A Simple Proof On The Extremal Zagreb Indices Of Graphs With Cut Edges^{*}

Lingli Sun[†]

Received 24 October 2010

Abstract

The first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ of a (molecular) graph G are $M_1(G) = \sum_{u \in V(G)} (d(u))^2$ and $M_2(G) = \sum_{uv \in E(G)} d(u)d(v)$ respectively, where d(u) denotes the degree of a vertex u in G. In [3] and [4], Feng *et al.* obtained the sharp bounds of $M_1(G)$ and $M_2(G)$ on the graphs with cut edges and characterized the extremal graphs. However, the proof in [3] was rather complicated. In this paper, we give a simple proof on these results.

1 Introduction

A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. For a (molecular) graph G, the first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ are defined in [5] as

$$M_1(G) = \sum_{u \in V(G)} (d(u))^2, \quad M_2(G) = \sum_{uv \in E(G)} d(u)d(v),$$

where d(u) denotes the degree of the vertex u of G.

A cut edge in a connected graph is an edge whose deletion breaks the graph into two components. Denote by \mathcal{G}_n^k the set of graphs with *n* vertices and *k* cut edges. The graph K_n^k is a graph obtained by joining *k* independent vertices to one vertex of K_{n-k} . The graph P_n^k is a graph obtained by attaching a pendent chain P_{k+1} to one vertex of C_{n-k} . For example, graphs K_7^3 and P_7^3 are shown in Fig.1.

^{*}Mathematics Subject Classifications: 92E10, 05C35.

[†]Department of Maths and Informatics Sciences, College of Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China

Fig.1 Graphs K_7^3 and P_7^3

If $G \in \mathcal{G}_n^k$ and n = k + 1, then G is a tree. The sharp bounds of $M_1(G)$ and $M_2(G)$ on trees has been studied in [2]. Therefore, from now on, we may assume n > k + 1.

In [3] and [4], Feng *et al.* obtained the following results:

THEOREM 1. Let $G \in \mathcal{G}_n^k$, then

$$4n+2 \le M_1(G) \le (n-k-1)^3 + (n-1)^2 + k,$$

with the left equality if and only if $G \cong P_n^k$, with the right equality if and only if $G \cong K_n^k$.

THEOREM 2. Let $G \in \mathcal{G}_n^k$, then

$$4n+4 \le M_2(G) \le \frac{1}{2}(n-k-1)^3(n-k-2) + [(n-k-1)^2+k](n-1),$$

the left equality holds if and only if $G \cong P_n^k$ and the right equality holds if and only if $G \cong K_n^k$.

The proof of the above results was rather complicated in [3]. In this paper, we give a simple proof of the results.

First we introduce some graph notations used in this paper. We denote the minimum degrees of vertices of G by $\delta(G)$. A *tree* is a connected acyclic graph. The *star* S_n is a tree on n vertices with one vertex having degree n-1 and the other vertices having degree 1. The vertex with degree one is called a *leaf*.

A connected graph that has no cut vertices is called a *block*. If a block is an unique vertex, then it is called *trivial block*. Every block with at least three vertices is 2-connected. A *block of a graph* is a subgraph that is a block and is maximal with respect to this property. An edge e of G is said to be *contracted* if it is deleted and its ends are identified. If G has blocks B_1, B_2, \ldots, B_r , all the edges in the blocks are contracted, then the resulting graph is called *block graph* of G, in which a vertex corresponds to a block of G and an edge corresponds to a cut edge of G, denoted by B(G). It is easy to see that B(G) is a tree. Therefore, if $G \in \mathcal{G}_n^k$, then B(G) is a tree with k edges. In B(G), if each neighbor of a block is not a trivial block, then the block is called *naked block*; if a block is both naked block and a leaf in B(G), we call the block *leaf block*.

Remark: Note that the vertex in each block which is incident with a cut edge is a cut vertex of G, *i.e.*, each block contains at least one cut vertex of G.

2 Proof of Theorem 1

Denote

$$\overline{\mathcal{G}_n^k} = \{ G \in \mathcal{G}_n^k : M_1(G) \text{ is maximum} \}$$

$$\mathcal{G}_n^k = \{ G \in \mathcal{G}_n^k : M_1(G) \text{ is minimum} \}$$

LEMMA 1. If $G \in \overline{\mathcal{G}_n^k}$, then each block of G is either a vertex or a complete graph with at least three vertices.

PROOF. Let B_i be a block of G. If $|B_i| = 1$, then B_i is a vertex. If $|B_i| > 1$, since B_i is block, we have $\delta(B_i) \ge 2$. So we have $|B_i| \ge 3$. Since $M_1(G)$ is maximum, we have that B_i is a complete graph.

LEMMA 2. If $G \in \overline{\mathcal{G}_n^k}$, then G has an unique block which is a complete graph with at least three vertices.

PROOF. By Lemma 1, we have that each block of G is either a vertex or a complete graph with at least three vertices. If G has blocks B_1, B_2, \ldots, B_p $(p \ge 2)$ which are complete vertices with at least three vertices.

If there exists two blocks in $\{B_1, B_2, \ldots, B_p\}$ are not naked block, without loss of generality, we may assume that B_1 and B_2 are not naked block. Then there exist a leaf x adjacent to B_1 and a leaf y adjacent to B_2 . Let $V(B_1) = \{u_1, u_2, \ldots, u_s\}$, $V(B_2) = \{v_1, v_2, \ldots, v_t\}$ $(s, t \ge 3)$. Without loss of generality, we may assume that u_1 and v_1 are vertices adjacent to x and y respectively in G and $d_G(u_1) \ge d_G(v_1)$. Let $G' = G - yv_1 + yu_1$. We have $G' \in \mathcal{G}_n^k$. However,

$$M_{1}(G') - M_{1}(G) = d_{G'}^{2}(u_{1}) + d_{G'}^{2}(v_{1}) - d_{G}^{2}(u_{1}) - d_{G}^{2}(v_{1})$$

$$= [d_{G}(u_{1}) + 1]^{2} + [d_{G}(v_{1}) - 1]^{2} - d_{G}^{2}(u_{1}) - d_{G}^{2}(v_{1})$$

$$= 2(d_{G}(u_{1}) - d_{G}(v_{1})) + 2$$

$$> 0,$$

a contradiction.

Otherwise at most one of $\{B_1, B_2, \ldots, B_p\}$ is not naked block. Then there exists leaf block in $\{B_1, B_2, \ldots, B_p\}$. Without loss of generality, we may assume that B_p is leaf block. Let $V(B_p) = \{w_1, w_2, \ldots, w_\ell\}, V(B_{p-1}) = \{z_1, z_2, \ldots, z_q\} \ (\ell, q \ge 3), w_1$ be the unique cut vertex of G in $V(B_p)$ (Note that $d_G(w_1) = \ell$).

We delete the edges $\{w_1w_2, w_1w_3, \ldots, w_1w_\ell\}$ in B_p and let $\{z_1, z_2, \ldots, z_q, w_2, w_3, \ldots, w_\ell\}$ be a complete graph; the resulting graph is denoted by G''. It is easy to have

 $G'' \in \mathcal{G}_n^k$. However,

$$M_{1}(G'') - M_{1}(G) = \sum_{i=1}^{\ell} d_{G''}^{2}(w_{i}) + \sum_{j=1}^{q} d_{G''}^{2}(z_{j}) - \sum_{i=1}^{\ell} d_{G}^{2}(w_{i}) - \sum_{j=1}^{q} d_{G}^{2}(z_{j})$$

$$= 1 + \sum_{i=2}^{\ell} [d_{G}(w_{i}) - 1 + q]^{2} + \sum_{j=1}^{q} [d_{G}(z_{j}) + \ell - 1]^{2}$$

$$- \sum_{i=1}^{\ell} d_{G}^{2}(w_{i}) - \sum_{j=1}^{q} d_{G}^{2}(z_{j})$$

$$= 1 + (\ell - 1)(q - 1)^{2} + 2(q - 1) \sum_{i=2}^{\ell} d_{G}(w_{i}) + q(\ell - 1)^{2}$$

$$+ 2(\ell - 1) \sum_{j=1}^{q} d(v_{j}) - \ell^{2} \quad (\ell, q \ge 3)$$

$$> 0,$$

a contradiction. This completes the proof.

LEMMA 3. If $G \in \overline{\mathcal{G}_n^k}$, then B(G) is a star and the maximum vertex corresponds to the unique block, which is a complete graph with at least three vertices.

PROOF. Let B_1, B_2, \ldots, B_r be the blocks of G and b_1, b_2, \ldots, b_r be the corresponding vertices in B(G). By Lemma 1 and Lemma 2, only one of B_1, B_2, \ldots, B_r is a complete graph with at least three vertices. Without loss of generality, let B_r be the block which is a complete graph, $V(B_r) = \{u_1, u_2, \ldots, u_s\}$ $(s \ge 3)$. Then B_i $(i = 1, 2, \ldots, r - 1)$ is a vertex, *i.e.*, $b_i = B_i$ $(i = 1, 2, \ldots, r - 1)$ in B(G).

Without loss of generality, we may assume that u_1 is an arbitrary cut vertex of G in B_r and $u_1b_1 \in E(G)$ (Note that $d_G(u_1) \geq 3$). If b_1 is not an isolated vertex in B(G), then let $N_G(b_1) = \{u_1, b_2, \ldots, b_t\}$ $(t \geq 2)$. Let $G' = G - \{b_1b_2, \ldots, b_1b_t\} + \{u_1b_2, \ldots, u_1b_t\}$. It is easy to see $G' \in \mathcal{G}_n^k$. However,

$$M_1(G') - M_1(G) = d_{G'}^2(u_1) + d_{G'}^2(b_1) - d_G^2(u_1) - d_G^2(b_1)$$

= $[d_G(u_1) + t - 1]^2 + 1 - d_G^2(u_1) - t^2$
= $2(t - 1)[d_G(u_1) - 1]$
> 0,

a contradiction. Therefore, b_1 is an isolated vertex in B(G).

Since u_1 is an arbitrary cut vertex of G in B_r , we have that all the vertices adjacent to b_r are isolated vertices in B(G). Therefore, B(G) is a star and the maximum vertex corresponds to the unique block, which is a complete graph with at least three vertices.

LEMMA 4. If $G \in \overline{\mathcal{G}_n^k}$, then $G \cong K_n^k$.

PROOF. By Lemma 3, B(G) is a star and the maximum vertex corresponds to the unique block, which is a complete graph with at least three vertices. Let $V(B(G)) = \{b_1, b_2, \ldots, b_r\}$ and b_r be the vertex with maximum degrees. Let u_1, u_2 be the neighbors of b_1, b_2 in G, respectively, and $d_G(u_1) \ge d_G(u_2)$.

If $u_1 \neq u_2$, let $G' = G - u_2 b_2 + u_1 b_2$. Then $G' \in \mathcal{G}_n^k$. However,

$$M_{1}(G') - M_{1}(G) = d_{G'}^{2}(u_{1}) + d_{G'}^{2}(u_{2}) - d_{G}^{2}(u_{1}) - d_{G}^{2}(u_{2})$$

$$= [d_{G}(u_{1}) + 1]^{2} + [d_{G}(u_{2}) - 1]^{2} - d_{G}^{2}(u_{1}) - d_{G}^{2}(u_{2})$$

$$= 2[d_{G}(u_{1}) - d_{G}(u_{2})] + 2$$

$$> 0,$$

a contradiction. Therefore, $u_1 = u_2$.

Since b_1 and b_2 are arbitrary, we have that the neighbors of $\{b_1, b_2, \ldots, b_{r-1}\}$ are the same. Therefore, $G \cong K_n^k$.

LEMMA 5. If $G \in \underline{\mathcal{G}}_n^k$, then each block of G is either a vertex or a cycle with at least three vertices.

PROOF. Let B_i be a block of G. If $|B_i| = 1$, then B_i is a vertex. If $|B_i| > 1$, since B_i is block, we have $\delta(B_i) \ge 2$. So we have $|B_i| \ge 3$. Since $M_1(G)$ is minimum, we have that B_i is a cycle.

LEMMA 6. If $G \in \underline{\mathcal{G}}_n^k$, then G has an unique block which is a cycle with at least three vertices.

PROOF. By Lemma 5, we have that each block of G is either a vertex or a cycle with at least three vertices. If G has blocks B_1 and B_2 which are cycles with at least three vertices, let $V(B_1) = \{u_1, u_2, \ldots, u_s\}$, $V(B_2) = \{v_1, v_2, \ldots, v_t\}$ $(s, t \ge 3)$, u_1 and v_1 be cut vertices in G (Note that $d_G(u_1) \ge 3$). We delete all the edges in B_1 , B_2 and let $\{v_1, v_2, \ldots, v_t, u_2, u_3, \ldots, u_s\}$ be a cycle; the resulting graph is denoted by G'. It is easy to see $G' \in \mathcal{G}_n^k$. However,

$$M_1(G') - M_1(G) = d_{G'}^2(u_1) - d_{G}^2(u_1)$$

= $[d_G(u_1) - 2]^2 - d_G^2(u_1)$
< $0,$

a contradiction.

LEMMA 7. If $G \in \mathcal{G}_n^k$, then $G \cong P_n^k$.

PROOF. Let B_1, B_2, \ldots, B_r be the blocks of G and b_1, b_2, \ldots, b_r be the corresponding vertices in B(G). By Lemma 5 and Lemma 6, only one of $\{B_1, B_2, \ldots, B_r\}$ is a cycle with at least three vertices. Without loss of generality, let B_1 be the block which is a cycle, $V(B_1) = \{u_1, u_2, \ldots, u_s\}$ $(s \ge 3)$. Then B_i $(i = 2, 3, \ldots, r)$ is a vertex, *i.e.*, $b_i = B_i$ $(i = 2, 3, \ldots, r)$ in B(G). Now we prove $d_{B(G)}(b_1) = 1$ and $d_{B(G)}(b_i) \le 2$ $(2 \le i \le r)$.

If $d_{B(G)}(b_1) \geq 2$, let b_i be a neighbor of b_1 and $B_i u_j \in E(G)$ $(2 \leq i \leq r, 1 \leq j \leq s)$ (Note that $d_G(u_j) \geq 3$). Since B(G) is tree, without loss of generality, we may assume that b_t is a leaf of B(G) $(2 \leq t \leq r, t \neq i)$. Let $G' = G - B_i u_j + B_t B_i$, then $G' \in \mathcal{G}_n^k$. However,

$$M_1(G') - M_1(G) = d_{G'}^2(u_j) + d_{G'}^2(B_t) - d_G^2(u_j) - d_G^2(B_t)$$

= $[d_G(u_j) - 1]^2 + 4 - d_G^2(u_j) - 1$
= $-2d_G(u_j) + 4$
< 0,

a contradiction. Therefore, $d_{B(G)}(b_1) = 1$.

Since B(G) is a tree and a tree has at least two leaves, without loss of generality, we may assume that b_2 is a leaf of B(G). If there exist b_i such that $d_{B(G)}(b_i) \geq 3$ $(3 \leq i \leq r)$ (Note that $d_{B(G)}(b_i) = d_G(B_i)$). Let b_j be a neighbor of b_i in B(G) $(3 \leq j \leq r)$. Let $G'' = G - B_i B_j + B_2 B_j$, then $G'' \in \mathcal{G}_n^k$. However,

$$M_{1}(G'') - M_{1}(G) = d_{G''}^{2}(B_{i}) + d_{G''}^{2}(B_{2}) - d_{G}^{2}(B_{i}) - d_{G}^{2}(B_{2})$$

$$= [d_{G}(B_{i}) - 1]^{2} + 4 - d_{G}^{2}(B_{i}) - 1$$

$$= -2d_{G}(B_{i}) + 4$$

$$< 0,$$

a contradiction. Therefore, $d_{B(G)}(b_i) \leq 2 \ (2 \leq i \leq r)$.

Since $d_{B(G)}(b_1) = 1$ and $d_{B(G)}(b_i) \leq 2$ $(2 \leq i \leq r)$, we have $G \cong P_n^k$.

PROOF of THEOREM 1. By Lemma 4, we have $G \cong K_n^k$ if $G \in \overline{\mathcal{G}_n^k}$. Moreover, $M_1(K_n^k) = (n-k-1)^3 + (n-1)^2 + k.$ By Lemma 7, we have $G \cong P_n^k$ if $G \in \underline{\mathcal{G}}_n^k$. Moreover, $M_1(P_n^k) = 4n+2$. Therefore,

$$4n + 2 \le M_1(G) \le (n - k - 1)^3 + (n - 1)^2 + k,$$

with the left equality if and only if $G \cong P_n^k$, with the right equality if and only if $G \cong K_n^k$.

REMARK. In fact, we can give a simple proof of Theorem 2 in a similar way.

Acknowledgment. The project is financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2009QC015).

References

- [1] J. A. Bonday and U. S. R. Murty, Graph Theory With Applications, MacMillan, London, 1976.
- [2] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem., 57(2007), 597 - 616.
- [3] Y. Feng, X. Hu and S. Li, On the extremal Zagreb indices of graphs with cut edges. Acta Appl. Math., 110(2010), 667–684.
- [4] Y. Feng, X. Hu and S. Li, Erratum to: On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math., 110(2010), 685.
- [5] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972) 535–538.