Polynomial Solutions Of A Generalization Of The First Painlevé Differential Equation*

Djilali Behloul ${ }^{\dagger}$

Received 9 March 2011

Abstract

In this paper we consider a generalization of the first Painleve differential equation. We show that all its polynomial solutions can be computed in a systematic manner.

1 Introduction

Paul Painlevé in his lectures delivered in Stockholm [4] defined the first Painlevé differential equation as

$$
y^{\prime \prime}(z)=6 y^{2}(z)+z, z \in \mathbf{C}
$$

which is important in several domains of mathematics and physics.
In this paper, we are concerned with one type of generalization of the first Painlevé differential equation, namely, the following 'second order algebraic differential equation',

$$
\begin{equation*}
P_{3}(z) y^{\prime \prime}(z)=P_{2}(z) y^{2}(z)+P_{1}(z) y(z)+P_{0}(z), z \in \mathbf{C} \tag{1}
\end{equation*}
$$

where $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ is a set of polynomials defined over the complex plane C such that P_{3} and P_{2} are nontrivial. We will set $p_{i}=\operatorname{deg} P_{i}$ for $i=0,1,2,3$. In case P_{i} is trivial, we define $\operatorname{deg} P_{i}=-\infty$. As usual, we adopt the convention that $\max \{-\infty, p\}=p$ for any real number p.

We will show that equation (1) has only a finite number of polynomial solutions and they can be computed in a systematic manner. We remark that such results are not true for every second order algebraic differential equation. For instance, for each nonnegative integer, the polynomial $y(z)=z^{n}$ satisfies the second order equation $z y y^{\prime \prime}=z\left(y^{\prime}\right)^{2}-y y^{\prime}$.

There are now a lot of information on finding exact solutions of differential equations. However, the simplest exact solutions are naturally the polynomials. For general information, see e.g. [3], while for first order algebraic differential equations, one may consult [1, 2].

[^0]
2 Main Results

We first write $P_{i}=P_{i}(z)$ with degree p_{i} in the form

$$
\begin{equation*}
P_{i}(z)=P_{p_{i}}^{(i)} z^{p_{i}}+P_{p_{i}-1}^{(i)} z^{p_{i}-1}+\cdots+P_{1}^{(i)} z+P_{0}^{(i)}, \quad i=0,1,2,3 \tag{2}
\end{equation*}
$$

where

$$
P_{p_{i}}^{(i)} \neq 0, i=2,3 .
$$

It is easy to determine the set of all polynomials solutions of (1) with degree less than or equal to 1 . Indeed, we simply substitute $y(z)=y_{1} z+y_{0}$ into (1) and find

$$
P_{2}(z)\left(y_{1} z+y_{0}\right)^{2}+P_{1}(z)\left(y_{1} z+y_{0}\right)+P_{0}(z)=0, z \in \mathbf{C}
$$

After expansion, we may find a polynomial in z with coefficients involving algebraic expressions of y_{0} and y_{1}. Equating each of these expressions to 0 then yield a set of nonlinear equations in y_{0} and y_{1}, which can in principle yields all possible solutions of y_{0} and y_{1}. As an alternate approach, we may also put

$$
\Phi(z)=P_{2}(z) y^{2}+P_{1}(z) y+P_{0}(z), z \in \mathbf{C}
$$

and

$$
\Delta(z)=P_{1}^{2}(z)-4 P_{2}(z) P_{0}(z), \quad z \in \mathbf{C}
$$

Then we can write, successively,

$$
\begin{aligned}
\Phi(z) & =P_{2}(z)\left(y^{2}+\frac{P_{1}(z)}{P_{2}(z)} y+\frac{P_{0}(z)}{P_{2}(z)}\right) \\
& =P_{2}(z)\left(\left(y+\frac{P_{1}(z)}{2 P_{2}(z)}\right)^{2}-\frac{\Delta(z)}{4 P_{2}^{2}(z)}\right)
\end{aligned}
$$

Hence $\Phi(z)=0$ if, and only if,

$$
y=-\frac{P_{1}(z)}{2 P_{2}(z)}+\frac{ \pm \sqrt{\Delta(z)}}{2 P_{2}(z)}
$$

If $\Delta(z) \neq P^{2}(z)$ for any polynomial $P(z)$, then there cannot be any polynomial solutions with degree ≤ 1. If $\Delta(z)=P^{2}(z)$ for some polynomial $P(z)$, then

$$
y=\frac{-P_{1}(z) \pm P(z)}{2 P_{2}(z)}
$$

and if at least one of $\frac{-P_{1}(z) \pm P(z)}{2 P_{2}(z)}$ is a polynomial of degree ≤ 1, then (1) admits at most two polynomial solutions of degree ≤ 1.

As an example, let us consider

$$
\left(z^{2}+1\right) y^{\prime \prime}(z)=y^{2}+(1-z) y-2 z^{2}+z, z \in \mathbf{C}
$$

and let us try to find its polynomial solutions of degree ≤ 1. If $y=y_{1} z+y_{0}$, we have

$$
\Phi(z)=z^{2} y_{1}^{2}-z^{2} y_{1}-2 z^{2}+2 z y_{0} y_{1}-z y_{0}+z y_{1}+z+y_{0}^{2}+y_{0}
$$

so that $\Phi(z)=0$ if, and only if,

$$
\left\{\begin{aligned}
y_{1}^{2}-y_{1}-2 & =0 \\
2 y_{0} y_{1}-y_{0}+y_{1}+1 & =0 \\
y_{0}^{2}+y_{0} & =0
\end{aligned}\right.
$$

From the third equation we see that $y_{0}=0$ or $y_{0}=-1$. In case $y_{0}=0$, the second equation gives $y_{1}=-1$, and equation one is also satisfied by such a y_{1}. Hence $y(z)=-z$. In the case where $y_{0}=-1$, the second equation gives $y_{1}=2$, and equation one is also satisfied. Hence $y(z)=2 z-1$.

If we use the 'discriminant' $\Delta(z)=(1-z)^{2}-4\left(-2 z^{2}+z\right)=(3 z-1)^{2}$, then $P(z)=3 z-1$, and hence

$$
y=\frac{-P_{1}(z) \pm P(z)}{2 P_{2}(z)}=\frac{-(1-z) \pm(3 z-1)}{2}
$$

which is just

$$
y=-z \text { or } 2 z-1
$$

as before.
Next, we seek polynomial solutions with degree ≥ 2. First, note that if $y=y(z)$ is a polynomial solution of (1) with degree $n \geq 2$, then $\operatorname{deg}\left(P_{i} y^{i}\right)=p_{i}+i n$ for $i=0,1,2$ and $\operatorname{deg}\left(P_{3} y^{\prime \prime}\right)=p_{3}+n-2$. This motivates us to define 4 indices $\kappa_{0}, \kappa_{1}, \kappa_{2}, \kappa_{3}$ associated with $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$: for each $i \in\{0,1,2,3\}$, if $P_{i} \neq 0$, let $\kappa_{i}=\kappa_{i}(n)$, be defined for each $n \in\{2,3, \ldots\}$ by

$$
\kappa_{i}(n)= \begin{cases}p_{i}+i n & i=0,1,2 \\ p_{3}+n-2 & i=3\end{cases}
$$

and we take $\kappa_{i}(n)=-\infty$ if $P_{i}(z) \equiv 0$.
We will also set

$$
\kappa(n)=\max \left\{\kappa_{0}(n), \ldots, \kappa_{3}(n)\right\}, n=2,3,4, \ldots
$$

A necessary condition for the existence polynomial solution of degree greater then or equal to 2 is as follows.

LEMMA 1. If $y=y(z)$ is a polynomial solution of (1) with degree $n \geq 2$, then there exist $t, j \in\{0,1,2,3\}$ such that $t<j$ and

$$
\begin{equation*}
\kappa_{t}(n)=\kappa_{j}(n) \geq \kappa_{s}(n), \forall s \in\{0,1,2,3\} \tag{3}
\end{equation*}
$$

PROOF. Let

$$
\begin{equation*}
y(z)=y_{n} z^{n}+y_{n-1} z^{n-1}+\cdots+y_{1} z+y_{0}, y_{n} \neq 0 \tag{4}
\end{equation*}
$$

be a polynomial solution of (1) with degree $n \geq 2$. Then $\operatorname{deg}\left(P_{i} y^{i}\right)=\kappa_{i}(n)$ for $i=$ $0,1,2$ and $\operatorname{deg}\left(P_{3} y^{\prime \prime}\right)=\kappa_{3}(n)$. Let t be the least positive integer such that $\kappa_{t}(n)=$ $\kappa(n)$. By substituting $y=y(z)$ into (1), we see that

$$
\begin{aligned}
n(n-1) y_{n} P_{p_{3}}^{(3)} z^{\kappa_{3}(n)}+\cdots= & \left\{y_{n}^{2} P_{p_{2}}^{(2)} z^{\kappa_{2}(n)}+\cdots\right\} \\
& +\left\{y_{n} P_{p_{1}}^{(1)} z^{\kappa_{1}(n)}+\cdots\right\}+\left\{P_{p_{0}}^{(0)} z^{\kappa_{0}(n)}+\cdots\right\}
\end{aligned}
$$

for $z \in \mathbf{C}$. Hence, if $\kappa_{t}(n)>\kappa_{j}(n)$ for $j \neq t$, then $P_{p_{t}}^{(t)} y_{n}^{t}=0$, which is contrary to our assumption. Thus there is some $j>t$ such that $\kappa_{j}(n)=\kappa_{t}(n) \geq \kappa_{s}(n)$. The proof is complete.

We say that a positive integer n is $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$-feasible (or feasible if no confusion is caused) if the indices $\kappa_{0}, \ldots, \kappa_{3}$ associated with $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ satisfy (3) for some $t, j \in\{0,1,2,3\}$ with $t<j$.

LEMMA 2. The set of feasible integers are bounded from above.
PROOF. Since

$$
\begin{aligned}
\kappa(j) & =\max \left\{p_{0}, p_{1}+j, p_{2}+2 j, p_{3}+j-2\right\} \\
& =p_{2}+2 j=\kappa_{2}(j)>\max \left\{\kappa_{0}(j), \kappa_{1}(j), \kappa_{3}(j)\right\}
\end{aligned}
$$

for all sufficiently large j, we may let J be the first positive integer such that the above chain of (equalities and) inequalities hold for all $j \geq J$. In view of Lemma 1 , a feasible integer n must be less than J so that $n \leq J-1$. The proof is complete.

Once we have determined an upper bound for n, we may determine the set of feasible integers by checking whether $\max \left\{\kappa_{0}(n), \ldots, \kappa_{3}(n)\right\}$ is attained by at least two members. Next, let n be such a feasible integer. We will try to look for polynomial solutions of the form

$$
\begin{equation*}
y(z)=y_{n} z^{n}+W(z), y_{n} \neq 0 \tag{5}
\end{equation*}
$$

where $W(z)=y_{n-1} z^{n-1}+\cdots+y_{1} z+y_{0}$. By substituting $y(z)$ into (1) and then rearranging the resulting equation, we obtain a polynomial equation

$$
H_{\kappa(n)}\left(y_{n}\right) z^{\kappa(n)}+\cdots=0, z \in \mathbf{C}
$$

where $H_{\kappa(n)}$ is a polynomial in y_{n} with degree ≤ 2. By comparing coefficients, we see that

$$
\begin{equation*}
H_{\kappa(n)}\left(y_{n}\right)=0 \tag{6}
\end{equation*}
$$

Three cases can then occur: (i) $H_{\kappa(n)}$ is trivial, (ii) $\operatorname{deg} H_{\kappa(n)}=0$ but $H_{\kappa(n)}$ is nontrivial, and (iii) $\operatorname{deg} H_{\kappa(n)} \geq 1$.

The case (ii) is easy to deal with. Indeed, this case leads to a nonzero constant equals zero. In other words, there is no solution for (6) and hence no polynomial solution (with degree n) for (1).

If case (iii) holds, we may then find at least one and at most 2 solutions of (6). Let y_{n} be such a solution, then in view of (6) and

$$
P_{3}(z)\left(y_{n} z^{n}+W(z)\right)^{\prime \prime}=P_{2}(z)\left(y_{n} z^{n}+W(z)\right)^{2}+P_{1}(z)\left(y_{n} z^{n}+W(z)\right)+P_{0}(z)
$$

we see that W is a polynomial solution of

$$
\begin{equation*}
P_{3}(z) W^{\prime \prime}=P_{2}(z) W^{2}+G_{1}(z) W+G_{0}(z), z \in \mathbf{C} \tag{7}
\end{equation*}
$$

for some polynomials G_{0}, G_{1}, and the degree of W is $\leq n-1$. Since (7) is of the form (1), we may start a new recursion process by replacing $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ in (1) with $\left\{G_{0}, G_{1}, P_{2}, P_{3}\right\}$ and looking for polynomial solutions of the form $W(z)$ (with degree $n-1$).

The case (i) is more difficult. Let n be a feasible integer. Assume that

$$
\begin{equation*}
y(z)=y_{n} z^{n}+y_{n-1} z^{n-1}+\cdots+y_{1} z+y_{0}, z \in \mathbf{C}, n \geq 2, y_{n} \neq 0 \tag{8}
\end{equation*}
$$

is a polynomial solution of (1). If $H_{\kappa(n)}$ in (6) is trivial, we assert that

$$
\begin{equation*}
\kappa(n)=\kappa_{3}(n)=\kappa_{1}(n)>\kappa_{t}(n), t=0,2 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
n(n-1) P_{p_{3}}^{(3)}=P_{p_{1}}^{(1)} \tag{10}
\end{equation*}
$$

Indeed, if $\kappa(n)=\kappa_{0}(n)>\kappa_{t}(n)$ for $t \neq 0$, then $H_{\kappa(n)}\left(y_{n}\right)$ is equal to $P_{p_{0}}^{(0)}$ plus terms with higher powers of y_{n}; if $\kappa(n)=\kappa_{1}(n)>\kappa_{t}(n)$ for $t \neq 1$, then $H_{\kappa(n)}\left(y_{n}\right)=P_{p_{1}}^{(1)} y_{n}$; and if $\kappa(n)=\kappa_{2}(n)>\kappa_{t}(n)$ for $t \neq 2$, then $H_{\kappa(n)}\left(y_{n}\right)=P_{p_{2}}^{(2)} y_{n}^{2}$. In these cases, $H_{\kappa(n)}$ is not trivial. There remains the only case where $\kappa(n)=\kappa_{1}(n)=\kappa_{3}(n)>\kappa_{t}(n)$ for $t \neq 0,2$. Then $H_{\kappa(n)}\left(y_{n}\right)=n(n-1) P_{p_{3}}^{(3)} y_{n}-P_{p_{1}}^{(1)} y_{n}$, which shows that $H_{\kappa(n)}$ is trivial if and only if $n(n-1) P_{p_{3}}^{(3)}=P_{p_{1}}^{(1)}$.

Note that a direct consequence of (9) is that

$$
\begin{equation*}
p_{3}-2=p_{1}, n<p_{3}-p_{2}-2, p_{0}<p_{3}+n-2 \tag{11}
\end{equation*}
$$

Substituting (8), (2) and

$$
P^{(1)}(z)=n(n-1) P_{p_{3}}^{(3)} z^{p_{3}-2}+\sum_{i=0}^{p_{3}-3} P_{i}^{(1)} z^{i}
$$

into (1) and then rearranging the resulting equation, we obtain

$$
\begin{align*}
& \left(\sum_{i=0}^{n-1}(i(i-1)-n(n-1)) y_{i} P_{p_{3}}^{(3)} z^{p_{3}+i-2}\right) \\
= & \left(\sum_{i=0}^{p_{2}} P_{i}^{(2)} z^{i}\right)\left(\sum_{i=0}^{n} y_{i} z^{i}\right)^{2}+\left(\sum_{i=0}^{p_{1}-1} P_{i}^{(1)} z^{i}\right)\left(\sum_{i=0}^{n} y_{i} z^{i}\right) \\
& -\left(\sum_{i=0}^{p_{3}-1} P_{i}^{(3)} z^{i}\right)\left(\sum_{i=2}^{n} i(i-1) y_{i} z^{i-2}\right)+\sum_{i=0}^{p_{0}} P_{i}^{(0)} z^{i} \tag{12}
\end{align*}
$$

for all $z \in \mathbf{C}$. By comparing coefficients, we obtain the following system of $p_{3}+n-2$ equations:

$$
[(n-1)(n-2)-n(n-1)] P_{p_{3}}^{(3)} y_{n-1}=R_{1}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right)
$$

$$
\begin{aligned}
{[(n-2)(n-3)-n(n-1)] P_{p_{3}}^{(3)} y_{n-2} } & =R_{2}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right) \\
\cdots & =\cdots \\
{[(n-i)(n-i-1)-n(n-1)] P_{p_{3}}^{(3)} y_{n-i} } & =R_{i}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right), \\
\cdots & =\cdots \\
-n(n-1) P_{p_{3}}^{(3)} y_{1} & =R_{n-1}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right), \\
-n(n-1) P_{p_{3}}^{(3)} y_{0} & =R_{n}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right) \\
V_{1}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right) & =0 \\
\cdots & =\cdots \\
V_{p_{3}-2}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right) & =0
\end{aligned}
$$

where $R_{1}, \ldots, R_{n}, V_{1}, \ldots, V_{p_{3}-2}$ are polynomials.
We first show that for each $i \in\{1,2, \ldots, n\}, R_{i}$ is independent of $y_{n-i}, y_{n-i-1}, \ldots, y_{0}$, that is, $R_{i}=R_{i}\left(y_{n}, \ldots, y_{n-i+1}\right)$. To see this, we need the elementary fact that if we expand the polynomial $\left(\sum_{i=0}^{n} y_{i} z^{i}\right)^{2}$ into a sum of separate terms, then the term that contains y_{t}, where $t \in\{0,1, \ldots, n-1\}$, and the highest power of z is $2 y_{t} y_{n} z^{n+t}$. Now suppose to the contrary that there exists an integer $t \in\{0,1, \ldots, n-i\}$ such that R_{i} depends on y_{t}. Then there are three cases. First, if y_{t} arises from expanding $P_{2}(z)\left(\sum_{i=0}^{n} y_{i} z^{i}\right)^{2}$, then $2 y_{t} y_{n} P_{p_{2}}^{(2)} z^{n+t+p_{2}}$ is the term with the highest power of z. The i-th equation of the above system arises from the coefficients of the term $z^{p_{3}+n-i-2}$ in the equation (12). Since $n+t+p_{2} \geq p_{3}+n-i-2$ and $t \leq n-i$, we must have $n \geq p_{3}-p_{2}-2$, which is contrary to (11). Second, if y_{t} arises from expanding $\left(\sum_{i=0}^{p_{1}-1} P_{i}^{(1)} z^{i}\right)\left(\sum_{i=0}^{n} y_{i} z^{i}\right)$, then $P_{p_{1}-1}^{(1)} y_{t} z^{p_{1}-1+t}$ is the term with the highest power of z. Again, since $p_{1}-1+t \geq p_{3}+n-i-2$ and $t \leq n-i$, we must have $n-i \geq n-i+1$, which is impossible. Finally, if y_{t} arises from expanding $\left(\sum_{i=0}^{p_{3}-1} P_{i}^{(3)} z^{i}\right)\left(\sum_{i=2}^{n} i(i-1) y_{i} z^{i-2}\right)$, then $P_{p_{3}-1}^{(3)} t(t-1) y_{t} z^{p_{3}+t-3}$ is the term with the highest power of z. Since $p_{3}+t-3 \geq$ $p_{3}+n-i-2$ and $t \leq n-i$, we must have $n-i \geq n-i+1$, which is impossible. The proof of our assertion is complete.

We may now rewrite the above system in the form

$$
\begin{aligned}
{[(n-1)(n-2)-n(n-1)] P_{p_{3}}^{(3)} y_{n-1} } & =R_{1}\left(y_{n}\right), \\
{[(n-2)(n-3)-n(n-1)] P_{p_{3}}^{(3)} y_{n-2} } & =R_{2}\left(y_{n}, y_{n-1}\right), \\
\cdots & =\cdots \\
{[(n-i)(n-i-1)-n(n-1)] P_{p_{3}}^{(3)} y_{n-i} } & =R_{i}\left(y_{n}, y_{n-1}, \ldots, y_{n-i+1}\right), \\
\cdots & =\cdots \\
-n(n-1) P_{p_{3}}^{(3)} y_{1} & =R_{n-1}\left(y_{n}, y_{n-1}, \ldots, y_{2}\right), \\
-n(n-1) P_{p_{3}}^{(3)} y_{0} & =R_{n}\left(y_{n}, y_{n-1}, \ldots, y_{1}\right), \\
V_{1}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right) & =0, \\
\cdots & =\cdots, \\
V_{p_{3}-2}\left(y_{n}, y_{n-1}, \ldots, y_{1}, y_{0}\right) & =0,
\end{aligned}
$$

Clearly, we may then express $y_{n-1}, y_{n-2}, \ldots, y_{0}$ recursively in terms of y_{n}, say,

$$
y_{i}=F_{n-i}\left(y_{n}\right), i=0,1, \ldots, n-1
$$

and then substitute them into $V_{1}, \ldots, V_{p_{3}-2}$ to obtain

$$
\begin{equation*}
G_{i}\left(y_{n}\right)=V_{i}\left(y_{n}, F_{1}\left(y_{n}\right), \ldots, F_{n}\left(y_{n}\right)\right)=0, i=1,2, \ldots, p_{3}-2 \tag{13}
\end{equation*}
$$

We assert that the polynomials $G_{1}, G_{2}, \ldots, G_{p_{3}-2}$ cannot be trivial simultaneously. Suppose to the contrary that $G_{1}, G_{2}, \ldots, G_{p_{3}-2} \equiv 0$. Then

$$
y(z)=y_{n} z^{n}+F_{1}\left(y_{n}\right) z^{n-1}+\cdots+F_{n}\left(y_{n}\right), z \in \mathbf{C}
$$

is a solution for any $y_{n} \in \mathbf{C}$. Let us write

$$
y(z)=F_{0}\left(y_{n}\right) z^{n}+F_{1}\left(y_{n}\right) z^{n-1}+\cdots+F_{n}\left(y_{n}\right), z \in \mathbf{C}
$$

where F_{0} is the identity polynomial. Let $h_{i}=\operatorname{deg} F_{i}$ for $i \in\{0,1, \ldots, n\}$ and $h=$ $\max \left\{h_{0}, h_{1}, \ldots, h_{n}\right\}$ (which is greater than or equal to 1 because $\operatorname{deg} F_{0}=1$). Let $z_{0} \in \mathbf{C}$ such that $\operatorname{deg} y\left(z_{0}\right)=h$ and $P_{2}(z) \neq 0\left(y\left(z_{0}\right)\right.$ is considered as a polynomial in $\left.y_{n}\right)$. In view of (12),

$$
\begin{align*}
& \left(\sum_{i=0}^{n-1}(i(i-1)-n(n-1)) y_{i} P_{p_{3}}^{(3)} z_{0}^{p_{3}+i-2}\right) \\
= & \left(\sum_{i=0}^{p_{2}} P_{i}^{(2)} z_{0}^{i}\right)\left(\sum_{i=0}^{n} y_{i} z_{0}^{i}\right)^{2}+\left(\sum_{i=0}^{p_{1}-1} P_{i}^{(1)} z_{0}^{i}\right)\left(\sum_{i=0}^{n} y_{i} z_{0}^{i}\right) \\
& -\left(\sum_{i=0}^{p_{3}-1} P_{i}^{(3)} z_{0}^{i}\right)\left(\sum_{i=2}^{n} i(i-1) y_{i} z_{0}^{i-2}\right)+\sum_{i=0}^{p_{0}} P_{i}^{(0)} z_{0}^{i} \tag{14}
\end{align*}
$$

for $z \in \mathbf{C}$. However, this is impossible since

$$
\begin{gathered}
\operatorname{deg}\left(\sum_{i=0}^{n-1}(i(i-1)-n(n-1)) y_{i} P_{p_{3}}^{(3)} z_{0}^{p_{3}+i-2}\right) \leq h<2 h \\
\operatorname{deg}\left(\sum_{i=0}^{p_{2}} P_{i}^{(2)} z_{0}^{i}\right)\left(\sum_{i=0}^{n} y_{i} z_{0}^{i}\right)^{2}=2 h \\
\operatorname{deg}\left(\sum_{i=0}^{p_{1}-1} P_{i}^{(1)} z_{0}^{i}\right)\left(\sum_{i=0}^{n} y_{i} z_{0}^{i}\right) \leq h<2 h
\end{gathered}
$$

and

$$
\operatorname{deg}\left(\sum_{i=0}^{p_{3}-1} P_{i}^{(3)} z_{0}^{i}\right)\left(\sum_{i=2}^{n} i(i-1) y_{i} z_{0}^{i-2}\right) \leq h<2 h
$$

The proof of our assertion is complete.

We may now summarize the above as follows. If n is feasible, a polynomial solution of the form (5) is said to be $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ degenerate if (6) holds.

LEMMA 3. If a solution y of the form (8) is a $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ degenerate polynomial, then there exist polynomials F_{1}, \ldots, F_{n} such that $y_{i}=F_{n-i}\left(y_{n}\right)$ for $i=$ $0,1, \ldots, n-1$, and polynomials $V_{1}, \ldots, V_{p_{3}-2}$ such that $V_{i}\left(y_{n}, F_{1}\left(y_{n}\right), \ldots, F_{n}\left(y_{n}\right)\right)=0$ for $i=0,1, \ldots, n-1$. Furthermore, the polynomials $G_{1}, \ldots, G_{p_{m}-1}$ defined by $G_{i}(z)=$ $V_{i}\left(z, F_{1}(z), \ldots, F_{n}(z)\right)$ for $i=1, \ldots, p_{3}-2$ cannot be simultaneously trivial.

Once we have determined that y of the form (8) is $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ degenerate, then as before, we may check if some G_{i} is a trivial constant polynomial. In such as case, y cannot be a solution of (1). Else, we may let G be the greatest common divisor of $G_{1}, \ldots, G_{p_{3}-2}$. Then y_{n} equals to one of the roots (if they exist) of G.

We may now summarize our previous discussions as follows.
THEOREM 1. Given polynomials $P_{0}, P_{1}, P_{2}, P_{3}$ where P_{3} and P_{2} are not trivial, the equation (1) has only a finite number of polynomial solutions, and they can be computed by the method of undetermined coefficients in a systematic manner.

3 Examples

We illustrate our previous results by means of several examples.
EXAMPLE 1. Consider

$$
\begin{equation*}
\left(z^{2}-1\right) y^{\prime \prime}(z)=z^{2} y^{2}+\left(1+2 z^{2}\right) y+z^{2}-1, z \in \mathbf{C} . \tag{15}
\end{equation*}
$$

If $y(z)=y_{1} z+y_{0}$ is a solution of (15), then

$$
\Phi(z)=z^{4} y_{1}^{2}+2 z^{3} y_{0} y_{1}+2 z^{3} y_{1}+z^{2} y_{0}^{2}+2 z^{2} y_{0}+z^{2}+z y_{1}+y_{0}-1
$$

so that $\Phi(z)=0$ if and only if

$$
\left\{\begin{aligned}
y_{1}^{2} & =0 \\
2 y_{0} y_{1}+2 y_{1} & =0 \\
y_{0}^{2}+2 y_{0}+1 & =0 \\
y_{1} & =0 \\
y_{0}-1 & =0
\end{aligned}\right.
$$

Since the third and the fifth equations are incompatible, there is no polynomial solution of degree ≤ 1.

The same conclusion can be seen by considering the 'discriminant'

$$
\Delta(z)=P_{1}^{2}(z)-4 P_{2}(z) P_{0}(z)=\left(1+2 z^{2}\right)^{2}-4 z^{2}\left(z^{2}-1\right)=8 z^{2}+1
$$

which cannot be expressed as $P^{2}(z)$.
EXAMPLE 2. Consider the equation

$$
\begin{equation*}
\left(z^{5}-z^{3}\right) y^{\prime \prime}(x)=2 z y^{2}-(2 z+1) y+z^{2}, z \in \mathbf{C} \tag{16}
\end{equation*}
$$

Since

$$
\Delta(z)=(2 z+1)^{2}-8 z z^{2}=-8 z^{3}+4 z^{2}+4 z+1
$$

is not equal to any polynomial $P^{2}(z)$, we see that (16) has no polynomial solutions of degree ≤ 1.

The set of feasible integers associated to (16) is $\{2\}$ and $\kappa(2)=5$. Let $y(z)=$ $y_{2} z^{2}+y_{1} z+y_{0}$, where $y_{0}, y_{1}, y_{2} \in \mathbf{C}$, be a candidate solution of (16). Since

$$
H_{5}\left(y_{2}\right)=2 y_{2}-2 y_{2}^{2}=2 y_{2}\left(1-y_{2}\right)
$$

implies that $y_{2}=0$ or $y_{2}=1$ and since (16) has no polynomial solutions of degree ≤ 1, we see that $y_{2}=1$. We put $W(z)=y(z)-z^{2}$. Then $\operatorname{deg} W \leq 1$. Furthermore,

$$
\begin{gathered}
\left(z^{5}-z^{3}\right)\left(W^{\prime \prime}(z)+2\right)=2 z\left(W+z^{2}\right)^{2}-(2 z+1)\left(W+z^{2}\right)+z^{2} \\
2 z\left(W+z^{2}\right)^{2}-(2 z+1)\left(W+z^{2}\right)+z^{2}-\left(z^{5}-z^{3}\right)(2)=W\left(2 z W-2 z+4 z^{3}-1\right) \\
\left(z^{5}-z^{3}\right) W^{\prime \prime}(z)=2 z W^{2}(z)+\left(4 z^{3}-2 z-1\right) W(z)
\end{gathered}
$$

But $\operatorname{deg} W \leq 1$. Thus the last equation is equivalent to

$$
2 z W^{2}(z)+\left(4 z^{3}-2 z-1\right) W(z)=0
$$

Hence $W(z)=0$ or $W(z)=-\frac{4 z^{3}-2 z-1}{2 z}$. The latter function is not a polynomial, and hence $y(z)=z^{2}$ is the unique polynomial solution of (16).

EXAMPLE 3. Consider the equation

$$
\begin{equation*}
z^{6} y^{\prime \prime}(x)=y^{2}+6 z^{4} y-z^{6}, z \in \mathbf{C} \tag{17}
\end{equation*}
$$

Here $\Delta(z)=\left(6 z^{4}\right)^{2}+4 z^{6}=4 z^{6}\left(9 z^{2}+1\right)$ which is not equal to any square of a polynomial $P(z)$. Then (17) has no polynomial solutions of degree ≤ 1.

The set of feasible integers associated to (17) is $\{4,3,2\}$ and $\kappa(4)=8$. Let $y(z)=$ $y_{4} z^{4}+y_{3} z^{3}+y_{2} z^{2}+y_{1} z+y_{0}$, where $y_{0}, y_{1}, y_{2}, y_{3}, y_{4} \in \mathbf{C}$, be a candidate solution of (17). Since

$$
H_{8}\left(y_{4}\right)=6 y_{4}-y_{4}^{2}=0
$$

we see that $y_{4}=6$ or $y_{4}=0$.
Suppose first that $y_{4}=6$. We put $W(z)=y(z)-6 z^{4}$. Then $\operatorname{deg} W \leq 3$, so that

$$
\begin{equation*}
z^{6} W^{\prime \prime}=W^{2}+18 z^{4} W-z^{6}, z \in \mathbf{C} \tag{18}
\end{equation*}
$$

The set of feasible integers less than or equal to 3 and associated to (18) is $\{3,2\}$ and $\kappa(3)=7$. Since

$$
H_{7}\left(y_{3}\right)=-12 y_{3}=0
$$

we see that $y_{3}=0$.
The set of feasible integers less than or equal to 2 and associated to (18) is $\{2\}$ and $\kappa(2)=6$. Since

$$
H_{6}\left(y_{2}\right)=-16 y_{2}+1=0
$$

we see that $y_{2}=\frac{1}{16}$. We put $W_{2}(z)=W(z)-\frac{1}{16} z^{2}$. Then $\operatorname{deg} W_{2} \leq 1$, so that

$$
\begin{equation*}
z^{6} W_{2}^{\prime \prime}=W_{2}^{2}+\left(18 z^{4}+\frac{1}{8} z^{2}\right) W_{2}+\frac{1}{256} z^{4}, z \in \mathbf{C} \tag{19}
\end{equation*}
$$

We look for polynomial solutions of (19) of degree ≤ 1. By substituting $W_{2}(z)=y_{1} z+y_{0}$ in (19), we obtain the system

$$
\left\{\begin{aligned}
18 y_{1} & =0 \\
18 y_{0}+\frac{1}{256} & =0 \\
\frac{1}{8} y_{1} & =0 \\
\frac{1}{8} y_{0}+y_{1}^{2} & =0 \\
2 y_{0} y_{1} & =0 \\
y_{0}^{2} & =0
\end{aligned}\right.
$$

The second and the sixth equations are incompatible, thus there is no polynomial solution of degree ≤ 1.

Next we consider the case where $y_{4}=0$. The set of feasible integers ≤ 3 and associated to (17) is $\{3,2\}$ and $\kappa(3)=7$. Since

$$
H_{7}\left(y_{3}\right)=6 y_{3}-6 y_{3} \equiv 0,
$$

we are in the degenerate case. We substitute $y(z)=y_{3} z^{3}+y_{2} z^{2}+y_{1} z+y_{0}$ into (17) and after expansion, we find

$$
\left\{\begin{aligned}
-4 y_{2}-y_{3}^{2}+1 & =0 \\
-6 y_{1}-2 y_{2} y_{3} & =0 \\
-6 y_{0}-2 y_{1} y_{3}-y_{2}^{2} & =0 \\
-2 y_{0} y_{3}-2 y_{1} y_{2} & =0 \\
-2 y_{0} y_{2}-y_{1}^{2} & =0 \\
2 y_{0} y_{1} & =0 \\
-y_{0}^{2} & =0
\end{aligned}\right.
$$

From the first equation of the above system, we may express y_{2} in terms of y_{3}, then substituting y_{2} into the second equation, we may express y_{1} in terms of y_{3}, and then y_{0} in terms of y_{3}. Substituting y_{0} and y_{1} into the other equations, we may then obtain

$$
\left\{\begin{array}{r}
y_{2}=\frac{1}{4}\left(-y_{3}^{2}+1\right), \\
y_{1}=-\frac{1}{12}\left(-y_{3}^{2}+1\right) y_{3} \\
y_{0}=\frac{11}{288} y_{3}^{4}-\frac{7}{144} y_{3}^{2}+\frac{1}{96}, \\
q_{1}\left(y_{3}\right)=-\frac{5}{144} y_{3}^{5}+\frac{1}{72} y_{3}^{3}+\frac{1}{48} y_{3}=0 \\
q_{2}\left(y_{3}\right)=-\frac{7}{576} y_{3}^{6}+\frac{17}{577} y_{3}^{4}-\frac{13}{576} y_{3}^{2}+\frac{1}{192}=0 \\
q_{3}\left(y_{3}\right)=\left(-y_{3}^{2}+1\right) y_{3}\left(\frac{11}{288} y_{3}^{4}-\frac{7}{144} y_{3}^{2}+\frac{1}{96}\right)=0 \\
q_{4}\left(y_{3}\right)=\left(\frac{11}{288} y_{3}^{4}-\frac{7}{144} y_{3}^{2}+\frac{1}{96}\right)^{2}=0
\end{array}\right.
$$

Note that the greatest common divisor q of the polynomials q_{1}, q_{2}, q_{3} and q_{4} is $q(z)=z^{2}-1$. Thus $\left(y_{3}, y_{2}, y_{1}, y_{0}\right)=(1,0,0,0)$ and $\left(y_{3}, y_{2}, y_{1}, y_{0}\right)=(-1,0,0,0)$ are the
solutions of the above system. Thus $y(z)=z^{3}$ and $y(z)=-z^{3}$ are the only polynomial solutions of (17).

As our final remark, the condition that $P_{2}(z)$ is nontrivial cannot be removed in Theorem 1. Indeed, there are infinitely many polynomials of the form $y(z)=\lambda z^{3}$ that satisfy $z^{2} y^{\prime \prime}(z)=6 y(z)$.

Acknowledgment. The author appreciates help and encouragement from Professor Sui Sun Cheng during the preparation of this article.

References

[1] D. Behloul and S. S. Cheng, Computation of all polynomial solutions of a class of nonlinear differential equations, Computing, 77(2006), 163-177.
[2] D. Behloul and S. S. Cheng, Polynomial solutions of a class of algebraic differential equations with quadratic nonlinearities, Southeast Asian Bulletin of Mathematics, $33(2009)$, 1029-1040.
[3] Y. J. Ma and X. S. Gao, Polynomial solutions of algebraic differential equations. (English summary) Computer mathematics (Matsuyama, 2001), 92-101, Lecture Notes Ser. Comput., 9, World Sci. Publ., River Edge, NJ, 2001.
[4] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm, Reprinted: Oeuvre de Paul Painlevé Vol.1.2.3 (1895) Hermann, Paris.

[^0]: *Mathematics Subject Classifications: 34A05
 ${ }^{\dagger}$ Faculté Génie Electrique, Département informatique, USTHB, BP32, El Alia, Bab Ezzouar, 16111, Alger, Algeria.

