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Abstract

In this paper we consider a generalization of the first Painlevé differential equa-
tion. We show that all its polynomial solutions can be computed in a systematic
manner.

1 Introduction

Paul Painlevé in his lectures delivered in Stockholm [4] defined the first Painleve dif-
ferential equation as

y'(2) =6y%(2) + 2, z€ C

which is important in several domains of mathematics and physics.

In this paper, we are concerned with one type of generalization of the first Painlevé
differential equation, namely, the following ‘second order algebraic differential equa-
tion’,

P3(2)y" (2) = Pa(2)y*(2) + Pr(2)y(2) + Po(2), 2 € C, (1)

where { Py, Py, P2, P3} is a set of polynomials defined over the complex plane C' such that
P5; and P, are nontrivial. We will set p; = deg P; for i = 0,1,2, 3. In case P; is trivial,
we define deg P; = —o0. As usual, we adopt the convention that max{—oo,p} = p for
any real number p.

We will show that equation (1) has only a finite number of polynomial solutions
and they can be computed in a systematic manner. We remark that such results
are not true for every second order algebraic differential equation. For instance, for

each nonnegative integer, the polynomial y(z) = 2™ satisfies the second order equation
/

zyy” = 2(y')* —yy'.

There are now a lot of information on finding exact solutions of differential equa-
tions. However, the simplest exact solutions are naturally the polynomials. For general
information, see e.g. [3], while for first order algebraic differential equations, one may
consult [1, 2].

*Mathematics Subject Classifications: 34A05
fFaculté Génie Electrique, Département informatique, USTHB, BP32, El Alia, Bab Ezzouar, 16111,
Alger, Algeria.
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2 Main Results

We first write P; = P;(z) with degree p; in the form
Pi(z) = POz 4 P ity 4 PP B, i =0,1,2,3, (2)

where

P #£0,i=2,3.

It is easy to determine the set of all polynomials solutions of (1) with degree less
than or equal to 1. Indeed, we simply substitute y(z) = y12 + yo into (1) and find

Py(2)(y12 + y0)* + Pr(2) (Y12 + %0) + Po(z) =0, z € C.

After expansion, we may find a polynomial in z with coefficients involving algebraic
expressions of yg and y;. Equating each of these expressions to 0 then yield a set of
nonlinear equations in yg and ¥, which can in principle yields all possible solutions of
7o and y1. As an alternate approach, we may also put

O(2) = Pa(2)y* + Pr(2)y + Po(2), z € C,

and
A(z) = P3(z) — 4Py(2)Py(2), z € C.

Then we can write, successively,

v = R (4 )

z g Alz
()]

Hence ®(z) = 0 if, and only if,

O RNEV/NG)

y:

If A(z) # P?(z) for any polynomial P(z), then there cannot be any polynomial solu-
tions with degree < 1. If A(z) = P?(z) for some polynomial P(z), then

_ —Pi(2) & P(z)
- 2P2 (Z)
f %ﬁl;(z) is a polynomial of degree < 1, then (1) admits at
most two polynomial solutions of degree < 1.
As an example, let us consider

and if at least one o

(2 +1)y"(2) =y + (1 —2)y — 222 + 2, z € C,
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and let us try to find its polynomial solutions of degree < 1. If y = y1z + yo, we have
O(2) = 2%y} — 2Py — 227 + 2zyoy1 — 2y0 + 2y + 2 + Y5 + Yo,

so that ®(z) = 0 if, and only if,

y% — Y1 — 2= 0)

2yoy1 — %o + 1 +1=0,

Y3 +y0=0.
From the third equation we see that yg = 0 or yo = —1. In case yy = 0, the second
equation gives y; = —1, and equation one is also satisfied by such a y;. Hence y(z) = —=z.
In the case where yo = —1, the second equation gives y; = 2, and equation one is also

satisfied. Hence y(z) =2z — 1.
If we use the ‘discriminant’ A(z) = (1 — 2)2 — 4(=222 + 2) = (32— 1)?, then
P(z) =3z — 1, and hence

_—h(E)+PE) _ -(1-2)+B2-1)
2P2(Z) 2 !

which is just
y=—zor2z—1
as before.

Next, we seek polynomial solutions with degree > 2. First, note that if y = y(z) is a
polynomial solution of (1) with degree n > 2, then deg (Piyi) = p;+infori=0,1,2 and
deg (Psy"”) = p3 + n — 2. This motivates us to define 4 indices kg, k1, K2, k3 associated
with {Py, Py, Py, Ps}: for each i € {0,1,2,3}, if P, # 0, let k; = k;(n), be defined for
each n € {2,3,...} by

_ _f pitin 1 =0,1,2,
Iﬁ(n){ p3+n_2 i =3.

and we take x;(n) = —oo if P;(z) =0.
We will also set

k(n) = max {ko(n),....k3(n)}, n=2,3,4,....

A necessary condition for the existence polynomial solution of degree greater then
or equal to 2 is as follows.

LEMMA 1. If y = y(z) is a polynomial solution of (1) with degree n > 2, then
there exist ¢,j € {0,1,2,3} such that ¢ < j and

ri(n) = rj(n) > ky(n), Vs € {0,1,2,3}. (3)
PROOF. Let

Y(2) = Yn2" + yn12"" L+ Fy12 + v, Yn # 0, (4)
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be a polynomial solution of (1) with degree n > 2. Then deg (Piy') = r;(n) for i =
0,1,2 and deg (Psy”) = r3(n). Let ¢t be the least positive integer such that k.(n) =
k(n). By substituting y = y(z) into (1), we see that

n(n — )y PO zra 4. = {ygp;§>znz<n>+...}

+{ynp<1)zm<n> : .}+ {p;g)ZHO(n) +}

for z € C. Hence, if ki(n) > k;(n) for j # ¢, then P;f)y; = 0, which is contrary to our
assumption. Thus there is some j > ¢ such that x;(n) = k¢(n) > ks(n). The proof is
complete.

We say that a positive integer n is { Py, Py, P, Ps }-feasible (or feasible if no confusion
is caused) if the indices ko, ..., k3 associated with {Py, Py, Ps, Ps} satisfy (3) for some
t,7 €{0,1,2,3} with t < j.

LEMMA 2. The set of feasible integers are bounded from above.

PROOF. Since

k(j) = max{po,p1 +J,p2+2j,p3+j— 2}
= p2+2j = r2(j) > max {xo(4), k1(5), k3(5)}

for all sufficiently large j, we may let J be the first positive integer such that the above
chain of (equalities and) inequalities hold for all j > J. In view of Lemma 1, a feasible
integer n must be less than J so that n < J — 1. The proof is complete.

Once we have determined an upper bound for n, we may determine the set of
feasible integers by checking whether max {q(n), ..., x3(n)} is attained by at least two
members. Next, let n be such a feasible integer. We will try to look for polynomial
solutions of the form

y(z) = ynz" + W(2), yn #0, (5)

where W(z) = y,_12""1 + -+ + y12 + yo. By substituting y(z) into (1) and then
rearranging the resulting equation, we obtain a polynomial equation

Hm(n)(yn)zn(n) +---= Oa S Ca

where H,(,) is a polynomial in y, with degree < 2. By comparing coefficients, we see
that

Three cases can then occur: (i) H,,) is trivial, (ii) deg H,(,) = 0 but H,,) is non-
trivial, and (iii) deg H () > 1.

The case (ii) is easy to deal with. Indeed, this case leads to a nonzero constant
equals zero. In other words, there is no solution for (6) and hence no polynomial
solution (with degree n) for (1).

If case (iii) holds, we may then find at least one and at most 2 solutions of (6). Let
yn be such a solution, then in view of (6) and

Py(2) (yn2" + W(2))" = Pa(2) (ynz" + W(2))* + Po(2) (yn2" + W(2)) + Po(2),
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we see that W is a polynomial solution of
Py(2)W" = Py(2)W? + G1(2)W + Go(2), 2 € C, (7)

for some polynomials Go, G1, and the degree of W is < n — 1. Since (7) is of the form
(1), we may start a new recursion process by replacing {Py, P1, P», P3} in (1) with
{Go, G1, Py, P3} and looking for polynomial solutions of the form W(z) (with degree
n—1).

The case (i) is more difficult. Let n be a feasible integer. Assume that

Y(2) = yn2" + Yn-12" "+ y1z+yo, 2€C, n =2, Y, £0, (8)
is a polynomial solution of (1). If Hy ) in (6) is trivial, we assert that
k(n) = k3(n) = k1(n) > ry(n), £ =0,2 (9)
and
n(n—1)P® = P, (10)
Indeed, if k(n) = ko(n) > ki(n) for t # 0, then H,(,,)(yn) is equal to P;S(?) plus terms
with higher powers of y,,; if K(n) = k1(n) > k¢(n) for t # 1, then H, () (yn) = p1§11>yn;

and if k(n) = Ka(n) > Ke(n) for t # 2, then H,(,)(yn) = ng)yg. In these cases,

H,(n) is not trivial. There remains the only case where k(n) = s1(n) = x3(n) > K(n)
for ¢ # 0,2. Then H,(,)(yn) = n(n — 1)P1§§)yn — ng)yn, which shows that H,(, is
trivial if and only if n(n — 1)P1§§’) = Pp(ll).
Note that a direct consequence of (9) is that
p3—2=p1, n<pg—p2—2, po<p3+n-—2. (11)
Substituting (8), (2) and

p3—3
P(l)(z) =n(n— 1)P1§§’)zp3_2 + Z Pl-(l)zi
i=0

into (1) and then rearranging the resulting equation, we obtain

n—1
(Z(i(i —1)—n(n - 1))yiP1§§)Zp3+i—2>

=0

P2 n 2 p1—1 n
= (Z Pi(z)zi> <Z yzZL> + <Z Pi(l)zi> (Z yw’)
i=0 i=0 i=0 i=0
p3—1 n P
- (32 Pi(3)zi> (Zz(z - 1)yizi2> + ipz@zi (12)
i=0 =0

=2

for all z € C. By comparing coefficients, we obtain the following system of p3 +n — 2
equations:

[(’I’L- 1)(71—2) _n(n_ 1)]Pp(§))ynfl = Rl(ynvynfl,"'ayhyo),
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[(n - 2)(7?’ - 3) - n(n - 1)]Plg§)yn—2 = R2(yn7 Yn—1,---, Y1, y0)7
(n=—i)(n—i—1)—nn—DIPPyui = Ri(Yn:Yn-1,- Y1 %),
—n(n— 1)P1£§)y1 = Rn—l(ynayn—la"'ﬁyl,yo)’
_n(n_ ]-)Pzgf)y(] = Rn(ynvynfla'”,ylayﬂ)a
W(ynayn—la---aylyyO) = 0,
‘/;)372(yn7yn717"'7y17y0) = 07

where Ry, ..., R, Vi, ..., Vp,—2 are polynomials.

We first show that for each ¢ € {1,2,...,n}, R; is independent of ¥, Yn—i—1, -, Yo,
that is, R; = Ri(Yn, -, Yn—i+x1)- To see this, we need the elementary fact that if
we expand the polynomial (Z?:o yizi)2 into a sum of separate terms, then the term
that contains y;, where ¢t € {0,1,...,n — 1}, and the highest power of z is 2y,y,2z""".
Now suppose to the contrary that there exists an integer ¢ € {0,1,...,n — i} such
that R; depends on y;. Then there are three cases. First, if y; arises from expanding
Py(z) (X0, y7zz)2 , then 2y,y,, P\2) 27+t+P2 is the term with the highest power of z. The
i-th equation of the above system arises from the coefficients of the term zPs+7—i—2
in the equation (12). Since n +t+p2 > ps+n—i—2 and t < n — ¢, we must
have n > ps — p2 — 2, which is contrary to (11). Second, if y; arises from expanding
(Zf;gl Pi(l)zi) (X g yiz') , then Pzgllllytzpl’l+t is the term with the highest power of
z. Again, since p; —14+t > ps+n—i—2 and ¢t < n—i, we must have n—i > n—i+1, which

3—1 n
is impossible. Finally, if y; arises from expanding (p Pi(3)2i> (Z (i — 1)yizi_2> ,
i=0

= i=
then Pzgj)_lt(t — 1)y:2P2 773 is the term with the highest power of z. Since p3 +t —3 >
p3s+n—i—2andt <n—1i wemust have n —i > n — i+ 1, which is impossible. The
proof of our assertion is complete.

We may now rewrite the above system in the form

[(ni 1)(7172) 7”(717 1)]P15§)yn—1 = Rl(yn),
[(n—2)(n—3)—n(n- 1>]P;£§’)yn72 = Ro(Yn>Yn-1),
[(n—i)(n—i—=1)=nn—DIPPy0 i = Ri(Yn,¥n1:Ynit1),
—n(n— 1)P1§§)y1 = Rnfl(ynvyn717--~7y2)7
7n(n71)P;[E§)yO = Ro(YnsYn—1,- Y1),
Vl(yruy7z—17~-~7y1ay0) = 07

Vp372(yn7yn71a"'ay17y0) = 07
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Clearly, we may then express ¥,—_1,Yn—2, ---, Yo recursively in terms of y,, say,
Yi = Frilyn), 1=0,1,..,n—1,
and then substitute them into V1, ..., V,,_2 to obtain
Gi(yn) = Vi s Fr () o Falyn)) = 0, i = 1,2,ccpg — 2. (13)

We assert that the polynomials G1, G, ..., G,,—2 cannot be trivial simultaneously.
Suppose to the contrary that G1,Ga, ..., Gps—2 = 0. Then

Y(2) = yn2" + Fi(yn)2" ™ + -+ Fulyn), 2 € C,
is a solution for any y, € C. Let us write
y(2) = Folyn)2" + Fi(yn)z" "' + -+ Fu(yn), 2z € C,

where Fj is the identity polynomial. Let h; = degF; for ¢ € {0,1,...,n} and h =
max {ho, hi, ..., hn} (which is greater than or equal to 1 because deg Fy = 1). Let
zp € C such that degy(z9) = h and P»(z) # 0 (y(z0) is considered as a polynomial in
Yn)- In view of (12),

n—1
(Z(z(z —1)—n(n-— 1))yip1§§>)zgg+i2>

=0

) () (E) ()

(mz P, )(iz( Dyizi~ >+ZP(O) (14)

=2

for z € C. However, this is impossible since

n—1
deg i(i —1) —n(n— 1)y PP 2T 72 ) < h < 2h,
Pp3

(£ (59 -

p1—1
deg (Z rY > (Z WO) <h<2h

1=0
and
p3—1 n
deg<ZP( ><Z z—1yﬂ2>gh<2h.
— =2

The proof of our assertion is complete.
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We may now summarize the above as follows. If n is feasible, a polynomial solution
of the form (5) is said to be {Fy, P1, P2, P3} degenerate if (6) holds.

LEMMA 3. If a solution y of the form (8) is a {Py, P1, P2, P3} degenerate poly-
nomial, then there exist polynomials Fi,...,F,, such that y; = F,_;(y,) for i =
0,1,..,n — 1, and polynomials Vi,...,V,,—2 such that V;(yn, Fi(yn), ..., Fn(yn)) = 0
for ¢ = 0,1,...,n — 1. Furthermore, the polynomials G1,...,G,,—1 defined by G;(z) =
Vi(z, F1(2), ..., Fy(z)) for i = 1,...,p3 — 2 cannot be simultaneously trivial.

Once we have determined that y of the form (8) is { Py, Py, P2, P3} degenerate, then
as before, we may check if some G; is a trivial constant polynomial. In such as case,
y cannot be a solution of (1). Else, we may let G be the greatest common divisor of
G1,...,Gp,_2. Then y,, equals to one of the roots (if they exist) of G.

We may now summarize our previous discussions as follows.

THEOREM 1. Given polynomials Py, P;, P>, P3; where P3 and P, are not trivial,
the equation (1) has only a finite number of polynomial solutions, and they can be
computed by the method of undetermined coeflicients in a systematic manner.

3 Examples

We illustrate our previous results by means of several examples.
EXAMPLE 1. Consider

(2= 1)y (2) = 22> + (1 +22%)y + 22— 1,2 € C. (15)
If y(z) = y1z + yo is a solution of (15), then
D(z) = 2*'y7 + 22%youn + 22%y1 + 275 + 22%0 + 27 + 2y + w0 — 1,
so that ®(z) = 0 if and only if
yi =0,
2yoy1 +2y1 = 0,
yg 42y +1=0,

y1:07
Yyo— 1=

Since the third and the fifth equations are incompatible, there is no polynomial solution
of degree < 1.
The same conclusion can be seen by considering the ‘discriminant’

A(2) = PE(2) — 4Py (2)Py(2) = (1 4+22%)? —42%(2* —1) =822 + 1

which cannot be expressed as P?(z).
EXAMPLE 2. Consider the equation

(2° = 2%) y"(z) = 229> — (22 + 1)y + 2%, 2 € C. (16)
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Since
Alz) = (22 +1)? = 8222 = —828 + 422 + 42+ 1

is not equal to any polynomial P?(z), we see that (16) has no polynomial solutions of
degree < 1.

The set of feasible integers associated to (16) is {2} and x(2) = 5. Let y(z) =
Y222 + y12 + yo, where yo, y1,y2 € C, be a candidate solution of (16). Since

Hs(y2) = 2yo — 2y5 = 2y2(1 — o)

implies that y2 = 0 or y2 = 1 and since (16) has no polynomial solutions of degree < 1,
we see that y» = 1. We put W (z) = y(z) — 22. Then deg W < 1. Furthermore,

(2° = 22) (W"(2) +2) = 22(W + 2%)% — (22 + 1)(W + 22) + 22,
22:(W 4222 — 22+ D)W +2%) + 27 — (2° = 2°) (2) = W (2:W — 22+ 42° — 1),
(2° = 22) W (2) = 2:W?(2) + (42° — 22 — D)W (2).
But degW < 1. Thus the last equation is equivalent to
2:W2(2) 4 (42 — 22 — )W (z) = 0.
Hence W(z) = 0 or W(z) = —%

and hence y(z) = 2? is the unique polynomial solution of (16).
EXAMPLE 3. Consider the equation

. The latter function is not a polynomial,

Sy (x) = y? + 62y — 25,2 € C. (17)

Here A(z) = (62*)% 4+ 42° = 426 (922 + 1) which is not equal to any square of a
polynomial P(z). Then (17) has no polynomial solutions of degree < 1.

The set of feasible integers associated to (17) is {4,3,2} and k(4) = 8. Let y(z) =
yazt + y32° + yo2? + y12 + yo, where yo,y1, Y2, 93, Y4 € C, be a candidate solution of
(17). Since

Hg(ys) = 6ys — y3 =0,

we see that y4, = 6 or y4 = 0.
Suppose first that y, = 6. We put W(z) = y(z) — 6z*. Then deg W < 3, so that

SW =W? 41822 W — 25, 2 € C. (18)

The set of feasible integers less than or equal to 3 and associated to (18) is {3,2}
and k(3) = 7. Since
Hr(ys) = —12ys = 0,

we see that y3 = 0.
The set of feasible integers less than or equal to 2 and associated to (18) is {2}
and £(2) = 6. Since
Hg(yz) = —16y2 + 1 =0,
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1 1
we see that yo = 6 We put Wa(z) = W(z) — EzQ. Then deg W5 < 1, so that

1 1
SWY = W3+ (1824 + gZQ)Wz + %347 zeC. (19)

We look for polynomial solutions of (19) of degree < 1. By substituting Wa(2) = y12+0
in (19), we obtain the system

18y1 = 0,

18yo + 12% =0,
sy = 0,

3y +yi =0,
2y0y1 = 07

y% =0.

The second and the sixth equations are incompatible, thus there is no polynomial
solution of degree < 1.

Next we consider the case where y;, = 0. The set of feasible integers < 3 and
associated to (17) is {3,2} and k(3) = 7. Since

H7(y3) = 6ys — 6y3 =0,

we are in the degenerate case. We substitute y(z) = y32° + y222 + 912 + yo into (17)
and after expansion, we find

_4y2_y?2>+1:07
—6y1 — 2y2y3 =0,
—6yo — 2193 —y3 =0,
—2yoys — 2y1y2 = 0,

—2yoy2 —yi =0,
2yoy1 = 0,
—y2 = 0.

From the first equation of the above system, we may express y, in terms of ys, then
substituting y, into the second equation, we may express y; in terms of y3, and then
9o in terms of y3. Substituting yy and y; into the other equations, we may then obtain

1
Y2 = i(_yi’% + 1)7
1

m:—ﬁkﬁ+nw

_ 11 4 7 2 1
yg _5@%3 N 1441y3 + 96°
nlg) s LTt s st~ 6
%%F}ﬁ% %%_ﬁ%+@:7
a3(y3) = (3 + 1)938@%3 - W%S +1%3 =0,

qa(y3) = (55595 — 12¥3 + 95)° =

Note that the greatest common divisor ¢ of the polynomials ¢1,q2,q3 and g4 is
Q(Z) = 22 — 1. Thus (y37 Y2,Y1, yO) = (13 07 07 0) and (y3a Y2, Y1, yO) = (_1a 0, 0> 0) are the
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solutions of the above system. Thus y(z) = 2% and y(z) = —23

solutions of (17).

As our final remark, the condition that P5(z) is nontrivial cannot be removed in
Theorem 1. Indeed, there are infinitely many polynomials of the form y(z) = A\23 that
satisfy 229" (2) = 6y(z).

are the only polynomial
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