A Simple Proof On The Extremal Zagreb Indices Of Graphs With Cut Edges*

Lingli Sun ${ }^{\dagger}$

Received 24 October 2010

Abstract

The first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ of a (molecular) graph G are $M_{1}(G)=\sum_{u \in V(G)}(d(u))^{2}$ and $M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v)$ respectively, where $d(u)$ denotes the degree of a vertex u in G. In [3] and [4], Feng et al. obtained the sharp bounds of $M_{1}(G)$ and $M_{2}(G)$ on the graphs with cut edges and characterized the extremal graphs. However, the proof in [3] was rather complicated. In this paper, we give a simple proof on these results.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. For a (molecular) graph G, the first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ are defined in [5] as

$$
M_{1}(G)=\sum_{u \in V(G)}(d(u))^{2}, \quad M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v)
$$

where $d(u)$ denotes the degree of the vertex u of G.
A cut edge in a connected graph is an edge whose deletion breaks the graph into two components. Denote by \mathcal{G}_{n}^{k} the set of graphs with n vertices and k cut edges. The graph K_{n}^{k} is a graph obtained by joining k independent vertices to one vertex of K_{n-k}. The graph P_{n}^{k} is a graph obtained by attaching a pendent chain P_{k+1} to one vertex of C_{n-k}. For example, graphs K_{7}^{3} and P_{7}^{3} are shown in Fig.1.

[^0]

Fig. 1 Graphs K_{7}^{3} and P_{7}^{3}

If $G \in \mathcal{G}_{n}^{k}$ and $n=k+1$, then G is a tree. The sharp bounds of $M_{1}(G)$ and $M_{2}(G)$ on trees has been studied in [2]. Therefore, from now on, we may assume $n>k+1$.

In [3] and [4], Feng et al. obtained the following results:
THEOREM 1. Let $G \in \mathcal{G}_{n}^{k}$, then

$$
4 n+2 \leq M_{1}(G) \leq(n-k-1)^{3}+(n-1)^{2}+k
$$

with the left equality if and only if $G \cong P_{n}^{k}$, with the right equality if and only if $G \cong K_{n}^{k}$.

THEOREM 2. Let $G \in \mathcal{G}_{n}^{k}$, then

$$
4 n+4 \leq M_{2}(G) \leq \frac{1}{2}(n-k-1)^{3}(n-k-2)+\left[(n-k-1)^{2}+k\right](n-1)
$$

the left equality holds if and only if $G \cong P_{n}^{k}$ and the right equality holds if and only if $G \cong K_{n}^{k}$.

The proof of the above results was rather complicated in [3]. In this paper, we give a simple proof of the results.

First we introduce some graph notations used in this paper. We denote the minimum degrees of vertices of G by $\delta(G)$. A tree is a connected acyclic graph. The star S_{n} is a tree on n vertices with one vertex having degree $n-1$ and the other vertices having degree 1 . The vertex with degree one is called a leaf.

A connected graph that has no cut vertices is called a block. If a block is an unique vertex, then it is called trivial block. Every block with at least three vertices is 2connected. A block of a graph is a subgraph that is a block and is maximal with respect to this property. An edge e of G is said to be contracted if it is deleted and its ends are identified. If G has blocks $B_{1}, B_{2}, \ldots, B_{r}$, all the edges in the blocks are contracted, then the resulting graph is called block graph of G, in which a vertex corresponds to a block of G and an edge corresponds to a cut edge of G, denoted by $B(G)$. It is easy to see that $B(G)$ is a tree. Therefore, if $G \in \mathcal{G}_{n}^{k}$, then $B(G)$ is a tree with k edges. In $B(G)$, if each neighbor of a block is not a trivial block, then the block is called naked block; if a block is both naked block and a leaf in $B(G)$, we call the block leaf block.
Remark: Note that the vertex in each block which is incident with a cut edge is a cut vertex of G, i.e., each block contains at least one cut vertex of G.

2 Proof of Theorem 1

Denote

$$
\begin{aligned}
& \overline{\mathcal{G}_{n}^{k}}=\left\{G \in \mathcal{G}_{n}^{k}: M_{1}(G) \text { is maximum }\right\} \\
& \underline{\mathcal{G}_{n}^{k}}=\left\{G \in \mathcal{G}_{n}^{k}: M_{1}(G) \text { is minimum }\right\}
\end{aligned}
$$

LEMMA 1. If $G \in \overline{\mathcal{G}_{n}^{k}}$, then each block of G is either a vertex or a complete graph with at least three vertices.

PROOF. Let B_{i} be a block of G. If $\left|B_{i}\right|=1$, then B_{i} is a vertex. If $\left|B_{i}\right|>1$, since B_{i} is block, we have $\delta\left(B_{i}\right) \geq 2$. So we have $\left|B_{i}\right| \geq 3$. Since $M_{1}(G)$ is maximum, we have that B_{i} is a complete graph.

LEMMA 2. If $G \in \overline{\mathcal{G}_{n}^{k}}$, then G has an unique block which is a complete graph with at least three vertices.

PROOF. By Lemma 1, we have that each block of G is either a vertex or a complete graph with at least three vertices. If G has blocks $B_{1}, B_{2}, \ldots, B_{p}(p \geq 2)$ which are complete vertices with at least three vertices.

If there exists two blocks in $\left\{B_{1}, B_{2}, \ldots, B_{p}\right\}$ are not naked block, without loss of generality, we may assume that B_{1} and B_{2} are not naked block. Then there exist a leaf x adjacent to B_{1} and a leaf y adjacent to B_{2}. Let $V\left(B_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$, $V\left(B_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}(s, t \geq 3)$. Without loss of generality, we may assume that u_{1} and v_{1} are vertices adjacent to x and y respectively in G and $d_{G}\left(u_{1}\right) \geq d_{G}\left(v_{1}\right)$. Let $G^{\prime}=G-y v_{1}+y u_{1}$. We have $G^{\prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}\left(u_{1}\right)+d_{G^{\prime}}^{2}\left(v_{1}\right)-d_{G}^{2}\left(u_{1}\right)-d_{G}^{2}\left(v_{1}\right) \\
& =\left[d_{G}\left(u_{1}\right)+1\right]^{2}+\left[d_{G}\left(v_{1}\right)-1\right]^{2}-d_{G}^{2}\left(u_{1}\right)-d_{G}^{2}\left(v_{1}\right) \\
& =2\left(d_{G}\left(u_{1}\right)-d_{G}\left(v_{1}\right)\right)+2 \\
& >0
\end{aligned}
$$

a contradiction.
Otherwise at most one of $\left\{B_{1}, B_{2}, \ldots, B_{p}\right\}$ is not naked block. Then there exists leaf block in $\left\{B_{1}, B_{2}, \ldots, B_{p}\right\}$. Without loss of generality, we may assume that B_{p} is leaf block. Let $V\left(B_{p}\right)=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}, V\left(B_{p-1}\right)=\left\{z_{1}, z_{2}, \ldots, z_{q}\right\}(\ell, q \geq 3)$, w_{1} be the unique cut vertex of G in $V\left(B_{p}\right)$ (Note that $d_{G}\left(w_{1}\right)=\ell$).

We delete the edges $\left\{w_{1} w_{2}, w_{1} w_{3}, \ldots, w_{1} w_{\ell}\right\}$ in B_{p} and let $\left\{z_{1}, z_{2}, \ldots, z_{q}, w_{2}, w_{3}\right.$, $\left.\ldots, w_{\ell}\right\}$ be a complete graph; the resulting graph is denoted by $G^{\prime \prime}$. It is easy to have
$G^{\prime \prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime \prime}\right)-M_{1}(G)= & \sum_{i=1}^{\ell} d_{G^{\prime \prime}}^{2}\left(w_{i}\right)+\sum_{j=1}^{q} d_{G^{\prime \prime}}^{2}\left(z_{j}\right)-\sum_{i=1}^{\ell} d_{G}^{2}\left(w_{i}\right)-\sum_{j=1}^{q} d_{G}^{2}\left(z_{j}\right) \\
= & 1+\sum_{i=2}^{\ell}\left[d_{G}\left(w_{i}\right)-1+q\right]^{2}+\sum_{j=1}^{q}\left[d_{G}\left(z_{j}\right)+\ell-1\right]^{2} \\
& -\sum_{i=1}^{\ell} d_{G}^{2}\left(w_{i}\right)-\sum_{j=1}^{q} d_{G}^{2}\left(z_{j}\right) \\
= & 1+(\ell-1)(q-1)^{2}+2(q-1) \sum_{i=2}^{\ell} d_{G}\left(w_{i}\right)+q(\ell-1)^{2} \\
& +2(\ell-1) \sum_{j=1}^{q} d\left(v_{j}\right)-\ell^{2} \quad(\ell, q \geq 3) \\
> & 0,
\end{aligned}
$$

a contradiction. This completes the proof.
LEMMA 3. If $G \in \overline{\mathcal{G}_{n}^{k}}$, then $B(G)$ is a star and the maximum vertex corresponds to the unique block, which is a complete graph with at least three vertices.

PROOF. Let $B_{1}, B_{2}, \ldots, B_{r}$ be the blocks of G and $b_{1}, b_{2}, \ldots, b_{r}$ be the corresponding vertices in $B(G)$. By Lemma 1 and Lemma 2, only one of $B_{1}, B_{2}, \ldots, B_{r}$ is a complete graph with at least three vertices. Without loss of generality, let B_{r} be the block which is a complete graph, $V\left(B_{r}\right)=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}(s \geq 3)$. Then B_{i} $(i=1,2, \ldots, r-1)$ is a vertex, i.e., $b_{i}=B_{i}(i=1,2, \ldots, r-1)$ in $B(G)$.

Without loss of generality, we may assume that u_{1} is an arbitrary cut vertex of G in B_{r} and $u_{1} b_{1} \in E(G)$ (Note that $d_{G}\left(u_{1}\right) \geq 3$). If b_{1} is not an isolated vertex in $B(G)$, then let $N_{G}\left(b_{1}\right)=\left\{u_{1}, b_{2}, \ldots, b_{t}\right\}(t \geq 2)$. Let $G^{\prime}=G-\left\{b_{1} b_{2}, \ldots, b_{1} b_{t}\right\}+$ $\left\{u_{1} b_{2}, \ldots, u_{1} b_{t}\right\}$. It is easy to see $G^{\prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}\left(u_{1}\right)+d_{G^{\prime}}^{2}\left(b_{1}\right)-d_{G}^{2}\left(u_{1}\right)-d_{G}^{2}\left(b_{1}\right) \\
& =\left[d_{G}\left(u_{1}\right)+t-1\right]^{2}+1-d_{G}^{2}\left(u_{1}\right)-t^{2} \\
& =2(t-1)\left[d_{G}\left(u_{1}\right)-1\right] \\
& >0,
\end{aligned}
$$

a contradiction. Therefore, b_{1} is an isolated vertex in $B(G)$.
Since u_{1} is an arbitrary cut vertex of G in B_{r}, we have that all the vertices adjacent to b_{r} are isolated vertices in $B(G)$. Therefore, $B(G)$ is a star and the maximum vertex corresponds to the unique block, which is a complete graph with at least three vertices.

LEMMA 4. If $G \in \overline{\mathcal{G}_{n}^{k}}$, then $G \cong K_{n}^{k}$.
PROOF. By Lemma $3, B(G)$ is a star and the maximum vertex corresponds to the unique block, which is a complete graph with at least three vertices. Let $V(B(G))=$ $\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}$ and b_{r} be the vertex with maximum degrees. Let u_{1}, u_{2} be the neighbors of b_{1}, b_{2} in G, respectively, and $d_{G}\left(u_{1}\right) \geq d_{G}\left(u_{2}\right)$.

If $u_{1} \neq u_{2}$, let $G^{\prime}=G-u_{2} b_{2}+u_{1} b_{2}$. Then $G^{\prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}\left(u_{1}\right)+d_{G^{\prime}}^{2}\left(u_{2}\right)-d_{G}^{2}\left(u_{1}\right)-d_{G}^{2}\left(u_{2}\right) \\
& =\left[d_{G}\left(u_{1}\right)+1\right]^{2}+\left[d_{G}\left(u_{2}\right)-1\right]^{2}-d_{G}^{2}\left(u_{1}\right)-d_{G}^{2}\left(u_{2}\right) \\
& =2\left[d_{G}\left(u_{1}\right)-d_{G}\left(u_{2}\right)\right]+2 \\
& >0,
\end{aligned}
$$

a contradiction. Therefore, $u_{1}=u_{2}$.
Since b_{1} and b_{2} are arbitrary, we have that the neighbors of $\left\{b_{1}, b_{2}, \ldots, b_{r-1}\right\}$ are the same. Therefore, $G \cong K_{n}^{k}$.

LEMMA 5. If $G \in \underline{\mathcal{G}_{n}^{k}}$, then each block of G is either a vertex or a cycle with at least three vertices.

PROOF. Let B_{i} be a block of G. If $\left|B_{i}\right|=1$, then B_{i} is a vertex. If $\left|B_{i}\right|>1$, since B_{i} is block, we have $\delta\left(B_{i}\right) \geq 2$. So we have $\left|B_{i}\right| \geq 3$. Since $M_{1}(G)$ is minimum, we have that B_{i} is a cycle.

LEMMA 6. If $G \in \underline{\mathcal{G}_{n}^{k}}$, then G has an unique block which is a cycle with at least three vertices.

PROOF. By Lemma 5, we have that each block of G is either a vertex or a cycle with at least three vertices. If G has blocks B_{1} and B_{2} which are cycles with at least three vertices, let $V\left(B_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}, V\left(B_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}(s, t \geq 3), u_{1}$ and v_{1} be cut vertices in G (Note that $d_{G}\left(u_{1}\right) \geq 3$). We delete all the edges in B_{1}, B_{2} and let $\left\{v_{1}, v_{2}, \ldots, v_{t}, u_{2}, u_{3}, \ldots, u_{s}\right\}$ be a cycle; the resulting graph is denoted by G^{\prime}. It is easy to see $G^{\prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}\left(u_{1}\right)-d_{G}^{2}\left(u_{1}\right) \\
& =\left[d_{G}\left(u_{1}\right)-2\right]^{2}-d_{G}^{2}\left(u_{1}\right) \\
& <0
\end{aligned}
$$

a contradiction.
LEMMA 7. If $G \in \underline{\mathcal{G}_{n}^{k}}$, then $G \cong P_{n}^{k}$.
PROOF. Let $B_{1}, B_{2}, \ldots, B_{r}$ be the blocks of G and $b_{1}, b_{2}, \ldots, b_{r}$ be the corresponding vertices in $B(G)$. By Lemma 5 and Lemma 6 , only one of $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ is a cycle with at least three vertices. Without loss of generality, let B_{1} be the block which is a cycle, $V\left(B_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}(s \geq 3)$. Then $B_{i}(i=2,3, \ldots, r)$ is a vertex, i.e., $b_{i}=B_{i}(i=2,3, \ldots, r)$ in $B(G)$. Now we prove $d_{B(G)}\left(b_{1}\right)=1$ and $d_{B(G)}\left(b_{i}\right) \leq 2$ $(2 \leq i \leq r)$.

If $d_{B(G)}\left(b_{1}\right) \geq 2$, let b_{i} be a neighbor of b_{1} and $B_{i} u_{j} \in E(G)(2 \leq i \leq r, 1 \leq$ $j \leq s)$ (Note that $d_{G}\left(u_{j}\right) \geq 3$). Since $B(G)$ is tree, without loss of generality, we may assume that b_{t} is a leaf of $B(G)(2 \leq t \leq r, t \neq i)$. Let $G^{\prime}=G-B_{i} u_{j}+B_{t} B_{i}$, then $G^{\prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime}\right)-M_{1}(G) & =d_{G^{\prime}}^{2}\left(u_{j}\right)+d_{G^{\prime}}^{2}\left(B_{t}\right)-d_{G}^{2}\left(u_{j}\right)-d_{G}^{2}\left(B_{t}\right) \\
& =\left[d_{G}\left(u_{j}\right)-1\right]^{2}+4-d_{G}^{2}\left(u_{j}\right)-1 \\
& =-2 d_{G}\left(u_{j}\right)+4 \\
& <0,
\end{aligned}
$$

a contradiction. Therefore, $d_{B(G)}\left(b_{1}\right)=1$.
Since $B(G)$ is a tree and a tree has at least two leaves, without loss of generality, we may assume that b_{2} is a leaf of $B(G)$. If there exist b_{i} such that $d_{B(G)}\left(b_{i}\right) \geq 3$ $(3 \leq i \leq r)$ (Note that $\left.d_{B(G)}\left(b_{i}\right)=d_{G}\left(B_{i}\right)\right)$. Let b_{j} be a neighbor of b_{i} in $B(G)$ $(3 \leq j \leq r)$. Let $G^{\prime \prime}=G-B_{i} B_{j}+B_{2} B_{j}$, then $G^{\prime \prime} \in \mathcal{G}_{n}^{k}$. However,

$$
\begin{aligned}
M_{1}\left(G^{\prime \prime}\right)-M_{1}(G) & =d_{G^{\prime \prime}}^{2}\left(B_{i}\right)+d_{G^{\prime \prime}}^{2}\left(B_{2}\right)-d_{G}^{2}\left(B_{i}\right)-d_{G}^{2}\left(B_{2}\right) \\
& =\left[d_{G}\left(B_{i}\right)-1\right]^{2}+4-d_{G}^{2}\left(B_{i}\right)-1 \\
& =-2 d_{G}\left(B_{i}\right)+4 \\
& <0
\end{aligned}
$$

a contradiction. Therefore, $d_{B(G)}\left(b_{i}\right) \leq 2(2 \leq i \leq r)$.
Since $d_{B(G)}\left(b_{1}\right)=1$ and $d_{B(G)}\left(b_{i}\right) \leq 2(2 \leq i \leq r)$, we have $G \cong P_{n}^{k}$.
PROOF of THEOREM 1. By Lemma 4, we have $G \cong K_{n}^{k}$ if $G \in \overline{\mathcal{G}_{n}^{k}}$. Moreover, $M_{1}\left(K_{n}^{k}\right)=(n-k-1)^{3}+(n-1)^{2}+k$.

By Lemma 7, we have $G \cong P_{n}^{k}$ if $G \in \underline{\mathcal{G}_{n}^{k}}$. Moreover, $M_{1}\left(P_{n}^{k}\right)=4 n+2$. Therefore,

$$
4 n+2 \leq M_{1}(G) \leq(n-k-1)^{3}+(n-1)^{2}+k
$$

with the left equality if and only if $G \cong P_{n}^{k}$, with the right equality if and only if $G \cong K_{n}^{k}$.

REMARK. In fact, we can give a simple proof of Theorem 2 in a similar way.
Acknowledgment. The project is financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2009QC015).

References

[1] J. A. Bonday and U. S. R. Murty, Graph Theory With Applications, MacMillan, London, 1976.
[2] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem., 57(2007), 597-616.
[3] Y. Feng, X. Hu and S. Li, On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math., 110(2010), 667-684.
[4] Y. Feng, X. Hu and S. Li, Erratum to: On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math., 110(2010), 685.
[5] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972) 535-538.

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 92E10, 05C35.
 ${ }^{\dagger}$ Department of Maths and Informatics Sciences, College of Sciences, Huazhong Agricultural University, Wuhan, 430070 , P. R. China

