On The Gamma Function Approximation By Burnside*

Cristinel Mortici ${ }^{\dagger}$

Received 12 February 2011

Abstract

The aim of this paper is to improve the Burnside formula for approximation the gamma function.

1 Introduction

The Euler gamma function defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

extends the factorial function and it is of great interest in many branches of science. Undoubtedly, one of the most used formula for approximation the big factorials is the following

$$
\begin{equation*}
\Gamma(n+1) \approx \sqrt{2 \pi e}\left(\frac{n}{e}\right)^{n+\frac{1}{2}}:=\sigma_{n} \tag{1}
\end{equation*}
$$

now known as Stirling formula. Although in probabilities or statistical physics this formula is satisfactory, in pure mathematics more accurate formulas are necessary.

Recently Mortici [4] introduced the approximation

$$
\begin{equation*}
\Gamma(n+1) \approx \sqrt{\frac{2 \pi}{e}}\left(\frac{n+1}{e}\right)^{n+\frac{1}{2}}, \tag{2}
\end{equation*}
$$

being slightly less accurate than Burnside formula [1]

$$
\begin{equation*}
\Gamma(n+1) \approx \sqrt{2 \pi}\left(\frac{n+\frac{1}{2}}{e}\right)^{n+\frac{1}{2}}:=\beta \tag{3}
\end{equation*}
$$

Inspired by the Lanczos integral approximations [3] and by a double series representation of Hsu [2], Mortici [4] unified the relations (1)-(2) in the following general approximations family

$$
\begin{equation*}
\Gamma(n+1) \approx \sqrt{2 \pi e} e^{-p}\left(\frac{n+p}{e}\right)^{n+\frac{1}{2}} \quad(0 \leq p \leq 1) \tag{4}
\end{equation*}
$$

[^0]As the privileged values $\omega=(3-\sqrt{3}) / 6, \zeta=(3+\sqrt{3}) / 6$ provide the best results, there are proven in [4] the following sharp inequalities

$$
\sqrt{2 \pi e} e^{-\omega}\left(\frac{x+\omega}{e}\right)^{x+\frac{1}{2}}<\Gamma(x+1) \leq \alpha \cdot \sqrt{2 \pi e} e^{-\omega}\left(\frac{x+\omega}{e}\right)^{x+\frac{1}{2}}
$$

and

$$
\delta \cdot \sqrt{2 \pi e} e^{-\zeta}\left(\frac{x+\zeta}{e}\right)^{\zeta+\frac{1}{2}} \leq \Gamma(x+1)<\sqrt{2 \pi e} e^{-\zeta}\left(\frac{x+\zeta}{e}\right)^{\zeta+\frac{1}{2}}
$$

where $\alpha=1.072042464 \ldots$ and $\delta=0.988503589 \ldots$.
Other recent results about the gamma function and related functions are stated in [5]-[17].

2 The Results

In this paper we continue the direction opened by the family (4) and in particular by the Burnside approximation (3) by replacing the constant $1 / 2$ by a quantity depending on n, which tends to $1 / 2$, as $n \rightarrow \infty$.

More precisely, we propose the following under-approximation

$$
\Gamma(n+1) \approx \sqrt{2 \pi}\left(\frac{n+\frac{1}{2}-\frac{1}{24 n}}{e}\right)^{n+\frac{1}{2}}:=\nu_{n}
$$

and upper-approximation

$$
\Gamma(n+1) \approx \sqrt{2 \pi}\left(\frac{n+\frac{1}{2}-\frac{1}{24 n}+\frac{1}{48 n^{2}}}{e}\right)^{n+\frac{1}{2}}:=\mu_{n}
$$

The superiority of our new formulas over the Stirling and Burnside formulas are proved in the following table.

n	$n!-\sigma_{n}$	$\beta_{n}-n!$	$n!-\nu_{n}$	$\mu_{n}-n!$
10	30104	14421	730	25
25	5.1615×10^{22}	2.5364×10^{22}	5.1001×10^{20}	7.054×10^{18}
50	5.0647×10^{61}	2.5104×10^{61}	2.5172×10^{59}	1.7305×10^{57}
100	7.7739×10^{154}	3.8700×10^{154}	1.9377×10^{152}	6.6405×10^{149}
500	2.0334×10^{1130}	1.0158×10^{1130}	1.0161×10^{1127}	6.9475×10^{1123}
1000	3.3531×10^{2563}	1.6758×10^{2563}	8.3802×10^{2559}	2.8641×10^{2556}

We prove the following.
THEOREM 1. For every positive integer n, we have

$$
\sqrt{2 \pi}\left(\frac{n+\frac{1}{2}-\frac{1}{24 n}}{e}\right)^{n+\frac{1}{2}}<\Gamma(n+1)<\sqrt{2 \pi}\left(\frac{n+\frac{1}{2}-\frac{1}{24 n}+\frac{1}{48 n^{2}}}{e}\right)^{n+\frac{1}{2}}
$$

PROOF. Let us define the sequences

$$
\begin{gathered}
a_{n}=\ln \Gamma(n+1)-\left(n+\frac{1}{2}\right) \ln \left(\frac{n+\frac{1}{2}-\frac{1}{24 n}}{e}\right)-\ln \sqrt{2 \pi} \\
b_{n}=\ln \Gamma(n+1)-\left(n+\frac{1}{2}\right) \ln \left(\frac{n+\frac{1}{2}-\frac{1}{24 n}+\frac{1}{48 n^{2}}}{e}\right)-\ln \sqrt{2 \pi}
\end{gathered}
$$

which converge to zero. In order to prove that $a_{n}>0$ and $b_{n}<0$, we show that a_{n} is strictly decreasing and b_{n} is strictly increasing. In this sense, if designate $f(n)=$ $a_{n+1}-a_{n}$ and $g(n)=b_{n+1}-b_{n}$, it suffices to show that $f(x)<0$ and $g(x)>0$, where

$$
f(x)=\ln (x+1)-\left(x+\frac{3}{2}\right) \ln \left(\frac{x+\frac{3}{2}-\frac{1}{24(x+1)}}{e}\right)+\left(x+\frac{1}{2}\right) \ln \left(\frac{x+\frac{1}{2}-\frac{1}{24 x}}{e}\right)
$$

and

$$
\begin{gathered}
g(x)=\ln (x+1)-\left(x+\frac{3}{2}\right) \ln \left(\frac{x+\frac{3}{2}-\frac{1}{24(x+1)}+\frac{1}{48(x+1)^{2}}}{e}\right) \\
+\left(x+\frac{1}{2}\right) \ln \left(\frac{x+\frac{1}{2}-\frac{1}{24 x}+\frac{1}{48 x^{2}}}{e}\right) .
\end{gathered}
$$

We have $f^{\prime \prime}(x)<0$ and $g^{\prime \prime}(x)>0$, for every $x \in[1, \infty)$, since

$$
f^{\prime \prime}(x)=-\frac{P(x)}{2 x^{2}(x+1)^{2}\left(12 x+24 x^{2}-1\right)^{2}\left(60 x+24 x^{2}+35\right)^{2}}
$$

and

$$
g^{\prime \prime}(x)=\frac{Q(x)}{x^{2}(x+1)^{2}\left(24 x^{2}-2 x+48 x^{3}+1\right)^{2}\left(190 x+168 x^{2}+48 x^{3}+71\right)^{2}},
$$

where

$$
\begin{aligned}
& P(x)=23975 x+279460 x^{2}+1166400 x^{3}+2468928 x^{4} \\
& +2764800 x^{5}+1541376 x^{6}+331776 x^{7}+1225(x-1)
\end{aligned}
$$

and

$$
\begin{aligned}
Q(x)= & 6816 x+281169 x^{2}+3569048 x^{3}+17562852 x^{4}+46653696 x^{5}+74884576 x^{6} \\
& +75056640 x^{7}+45988608 x^{8}+15704064 x^{9}+2267136 x^{10}+5041 .
\end{aligned}
$$

Finally, f is strictly concave, g is strictly convex, with $f(\infty)=g(\infty)=0$, so $f<0$ and $g>0$ and the theorem is proved.

References

[1] W. Burnside, A rapidly convergent series for $\log N$!, Messenger Math., 46(1917), 157-159.
[2] L. C. Hsu, A new constructive proof of the Stirling formula, J. Math. Res. Exposition, 17(1997), 5-7.
[3] C. Lanczos, A precision approximation of the gamma function, SIAM J. Numer. Anal., 1(1964) 86-96.
[4] C. Mortici, An ultimate extremely accurate formula for approximation of the factorial function, Arch. Math., (Basel), 93(1)(2009), 37-45.
[5] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly, 117(5)(2010), 434-441.
[6] C. Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett., $23(1)(2010), 97-100$.
[7] C. Mortici, On new sequences converging towards the Euler-Mascheroni constant, Comput. Math. Appl., 59(8)(2010), 2610-2614.
[8] C. Mortici, Completely monotonic functions associated with gamma function and applications, Carpathian J. Math., 25(2)(2009), 186-191.
[9] C. Mortici, The proof of Muqattash-Yahdi conjecture, Math. Comput. Modelling, 51(9-10)(2010), 1154-1159.
[10] C. Mortici, Monotonicity properties of the volume of the unit ball in \mathbb{R}^{n}, Optimization Lett., 4(3)(2010), 457-464.
[11] C. Mortici, Sharp inequalities related to Gosper's formula, C. R. Math. Acad. Sci. Paris, 348(3-4)(2010), 137-140.
[12] C. Mortici, A class of integral approximations for the factorial function, Comput. Math. Appl., 59(6)(2010), 2053-2058.
[13] C. Mortici, Best estimates of the generalized Stirling formula, Appl. Math. Comput., 215(11)(2010), 4044-4048.
[14] C. Mortici, Very accurate estimates of the polygamma functions, Asymptot. Anal., 68(3)(2010), 125-134.
[15] C. Mortici, Improved convergence towards generalized Euler-Mascheroni constant, Appl. Math. Comput., 215(9)(2010), 3443-3448.
[16] C. Mortici, A quicker convergence toward the γ constant with the logarithm term involving the constant e, Carpathian J. Math., 26(1)(2010), 86-91.
[17] C. Mortici, Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.), 8(1)(2010), 99-107.

[^0]: *Mathematics Subject Classifications: 30E15, 41A60, 41A25.
 †Valahia University of Târgovişte, Department of Mathematics, Bd. Unirii 18, 130082 Târgovişte, Romania

