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Abstract

We present an error estimate for interpolation from cell averages with thin
plate spline on structured triangular meshes. This situation arises in the con-
struction of �nite volume methods. We show that global reconstruction with thin
plate splines yields �rst order approximation.

1 Introduction

Radial Basis Functions (RBFs) have become well-known as traditional and powerful
tools for the multivariate interpolation of scattered data. Thin plate splines are a type
of radial basis function that is frequently utilized in the literature for interpolation,
for example, see Powell [5]. In recent years, radial basis functions have been utilized
extensively in the numerical solution of partial di¤erential equations like in Franke [3],
and Behrens & Iske [2]. They have also been used in the recovery step of �nite volume
methods (Aboiyar [1]).
Traditionally, RBFs are used for the interpolation of scattered data. To this

end, suppose d is a positive integer, 
 the closure of a bounded open set in Rd and
u = (u(x1); : : : ; u(xn))

T 2 Rn a vector of function values sampled from an unknown
function u : Rd 7! R at a scattered �nite point set X = fx1; : : : ;xng � 
 � Rd,
d � 1, interpolation with radial basis functions requires the computing of a suitable
interpolant s : Rd 7! R satisfying

s(xj) = u(xj) for all j = 1; : : : ; n:

The RBF interpolation scheme utilizes a �xed radial function � : [0;1) 7! R, and
the interpolant s is taken to have the form

s(x) =
nX
j=1

cj�(kx� xjk) + p(x); p 2 Pdm
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where k � k is the Euclidean norm on Rd. In addition, Pdm denotes the vector space
containing all real valued polynomials in d variables of degree at most m � 1, where
m = m(�) is regarded to be the order of the basis function �. Examples of popular
RBFs can be found in [7].
Polyharmonic splines are a class of radial basis functions where

� � �d;k(r) =
�
r2k�d log(r); for d even;
r2k�d; for d odd,

(1)

where k is required to satisfy 2k > d and the order is m = k. This class of RBFs
includes the thin plate splines, where �2;2(r) = r

2 log(r) and m = 2. In this case, the
interpolant s has the form

s(x) =
X
j=1

cj
�
kx� xjk2 log(kx� xjk)

�
+ d1 + d2x1 + d3x2;

where we let x1 and x2 denote the two coordinates of x = (x1; x2)T 2 R2.
The polyharmonic spline interpolation is optimal in its associated native space, the

Beppo Levi space of order k de�ned as

BLk(Rd) = fu :D�u 2 L2(Rd) for all j�j = kg � C(Rd);

being equipped with the semi-norm

jujBLk(Rd) =
X
j�j=k

�
k
�

�
kD�uk2L2(Rd):

Thin plate splines have been used in the reconstruction step of �nite volume meth-
ods and error estimates were provided for interpolation for reconstruction on structured
Cartesian grids by Gutzmer [4]. In this paper we extend his work, which is based on the
earlier paper of Powell [5] for scattered data, to reconstruction on triangular meshes.

2 Generalized Interpolation

In certain applications, we may need to recover a function from other types of data
associated with the function rather than point evaluations. The RBF interpolation
algorithm can be extended to several other more general observation functionals. Fol-
lowing Wendland [7], let H be a Hilbert space and denote its dual by H0. If � =
f�1; : : : ; �ng � H0 is a set of linearly independent functionals on H and u1; : : : ; un 2 R
are certain given values associated with u, then a generalized interpolation problem
seeks to �nd a function s 2 H such that

�i(s) = �i(u); i = 1; : : : ; n where �i(u) = ui; i = 1; : : : ; n:

The interpolant s is referred to as the generalized interpolant and the generalized RBF
interpolant has the form

s(x) =
nX
j=1

cj�
y
j�(kx� yk) + p(x); x 2 Rd and p 2 Pdm
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where the notation �yj indicates the action of the functional �j on � viewed as a function
of the argument y. We require this interpolant to satisfy

�xi (s) = �
x
i (u); i = 1; : : : ; n; (2)

where �xi indicates the action of the functional �i on s and u which are treated as func-
tions of x. To eliminate any additional degrees of freedom, the additional constraints

nX
j=1

cj�
x
j (p) = 0 for all p 2 Pdm;

need to be satis�ed.
We now turn to the case where the linearly independent functionals in � are cell

average operators. This situation arises in the recovery step of �nite volume methods
where point values of the unknown solution of a partial di¤erential equation have to
be reconstructed from cell average data, e.g. Sonar [6], Aboiyar et al [1].

3 Global Approximation

In this section, we will generalize the results of Powell [5] and Gutzmer [4] to instances
where the interpolation data are given by cell averages on a triangular mesh instead of
a Cartesian grid or at scattered point values.
If we divide a region 
 2 R2 into non-overlapping subregions T = fVjg, then for

some integrable function u, the cell average operators are de�ned as

�xj (u) := �uj =
1

jVj j

Z
Vj

u(x) dx:

We will focus on a pointwise error estimate of thin plate spline reconstruction
on triangular meshes. Based on the earlier work of Powell [5] and Gutzmer [4], we
present a pointwise error estimate for thin plate spline interpolation for situations
where interpolation data are cell averages on a triangular mesh. In Powell [5], the
results were provided for interpolation of scattered point values while Gutzmer [4]
treated the instance where the interpolation data were cell averages on Cartesian grids.
Let u : R2 ! R be an integrable function. Then the thin plate spline interpolant s

subject to the conditions �xi (s) = �
x
i (u), i = 1; : : : ; n; has the form

s(x) =
nX
i=1

ci�
y
i

�
kx� yk2 log(kx� yk)

�
+ d1 + d2x1 + d3x2; (3)

where x = (x1; x2)T and y = (y1; y2)T .
We �rst of all state the following lemma.

LEMMA 1 (Powell [5],Gutzmer [4]). Let �xi , i = 0; : : : ; n be a set of n > 3 func-
tionals with compact support and unisolvent on P22 . If

nX
i=0

�̂i = 0 and
nX
i=0

�̂i�
x
i (p) = 0 for all p 2 P22 ; (4)
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then the functional L̂ =
Pn

i=0 �̂i�
x
i can be bounded as follows

���L̂g��� �
248�kgk2BL2 nX

i=0

nX
j=0

�̂i�̂j�
x
i �

y
j�2;2(kx� yk)

351=2 ; (5)

for any g 2 BL2(R2), x = (x1; x2)T , y = (y1; y2)T and �2;2(r) = r2 log(r); r � 0.
This lemma enables us to estimate the error at a given point ~x, if the interpolation

data are cell averages.
We now prove a key result that enables us to obtain error estimates for unstructured

triangular meshes.

THEOREM 1. Let the triangles Ti, i = 1; : : : ; n with vertices ai1;ai2;ai3 and
centres aic = (ai1+ ai2+ ai3)=3 be assigned to the functionals (cell average operators)
�xi , i = 1; : : : ; n de�ned by

�xi (u) :=
1

jTij

Z
Ti

u(x) dx; i = 1; : : : ; n:

Let �x0 = �~x be the point evaluation at ~x and let �̂i, i = 1; : : : ; n be given by

�̂0 = �1; (6)

�̂i = �i; �i > 0; i = 1; : : : ; n; and
nX
i=1

�i = 1; (7)

such that

~x =
nX
i=1

�iaic:

Then we obtain
ju(~x)� s(~x)j �

�
8�kuk2BL2�(�)

�1=2
(8)

for all u 2 BL2, where � = f�igni=1 and � is given by

�(�) =
nX
i=1

nX
j=1

�i�j�
x
i �

y
j�2;2(kx� yk)� 2

nX
i=1

�i�
y
i �2;2(k~x� yk); (9)

and s denotes the thin plate spline interpolant with respect to the data �xi (u) = �
x
i (s),

i = 1; : : : ; n.

PROOF. Let g = u� s so that

L̂g =
nX
i=0

�̂i�
x
i g = s(~x)� u(~x):

To be able to use the result (5) in Lemma 1 in the proof of this theorem, we need to
make sure that the two conditions on the �̂i�s in (4) are satis�ed. Clearly, with our
choices of �̂i, i = 0; 1; : : : ; n in (6) and (7), the �rst condition is satis�ed.
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To show that the second condition is satis�ed, we need to evaluate
nX
i=0

�̂i�
x
i x =

nX
i=0

�̂i�
x
i

�
x1
x2

�
:

We do this by mapping each triangle Ti with vertices ai1 = (x11i; x
1
2i), ai2 = (x

2
1i; x

2
2i),

ai3 = (x
3
1i; x

3
2i) to a canonical reference triangle K with vertices â1 = (0; 0), â2 = (1; 0),

â3 = (0; 1) by a unique invertible a¢ ne mapping Fi such that

x = Fi(v) = Biv + ai1; (10)

where x = (x1; x2) 2 Ti, v = (v1; v2) 2 K, Bi is an invertible 2� 2 matrix and

Fi(â`) = ai`; ` = 1; 2; 3:

The matrix Bi is given as

Bi =

�
x21i � x11i x31i � x11i
x22i � x12i x32i � x12i

�
: (11)

Hence, we have the relations

x1 = x11i + (x
2
1i � x11i)v1 + (x31i � x11i)v2;

x2 = x12i + (x
2
2i � x12i)v1 + (x32i � x12i)v2:

If we invert this relationship, we �nd that

v1 =
(x1 � x11i)(x32i � x12i)� (x2 � x12i)(x31i � x11i)

Ji

v2 =
(x2 � x12i)(x21i � x11i)� (x1 � x11i)(x22i � x12i)

Ji
;

where the Jacobian Ji of the mapping is given by

Ji = det(Bi):

Now, jTij = JijKj, jKj = 1
2 and dx1dx2 = Ji dv1dv2; therefore,Z

Ti

x1 dx1 dx2 =
1

6
Ji
�
x11i + x

2
1i + x

3
1i

�
and

Z
Ti

x2 dx1 dx2 =
1

6
Ji
�
x12i + x

2
2i + x

3
2i

�
:

All this means that
nX
i=0

�̂i�
x
i

�
x1
x2

�
= �ex+ nX

i=1

�i
jTij

�
1
6Ji(x

1
1i + x

2
1i + x

3
1i)

1
6Ji(x

1
2i + x

2
2i + x

3
2i)

�

= �ex+ nX
i=1

�i
JijKj

1

2
Jiaic

= �ex+ nX
i=1

�iaic

= 0; (12)
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showing that the second condition is also satis�ed. We then conclude by Lemma 1 that

ju(~x)� s(~x)j �
�
8�kgk2BL2�(�)

�1=2
: (13)

Since the interpolant s minimizes the energy j � jBL2 among all interpolants f 2 BL2
satisfying

�xi f = �
x
i u; i = 1; : : : ; n

we obtain

kgk2BL2 = ku� sk2BL2 = (u� s; u� s)BL2
= (u; u)BL2 � (u; s)BL2 � 2(s; u� s)BL2 + (s; u� s)BL2
= (u; u)BL2 � 2(s; u� s)BL2 � (s; s)BL2
= kuk2BL2 � 2 (s; u� s)BL2| {z }

=0

�ksk2BL2

� kuk2BL2 : (14)

This concludes the proof.

A more precise form of the error bound (13) can be obtained by �nding an estimate
of the quadratic form �(�)

4 Example: An Estimate for �(�)

We estimate �(�) by considering the special case where our mesh contains two triangles
Ti and Tj with a common edge that has center ~x. We can map Ti to a triangle Ki

with vertices (0; 0),(h; 0) and (0; h) and Tj to a triangle Kj with vertices (0; h),(h; 0)
and (h; h) with the further condition that ~x 7! �x = (h=2; h=2). This is a uniform grid
of right angled triangles with common edge at centre ~x. We take all the coe¢ cients �
to be zero except for Ti and Tj .
We can write �(�), where we take � � �2;2, as:

�(�) = �i�i�
x
i �

y
j�(kx� yk) + 2�i�j�

x
i �

y
j�(kx� yk) + �j�j�

x
j�

y
j�(kx� yk)

�2�i�
y
i �(k~x� yk)� 2�j�

j
y�(k~x� yk)

If we set �i =
1
2 = �j and since jKij = jKj j = 1

2h
2, we can rewrite � as

�(�) =
1

2
�xi �

y
j�(kx� yk) +

1

4
�xi �

y
j�(kx� yk) +

1

4
�xj�

y
j�(kx� yk) (15)

��yi �(k~x� yk)� �
y
j�(k~x� yk)

=
2

h4

Z
Ki

Z
Kj

�(kx� yk) + 1

h4

Z
Ki

Z
Ki

�(kx� yk) + 1

h4

Z
Kj

Z
Kj

�(kx� yk)

� 2

h2

Z
Ki

�(k~x� yk)� 2

h2

Z
Kj

�(k~x� yk)
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Now,

�(kx�yk) = kx�yk2 log kx�yk = [(x1�y1)2+(x2�y2)2] log[(x1�y1)2+(x2�y2)2]1=2:

Let vi = (0; 0); vj = (h; 0); vk = (0; h); vl = (h; h) and de�ne �̂ = �=h; �̂ = �=h so
that v̂i = (0; 0); v̂j = (1; 0); v̂k = (0; 1); v̂l = (1; 1).Then, the triangle K̂i has vertices
(0; 0), (1; 0) and (0; 1) and triangle K̂j has vertices (0; 1), (1; 0) and (1; 1). A simple
substitution gives

kx� yk2 log kx� yk = h2�(kx̂� ŷk) + h2 log(h)[(x̂1 � ŷ1)2 + (x̂2 � ŷ2)2]

where x = (x1; x2), y = (y1; y2) and dy1dy2dx1dx2 = h4dŷ1dŷ2dx̂1dx̂2. Let D =
[(x̂1 � ŷ1)2 + (x̂2 � ŷ2)2], dŷ1dŷ2dx̂1dx̂2 = dX and dropping the hats in subsequent
calculations give

�(�) =
2

h4

Z 1

0

Z 1�x1

0

Z 1

0

Z 1

1�y1
(h2�(kx� yk) + h2 log(h)D)h4dX

+
1

h4

Z 1

0

Z 1�x1

0

Z 1

0

Z 1�x1

0

(h2�(kx� yk) + h2 log(h)D)h4dX

+
1

h4

Z 1

0

Z 1

1�y1

Z 1

0

Z 1

1�y1
(h2�(kx� yk) + h2 log(h)D)h4dX

� 2

h2

Z 1

0

Z 1�x1

0

(h2�(k~x� yk) + h2 log(h) ~D)h2dy2dy1

� 2

h2

Z 1

0

Z 1

1�y1
(h2�(k~x� yk) + h2 log(h) ~D)h2dy2dy1

= h2
Z 1

0

Z 1

0

Z 1

0

Z 1

0

�(kx� yk)dX + 2h2 log(h)

Z 1

0

Z 1

0

Z 1

0

Z 1

0

DdX

�2h2
Z 1

0

Z 1

0

�(k~x� yk)dy2dy1 � 2h2 log(h)
Z 1

0

Z 1

0

~Ddy2dy1

= h2 [c1 � 2c2] + h2 log(h)
�Z 1

0

Z 1

0

Z 1

0

Z 1

0

DdX �
Z 1

0

Z 1

0

2 ~Ddy2dy1

�
= Ch2 + h2 log(h)

�Z 1

0

Z 1

0

Z 1

0

Z 1

0

DdX �
Z 1

0

Z 1

0

2 ~Ddy2dy1

�
Since ~x = ( 12 ;

1
2 ), we have

~D = (~x1 � y1)2 + (~x2 � y2)2 =
�
1

2
� y1

�2
+

�
1

2
� y2

�2
and

D = (x1 � y1)2 + (x2 � y2)2:
Using MAPLE we obtainZ 1

0

Z 1

0

Z 1

0

Z 1

0

DdX =
1

3
and

Z 1

0

Z 1

0

~Ddy2dy1 =
1

6
:
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Therefore,

�(�) = Ch2 + h2 log(h)

�
1

3
� 2 � 1

6

�
| {z }

=0

= Ch2: (16)

All this leads to the following result:

THEOREM 2. Given a regular mesh of containing 2 triangles of size h and if x
is the midpoint of the interior edge. We obtain �rst order accuracy of the thin plate
spline reconstruction,

ju(x)� su(x)j � Ctkukh;
where Ct = (8�C)�1=2 for all u 2 BL2, and su denotes the thin plate spline reconstruc-
tion of u.

PROOF. This is obtained by placing (16) in (8)

5 Conclusion

We have shown in this paper that the approximation order for thin plate spline inter-
polation on a triangular mesh is one.
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