ISSN 1607-2510

On The Gamma Function Approximation By Burnside^{*}

Cristinel Mortici[†]

Received 12 February 2011

Abstract

The aim of this paper is to improve the Burnside formula for approximation the gamma function.

1 Introduction

The Euler gamma function defined for x > 0 by

$$\Gamma\left(x\right) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

extends the factorial function and it is of great interest in many branches of science. Undoubtedly, one of the most used formula for approximation the big factorials is the following

$$\Gamma(n+1) \approx \sqrt{2\pi e} \left(\frac{n}{e}\right)^{n+\frac{1}{2}} := \sigma_n \tag{1}$$

now known as Stirling formula. Although in probabilities or statistical physics this formula is satisfactory, in pure mathematics more accurate formulas are necessary.

Recently Mortici [4] introduced the approximation

$$\Gamma(n+1) \approx \sqrt{\frac{2\pi}{e}} \left(\frac{n+1}{e}\right)^{n+\frac{1}{2}},\tag{2}$$

being slightly less accurate than Burnside formula [1]

$$\Gamma(n+1) \approx \sqrt{2\pi} \left(\frac{n+\frac{1}{2}}{e}\right)^{n+\frac{1}{2}} := \beta.$$
(3)

Inspired by the Lanczos integral approximations [3] and by a double series representation of Hsu [2], Mortici [4] unified the relations (1)-(2) in the following general approximations family

$$\Gamma(n+1) \approx \sqrt{2\pi e} e^{-p} \left(\frac{n+p}{e}\right)^{n+\frac{1}{2}} \quad (0 \le p \le 1).$$
(4)

^{*}Mathematics Subject Classifications: 30E15, 41A60, 41A25.

 $^{^\}dagger Valahia University of Târgoviște, Department of Mathematics, Bd. Unirii 18, 130082$ Târgoviște, Romania

As the privileged values $\omega = (3 - \sqrt{3})/6$, $\zeta = (3 + \sqrt{3})/6$ provide the best results, there are proven in [4] the following sharp inequalities

$$\sqrt{2\pi e}e^{-\omega}\left(\frac{x+\omega}{e}\right)^{x+\frac{1}{2}} < \Gamma\left(x+1\right) \le \alpha \cdot \sqrt{2\pi e}e^{-\omega}\left(\frac{x+\omega}{e}\right)^{x+\frac{1}{2}}$$

and

$$\delta \cdot \sqrt{2\pi e} e^{-\zeta} \left(\frac{x+\zeta}{e}\right)^{\zeta+\frac{1}{2}} \leq \Gamma\left(x+1\right) < \sqrt{2\pi e} e^{-\zeta} \left(\frac{x+\zeta}{e}\right)^{\zeta+\frac{1}{2}},$$

where $\alpha = 1.072042464...$ and $\delta = 0.988503589...$.

Other recent results about the gamma function and related functions are stated in [5]-[17].

2 The Results

In this paper we continue the direction opened by the family (4) and in particular by the Burnside approximation (3) by replacing the constant 1/2 by a quantity depending on n, which tends to 1/2, as $n \to \infty$.

More precisely, we propose the following under-approximation

$$\Gamma(n+1) \approx \sqrt{2\pi} \left(\frac{n+\frac{1}{2}-\frac{1}{24n}}{e}\right)^{n+\frac{1}{2}} := \nu_n,$$

and upper-approximation

$$\Gamma\left(n+1\right) \approx \sqrt{2\pi} \left(\frac{n+\frac{1}{2} - \frac{1}{24n} + \frac{1}{48n^2}}{e}\right)^{n+\frac{1}{2}} := \mu_n$$

The superiority of our new formulas over the Stirling and Burnside formulas are proved in the following table.

n	$n! - \sigma_n$	$\beta_n - n!$	$n! - \nu_n$	$\mu_n - n!$
10	30104	14421	730	25
25	5.1615×10^{22}	$2.5364 imes 10^{22}$	5.1001×10^{20}	7.054×10^{18}
50	5.0647×10^{61}	$2.5104 imes 10^{61}$	$2.5172 imes 10^{59}$	1.7305×10^{57}
100	7.7739×10^{154}	3.8700×10^{154}	1.9377×10^{152}	6.6405×10^{149}
500	2.0334×10^{1130}	1.0158×10^{1130}	1.0161×10^{1127}	6.9475×10^{1123}
1000	3.3531×10^{2563}	1.6758×10^{2563}	8.3802×10^{2559}	2.8641×10^{2556}

We prove the following.

THEOREM 1. For every positive integer n, we have

$$\sqrt{2\pi} \left(\frac{n+\frac{1}{2}-\frac{1}{24n}}{e}\right)^{n+\frac{1}{2}} < \Gamma\left(n+1\right) < \sqrt{2\pi} \left(\frac{n+\frac{1}{2}-\frac{1}{24n}+\frac{1}{48n^2}}{e}\right)^{n+\frac{1}{2}}.$$

PROOF. Let us define the sequences

$$a_n = \ln \Gamma (n+1) - \left(n + \frac{1}{2}\right) \ln \left(\frac{n + \frac{1}{2} - \frac{1}{24n}}{e}\right) - \ln \sqrt{2\pi}$$
$$b_n = \ln \Gamma (n+1) - \left(n + \frac{1}{2}\right) \ln \left(\frac{n + \frac{1}{2} - \frac{1}{24n} + \frac{1}{48n^2}}{e}\right) - \ln \sqrt{2\pi}$$

which converge to zero. In order to prove that $a_n > 0$ and $b_n < 0$, we show that a_n is strictly decreasing and b_n is strictly increasing. In this sense, if designate $f(n) = a_{n+1} - a_n$ and $g(n) = b_{n+1} - b_n$, it suffices to show that f(x) < 0 and g(x) > 0, where

$$f(x) = \ln(x+1) - \left(x+\frac{3}{2}\right) \ln\left(\frac{x+\frac{3}{2} - \frac{1}{24(x+1)}}{e}\right) + \left(x+\frac{1}{2}\right) \ln\left(\frac{x+\frac{1}{2} - \frac{1}{24x}}{e}\right)$$

and

$$g(x) = \ln(x+1) - \left(x+\frac{3}{2}\right) \ln\left(\frac{x+\frac{3}{2} - \frac{1}{24(x+1)} + \frac{1}{48(x+1)^2}}{e}\right) + \left(x+\frac{1}{2}\right) \ln\left(\frac{x+\frac{1}{2} - \frac{1}{24x} + \frac{1}{48x^2}}{e}\right).$$

We have f''(x) < 0 and g''(x) > 0, for every $x \in [1, \infty)$, since

$$f''(x) = -\frac{P(x)}{2x^2(x+1)^2(12x+24x^2-1)^2(60x+24x^2+35)^2}$$

and

$$g''(x) = \frac{Q(x)}{x^2 (x+1)^2 (24x^2 - 2x + 48x^3 + 1)^2 (190x + 168x^2 + 48x^3 + 71)^2},$$

where

$$P(x) = 23\,975x + 279\,460x^2 + 1166\,400x^3 + 2468\,928x^4$$
$$+2764\,800x^5 + 1541\,376x^6 + 331\,776x^7 + 1225\,(x-1)$$

and

$$Q(x) = 6816x + 281\,169x^2 + 3569\,048x^3 + 17\,562\,852x^4 + 46\,653\,696x^5 + 74\,884\,576x^6 + 75\,056\,640x^7 + 45\,988\,608x^8 + 15\,704\,064x^9 + 2267\,136x^{10} + 5041.$$

Finally, f is strictly concave, g is strictly convex, with
$$f(\infty) = g(\infty) = 0$$
, so $f < and g > 0$ and the theorem is proved.

0

References

- W. Burnside, A rapidly convergent series for log N!, Messenger Math., 46(1917), 157–159.
- [2] L. C. Hsu, A new constructive proof of the Stirling formula, J. Math. Res. Exposition, 17(1997), 5–7.
- [3] C. Lanczos, A precision approximation of the gamma function, SIAM J. Numer. Anal., 1(1964) 86–96.
- [4] C. Mortici, An ultimate extremely accurate formula for approximation of the factorial function, Arch. Math., (Basel), 93(1)(2009), 37–45.
- [5] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly, 117(5)(2010), 434–441.
- [6] C. Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett., 23(1)(2010), 97–100.
- [7] C. Mortici, On new sequences converging towards the Euler-Mascheroni constant, Comput. Math. Appl., 59(8)(2010), 2610–2614.
- [8] C. Mortici, Completely monotonic functions associated with gamma function and applications, Carpathian J. Math., 25(2)(2009), 186–191.
- C. Mortici, The proof of Muqattash-Yahdi conjecture, Math. Comput. Modelling, 51(9-10)(2010), 1154–1159.
- [10] C. Mortici, Monotonicity properties of the volume of the unit ball in ℝⁿ, Optimization Lett., 4(3)(2010), 457–464.
- [11] C. Mortici, Sharp inequalities related to Gosper's formula, C. R. Math. Acad. Sci. Paris, 348(3-4)(2010), 137–140.
- [12] C. Mortici, A class of integral approximations for the factorial function, Comput. Math. Appl., 59(6)(2010), 2053–2058.
- [13] C. Mortici, Best estimates of the generalized Stirling formula, Appl. Math. Comput., 215(11)(2010), 4044–4048.
- [14] C. Mortici, Very accurate estimates of the polygamma functions, Asymptot. Anal., 68(3)(2010), 125–134.
- [15] C. Mortici, Improved convergence towards generalized Euler-Mascheroni constant, Appl. Math. Comput., 215(9)(2010), 3443–3448.
- [16] C. Mortici, A quicker convergence toward the γ constant with the logarithm term involving the constant *e*, Carpathian J. Math., 26(1)(2010), 86–91.
- [17] C. Mortici, Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.), 8(1)(2010), 99–107.