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Abstract

Applications of the jet space analysis to isospectral beams are considered.
Using the jet space analysis, we show that the principal equations related to the
beam equation have unique solutions.

1 Introduction

It is well known that there are di¤erent beams having the same spectrum under the
clamped boundary conditions [2]. That is, if we consider the beam equation u(4) +
(Au0)0 + Bu = �u with clamped boundary conditions u = u0 = 0, then we can �nd
other classes of beam equations with di¤erent coe¢ cients Â and B̂ with the same
eigenvalues under the same clamped boundary conditions. For more details see [2].
Now, assume that we have two functions of t , say � = �(t) and  = (t), where t

stands for time. According to [2] we de�ne two coe¢ cients A and B as follows:

A = ��2 � 2� � 22 � 3�0 � 40;
B = �22 + 2�3 + 4 + 2�020 + 4�0420 + �00 + 02 � ��00 � �00 � �000 � 000:

(1)
The related beam principal equation can be stated as the following: Find r and s

as functions of � and  and their derivatives which satis�es these equations:

2s+ r02 = A;
s2 + s00 � r0s� rs0 = B: (2)

The whole class of isospectral beams corresponding to the considered coe¢ cients
(1), can be obtained from the solutions of the system (2), as discussed in [2]. This is a
system of nonlinear di¤erential equations and it is not easy to �nd the explicit solution,
but it is easy to see that a particular solution for this system is

r = �� � 2;
s = 2 + � � �0 � 0: (3)

Now it is natural to ask what are the other possible solutions?
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256 Principal Equations of Isospectral Beans

Our purpose in this paper is to show that system (2) has no other solutions and so
that the classi�cation obtained in the earlier paper [2] is complete.
Jet space machinery is a well known tool in the geometric theory of the di¤erential

equations via prolongation method [4]. The application of this machinery to prove
the uniqueness of a solution to the system of di¤erential equations also seems to be
interesting, although prolongation won�t be used here. The crucial point in using this
technique is related to the decision on jet coordinates.
In section 2 through an example equation we outline the method of this paper

and express that the natural way of solving this type of equations requires jet space
machinery. In section 3 we review needed facts from jet space theory. In section 4 it is
the �nite dimension of the applied jet space which helps us to prove the uniqueness.

2 Example Equation

Let x = x(t) be a function of t, A is a known function of x and its derivatives, for
example, A(x) = 2x � x0. To express the method of solution let us consider a �rst
order di¤erential equation

�(r; r0; A) = 2r � r0 �A = 0 (4)

where r = r(x; x0; x00; � � � ) is a function of x and its derivatives and where r0 is stands
for dr=dt. One may note that r as the dependent variable of (4) is a function of t via
x = x(t), and so dr=dt can be evaluated through the following series:

dr

dt
= x0

@r

@x
+ x00

@r

@x0
+ � � � : (5)

It is worth noting that (5) is not an in�nite series, because r is a function of x and
its time derivatives up to a �nite order. To solve this di¤erential equation (4) we use
induction on n (= the highest derivative order of x inside the unknown function r).
For n = 0, r is just a function of x, for n = 1 we have r = r(x; x0), for n = 2 then
r = r(x; x0; x00) and so on.
As case 1, consider n = 0 and so r = r(x) and r0 = x0rx. Then the above equation

� in (4) reduces to 2r � x0rx = 2x� x0 or

(2r � 2x)� x0(rx � 1) = 0 (6)

where rx stands for @r=@x.
We know r in this case is free of x0 i.e. although r is a function of x but it is not

any function of derivatives of x. So the coe¢ cient of x0 in (6) should put to zero. It is
then deduced that rx = 1 and �nally r = x is the solution to (4).
For case 2 we set n = 1 so r = r(x; x0) and r0 = x0rx + x

00rx0 . Then the above
equation � in (4) reduces to

(2r � 2x)� x0(rx � 1)� x00rx0 = 0:

In this case we know that r is free of x00 so we deduce rx0 = 0; and this condition
reduces this case 2 to be continued same as case 1.
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As the �nal case of induction we assume that the procedure for r = r(x; x0(n�1))
reduces to case 1, and try to extend the procedure for the case where we assume r is
a function of x and its time derivatives up to order n, i.e. r = r(x; x0(n)).
Computing r0 = x0rx + x00rx0 + � � �+ x(n+1)rx(n) by (5) and putting inside (4), one

can see easily that assumed r is free of x(n+1) and so the coe¢ cient of x(n+1) in (4),
which is exactly rx(n) , should vanish. But then this case reduces to the previous case
where r was not a function of x(n). By induction hypothesis it �nally reduces to case
n = 0 and we �nd that the only �nite solution to (4) is r(x) = x. This completes our
example and demonstrates the procedure of the paper.

The natural framework to compute total derivatives like (5) is Jet Space theory,
which will be discussed shortly in the next section 3. Then in section 4 we apply the
technique to the beam equation (2).

3 Jet Spaces

Jet spaces are the space of actions of the extended transformations (prolongations)
of group of transformations admitted by a given system S of di¤erential equations.
Consider such a group of transformations as :

x� = X(x; u; �)
u� = U(x; u; �)

(7)

acting on a space of n+m variables

x = (x1; x2; : : : ; xn)
u = (u1; u2; : : : ; um)

where x corresponds to the n independent variables and u corresponds to the m de-
pendent variables appearing in S. Assume that

u = F (x) = (f1(x); f2(x); :::; fm(x))

denotes a solution of S.
Let u

1
denote the set of coordinates corresponding to all �rst order partial derivatives

of u with respect to x:

u
1
=

�
@u1

@x1
;
@u1

@x2
; : : : ;

@u1

@xn
;
@u2

@x1
;
@u2

@x2
; : : : ;

@u2

@xn
; : : : ;

@um

@x1
;
@um

@x2
; : : : ;

@um

@xn

�
;

u
1
has n�m coordinates. In general let u

k
denote the set of coordinates corresponding to

all k-th order partial derivatives of u with respect to x, i.e. u�i1i2���ik =
@ku�

@xi1@xi2 � � � @xik
where ij = 1; : : : ; n, j = 1; : : : ; k, and � = 1; : : : ;m. Note that u

k
hasm�

�
n+ k � 1

k

�
coordinates.
The Lie group of transformations (7) acting on (x; u)-space can now be �naturally"

extended (prolongated) to act on (x; u; u
1
; : : : ; u

k
)-space called k-jet space, [4, 1, 5, 3].
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In a k-jet space, since we regard x, u, u
1
, : : :, and u

k
as coordinates of the space so,

the partial derivatives of them with respect to each other are zero. Using this fact we
de�ne [4, 1] a very well known total derivative operator acting on jet spaces by:

D

Dxj
=

@

@xj
+
X
�

u�j
@

@u�
+
X
i;�

u�ij
@

@u�i
+ � � � (8)

4 Modelling the Beam Equation in a Jet Space

We take a base space of ft; �; g, for this ftg as independent variable and f�; g as
dependent variables. The jet coordinates will be ft; �; ; �0; 0; �00; 00; :::g. To model
the beam equation in this framework, we join the two equations of (2) by solving the
�rst one to s = 1

2 (A � r
02) and insert it in the second one. Then we obtain a single

third order di¤erential equation on r:

2 r000 � 6 r r00 � 7(r02 + 4 (A+ 2 r2)r0 + 2 r A04 � 2Ar2 �A2 � 2A00 + 4B = 0: (9)

Where r as stated earlier is a function of � and  and their derivatives and A, B are
given by (1). By the chosen base space, primes over r should be interpreted as the total
derivatives on the jet space. So we compute total derivatives (8) of r as a function of
jet variables with respect to t. Note that A, B, and r are function of t via �(t) and
(t):

Dr
Dt = �

0r� + 
0r + �

00r�0 + 
00r0 + � � �

D2r
Dt2 = �

00r� + 
00r + �

000r�0 + 
000r0 + � � �

D3r
Dt3 = �

000r� + 
000r + �

(4)r�0 + 
(4)r0 + � � �

(10)

Now we discuss some cases:

Case 1 We assume r = r(�; ). If we calculate (9) and rearrange, we �nd:�
�2� 2 @r

@�

�
�000 +

�
�4� 2 @r

@

�
000 + � � � = 0: (11)

By setting the coe¢ cients of �000 and 000 equal to zero, we �nd that r� = �1 and
r = �2. Considering these conditions in (11), meaning that the other derivatives
of r� and r are zero, we �nd the following equation:

0 = (�r � � � 2) 00 +
�
2r2 + r� � �2 + 2r � 4� � 42

�
0

+

�
1

2
r2 + r� +

1

2
�2 + r + �

�
�0 + � � � : (12)

in this case the coe¢ cient of 00 should be zero, too. By setting r = �� � 2
all the other coe¢ cients also must be zero and the equation ful�lls. This proves
that, as we knew previously,

r = �� � 2 (13)

is a solution to (9).
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Case 2 We assume r = r(�; ; �0; 0). If we calculate (9) and rearrange, we �nd:�
�2 @r
@�0

�
�(4) +

�
�2 @r

@0

�
(4)

+

�
�2� 2 @r

@�
+ 6 r

@r

@�0
� 6�0 @

2r

@@�0
� 6�00 @

2r

@�02
� 600 @2r

@�0@0

�
�000

+

�
�4� 2 @r

@
+ 6r

@r

@0
� 6�0 @

2r

@�@0
� 60 @

2r

@@0
� 6�00 @2r

@�0@0
� 600 @

2r

@02

�
+ � � �

= 0

As we have assumed in this case that r is not a function of �(4) and (4), thus
@r

@�0
= 0 and

@r

@0
= 0. So r is just a function of � and  and we should return to

case 1 to continue.

Case 3 We assume r = r(�; ; �0; 0; � � � ; �(n); (n)); where n � 2. Our goal in this
case is to show that again it returns to the previous case 1 and so selecting
greater n will reveal no other solution. To accomplish this it is su¢ cient to drop
dependency of r on �(n) and (n): To proceed �rst we should �nd which term of
(9) will produce the largest order of derivation:

r000~�(n+3)
@r

@�(n)
+ (n+3)

@r

@(n)
+ � � �

�6rr00~r00~�(n+2) @r

@�(n)
+ (n+2)

@r

@(n)
+ � � �

�7 (r0)2 ~�(n+1)�(n+1) @r

@�(n)
@r

@�(n)
+ �(n+1)(n+1)

@r

@�(n)
@r

@(n)
+ � � �

(14)

Calculations in (14) show that replacing r of this case in (???) will produce �(n+3)

and (n+3) as the greatest derivative. Rearranging (14) will be similar to:

0 = �(n+3)
@r

@�(n)
+ (n+3)

@r

@(n)

+�(r; r� ; r ; r�0 ; r0 ; � � � ; r�(n) ; r�(n) ; �; ; �
0; 0; :::; �(n+2); (n+2)):(15)

In order to make (15) true, as r is a function of jet coordinates up to �(n) and
(n), we see coe¢ cients of �(n+3) and �(n+3) should vanish. This is possible only
when r has no dependency on �(n) and (n):

Summarizing this section, indeed we have proved the following theorem.

THEOREM 1. If r satis�es in the equation (9) and r is a function of � and  and
their derivatives, then the equation (9) has the unique solution r = �� � 2:
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