:870 0� 10154 1:937 7� 10152 6:640 5� 10149
500 2:033 4� 101130 1:015 8� 101130 1:016 1� 101127 6:947 5� 101123
1000 3:353 1� 102563 1:675 8� 102563 8:380 2� 102559 2:864 1� 102556

We prove the following.

THEOREM 1. For every positive integer n; we have
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PROOF. Let us de�ne the sequences
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which converge to zero. In order to prove that an > 0 and bn < 0; we show that an
is strictly decreasing and bn is strictly increasing. In this sense, if designate f (n) =
an+1�an and g (n) = bn+1� bn; it su¢ ces to show that f (x) < 0 and g (x) > 0; where
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We have f 00 (x) < 0 and g00 (x) > 0; for every x 2 [1;1); since

f 00 (x) = � P (x)

2x2 (x+ 1)
2
(12x+ 24x2 � 1)2 (60x+ 24x2 + 35)2

and

g00 (x) =
Q (x)

x2 (x+ 1)
2
(24x2 � 2x+ 48x3 + 1)2 (190x+ 168x2 + 48x3 + 71)2

;

where

P (x) = 23 975x+ 279 460x2 + 1166 400x3 + 2468 928x4

+2764 800x5 + 1541 376x6 + 331 776x7 + 1225 (x� 1)

and

Q (x) = 6816x+ 281 169x2 + 3569 048x3 + 17 562 852x4 + 46 653 696x5 + 74 884 576x6

+75 056 640x7 + 45 988 608x8 + 15 704 064x9 + 2267 136x10 + 5041:

Finally, f is strictly concave, g is strictly convex, with f (1) = g (1) = 0; so f < 0
and g > 0 and the theorem is proved.
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