Positive Periodic Solutions For A Class Of Higher Order Functional Difference Equations*

Xinhong Chen and Weibing Wang ${ }^{\dagger}$

Received 6 September 2010

Abstract

In this paper, we apply a fixed point theorem to obtain sufficient conditions for the existence, multiplicity and nonexistence of positive ω-periodic solutions for a class of higher-order functional difference equations.

1 Introduction

In this paper, we investigate the existence, multiplicity and nonexistence of positive ω-periodic solutions for the periodic equation.

$$
\begin{equation*}
x(n+m)=g(x(n)) x(n)-\lambda b(n) f(x(n-\tau(n)) \tag{1}
\end{equation*}
$$

where $\lambda>0$ is a positive parameter and we make the assumptions:
$\left(H_{1}\right) b, \tau: Z \rightarrow Z$ are ω-periodic sequences, $b(n)>0, \omega, m \in N,(m, \omega)=1$, here (m, ω) is the greatest common divisor of m and ω.
$\left(H_{2}\right) f, g:[0,+\infty) \rightarrow[0,+\infty)$ are continuous. $1<l<g(u)<L<+\infty$ for $u \geq 0, f(u)>0$ for $u>0$.

The existence of positive periodic solutions of discrete mathematical models has been studied extensively in recent years, see $[1,2,5,6,7,9,10,11]$ and the references therein. For example, Raffoul [3] considered the existence of positive periodic solutions for functional difference equations with parameter

$$
\begin{equation*}
x(n+1)=a(n) x(n)+\lambda h(n) g(x(n-\tau(n))) . \tag{2}
\end{equation*}
$$

Jiang [4] obtained the optimal existence theorem for single and multiple positive periodic solutions to general functional difference equations

$$
\begin{equation*}
\Delta x(n)=-a(n) x(n)+g(n, x(n-\tau(n))) . \tag{3}
\end{equation*}
$$

However, relatively few paper has discussed existence of positive periodic solutions for higher-order functional difference equations. In this paper, we apply a fixed point theorem to discuss the existence, multiple and nonexistence of positive ω-periodic solutions of (1).

[^0]
2 Preliminaries

Let $X=\{x: Z \rightarrow R, x(n+\omega)=x(n)\}$. When endowed with the maximum norm $\|x\|=\max _{n \in[0, \omega]}|x(n)|, X$ is a Banach space. From (1), we have that for any $x \in X$,

$$
\begin{gathered}
\frac{1}{g(x(n))} x(n+m)-x(n)=-\frac{\lambda b(n)}{g(x(n))} f(x(n-\tau(n))) \\
\frac{1}{g(x(n)) g(x(n+m))} x(n+2 m)-\frac{1}{g(x(n))} x(n+m) \\
=-\frac{\lambda b(n+m)}{g(x(n)) g(x(n+m))} f(x(n+m-\tau(n+m))) \\
\cdots \cdots \\
=\quad-\lambda\left(\prod_{i=0}^{\omega-1} \frac{1}{g(x(n+i m))}\right) b(n+(\omega-1) m) f(x(n+(\omega-1) m-\tau(n+(\omega-1) m)))
\end{gathered}
$$

By summing the above equations and using periodicity of x, we obtain

$$
\begin{equation*}
x(n)=\sum_{i=0}^{\omega-1} \frac{\prod_{j=0}^{i} \frac{1}{g(x(n+j m))}}{1-\prod_{t=0}^{\omega-1} \frac{1}{g(x(n+t m))}} \lambda b(n+i m) f(x(n+i m-\tau(n+i m))) \tag{4}
\end{equation*}
$$

Define the map $T_{\lambda}: X \rightarrow X$ and a cone P in X by

$$
\begin{gathered}
T_{\lambda} x(n)=\lambda \sum_{i=0}^{\omega-1} G(n, i) b(n+i m) f(x(n+i m-\tau(n+i m))) \\
P=\{x \in X: x(n) \geq \delta\|x\|, n \in[0, \omega]\}
\end{gathered}
$$

respectively, where

$$
G(n, i)=\left(\prod_{j=0}^{i} \frac{1}{g(x(n+j m))}\right)\left(1-\prod_{t=0}^{\omega-1} \frac{1}{g(x(n+t m))}\right)^{-1}
$$

and

$$
\delta=\frac{l^{\omega}-1}{L^{\omega}-1} .
$$

Clearly, $\delta \in(0,1)$ and

$$
\frac{1}{L^{\omega}-1} \leq G(n, i) \leq \frac{1}{l^{\omega}-1}, 0 \leq i \leq \omega-1
$$

Further, one can easily show that the fixed point of T_{λ} in P is the positive periodic solution of (1). The following well-known result of the fixed point theorem is crucial in our arguments.

LEMMA 2.1 ([8]). Let E be a Banach space and P be a cone in E. Suppose Λ_{1} and Λ_{2} are open subsets of E such that $0 \in \Lambda_{1} \subset \bar{\Lambda}_{1} \subset \Lambda_{2}$ and suppose that

$$
T_{\lambda}: P \cap\left(\bar{\Lambda}_{2} \backslash \Lambda_{1}\right) \rightarrow P
$$

is a completely continuous operator. If one of the following conditions is satisfied,
(i) $\left\|T_{\lambda} x\right\| \leq\|x\|$ for $x \in P \cap \partial \Lambda_{1} ;\left\|T_{\lambda} x\right\| \geq\|x\|$ for $x \in P \cap \partial \Lambda_{2}$;
(ii) $\left\|T_{\lambda} x\right\| \geq\|x\|$ for $x \in P \cap \partial \Lambda_{1} ;\left\|T_{\lambda} x\right\| \leq\|x\|$ for $x \in P \cap \partial \Lambda_{2}$.

Then T_{λ} has a fixed point in $P \cap\left(\bar{\Lambda}_{2} \backslash \Lambda_{1}\right)$.
LEMMA 2.2. Assume $\left(H_{1}\right)-\left(H_{2}\right)$ hold. Then $T_{\lambda}(P) \subset P$ and $T_{\lambda}: P \rightarrow P$ is completely continuous.

PROOF. In view of the definition of P, for $x \in P$, we have

$$
\begin{aligned}
T_{\lambda} x(n+\omega) & =\lambda \sum_{i=0}^{\omega-1} G(n+\omega, i) b(n+\omega+i m) f(x(n+\omega+i m-\tau(n+\omega+i m))) \\
& =\lambda \sum_{i=0}^{\omega-1} G(n, i) b(n+i m) f(x(n+i m-\tau(n+i m)))=T_{\lambda} x(n)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
T_{\lambda} x(n) & \geq \frac{1}{L^{\omega}-1} \lambda \sum_{i=0}^{\omega-1} b(n+i m) f(x(n+i m-\tau(n+i m))) \\
& =\frac{1}{L^{\omega}-1} \lambda \sum_{j=0}^{\omega-1} b(j m) f(x(j m-\tau(j m))) \\
& =\frac{1}{L^{\omega}-1} \lambda \sum_{j=0}^{\omega-1} b(j) f(x(j-\tau(j)))
\end{aligned}
$$

and

$$
T_{\lambda} x(n) \leq \frac{1}{l^{\omega}-1} \lambda \sum_{j=0}^{\omega-1} b(j) f(x(j-\tau(j)))
$$

Hence,

$$
T_{\lambda} x(n) \geq \frac{l^{\omega}-1}{L^{\omega}-1}\left\|T_{\lambda} x\right\|=\delta\left\|T_{\lambda} x\right\|
$$

Thus $T_{\lambda}(P) \subset P$ and according to Arzela-Ascoli's Theorem, it is easy to show that $T_{\lambda}: P \rightarrow P$ is completely continuous. The proof is complete.

LEMMA 2.3. Assume $\left(H_{1}\right)-\left(H_{2}\right)$ hold and let $\varepsilon>0$. If $f(u) \geq u \varepsilon$ for any $u>0$, then for any $x \in P$,

$$
\left\|T_{\lambda} x\right\| \geq \lambda \varepsilon \frac{l^{\omega}-1}{\left(L^{\omega}-1\right)^{2}} \sum_{j=0}^{\omega-1} b(j)\|x\| .
$$

PROOF. Since $x \in P$ and $f(u) \geq u \varepsilon$, we have

$$
\begin{aligned}
T_{\lambda} x(n) & \geq \frac{1}{L^{\omega}-1} \lambda \sum_{i=0}^{\omega-1} b(n+i m) f(x(n+i m-\tau(n+i m))) \\
& \geq \frac{1}{L^{\omega}-1} \lambda \sum_{i=0}^{\omega-1} b(n+i m) x(n+i m-\tau(n+i m)) \varepsilon \\
& \geq \frac{1}{L^{\omega}-1} \lambda \sum_{j=0}^{\omega-1} b(j) \frac{l^{\omega}-1}{L^{\omega}-1}\|x\| \varepsilon \\
& =\frac{l^{\omega}-1}{\left(L^{\omega}-1\right)^{2}} \lambda \sum_{j=0}^{\omega-1} b(j)\|x\| \varepsilon .
\end{aligned}
$$

Thus

$$
\left\|T_{\lambda} x\right\| \geq \lambda \varepsilon \frac{l^{\omega}-1}{\left(L^{\omega}-1\right)^{2}} \sum_{j=0}^{\omega-1} b(j)\|x\|
$$

LEMMA 2.4. Assume $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If there exists an $\eta>0$ such that $f(u) \leq \eta u$ for any $u>0$, then for $x \in P$

$$
\left\|T_{\lambda} x\right\| \leq \frac{1}{l^{\omega}-1} \lambda \eta \sum_{j=0}^{\omega-1} b(j)\|x\|
$$

This Lemma can be shown in a similar manner as in Lemma 2.3.

3 Main Results

Let $\Omega_{r}=\{x \in P:\|x\|<r\}$. Then $\partial \Omega_{r}=\{x \in P:\|x\|=r\}$. Put

$$
\begin{equation*}
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}, f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u}, \tag{5}
\end{equation*}
$$

$I_{0}=$ number of zeros in the $\operatorname{set}\left\{f_{0}, f_{\infty}\right\}, I_{\infty}=$ number of infinitions in the $\operatorname{set}\left\{f_{0}, f_{\infty}\right\}$,

$$
m(r)=\min \{f(x): x \in[\delta r, r], r>0\}, M(r)=\max \{f(x): x \in[\delta r, r], r>0\}
$$

At first, we discuss the existence and multiplicity of positive periodic solutions for (1).

THEOREM 3.1. Assume $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If $I_{0}=1$ or 2 , then (1) has at least one I_{0} positive ω-periodic solution for $\lambda>\lambda_{*}$ where

$$
\lambda_{*}=\frac{L^{\omega}-1}{\sum_{j=0}^{\omega-1} b(j)} \inf _{r>0} \frac{r}{m(r)}
$$

PROOF. Choose $r_{1}>0$ such that

$$
\inf _{r>0} \frac{r}{m(r)}<\frac{r_{1}}{m\left(r_{1}\right)} \leq \frac{\sum_{j=0}^{\omega-1} b(j)}{L^{\omega}-1} \lambda .
$$

Noting that $f(u) \geq m\left(r_{1}\right)$ for $u \in \partial \Omega_{r_{1}}$, we can easily get

$$
\left\|T_{\lambda} x\right\| \geq \lambda \frac{\sum_{j=0}^{\omega-1} b(j) m\left(r_{1}\right)}{L^{\omega}-1}, x \in \partial \Omega_{r_{1}}
$$

Hence,

$$
\left\|T_{\lambda} x\right\|>\|x\|, \quad \text { for } x \in \partial \Omega_{r_{1}} \quad \text { and } \quad \lambda>\lambda_{*} .
$$

If $f_{0}=0$, we choose $0<r_{2}<r_{1}$ such that $f(x) \leq \eta x$ for $0 \leq x \leq r_{2}$, where $\eta>0$ satisfies

$$
\lambda \eta \frac{1}{l^{\omega}-1} \sum_{j=0}^{\omega-1} b(j)<1
$$

According to Lemma 2.4, we have for $x \in \partial \Omega_{r_{2}}$,

$$
\left\|T_{\lambda} x\right\| \leq \frac{1}{l^{\omega}-1} \lambda \eta \sum_{j=0}^{\omega-1} b(j)\|x\| \leq\|x\|
$$

Then T_{λ} has a fixed point in $P \cap\left(\bar{\Omega}_{r_{1}} \backslash \Omega_{r_{2}}\right)$, which is a positive ω-periodic solution of (1) for $\lambda>\lambda_{*}$.

If $f_{\infty}=0$, there is a $K>0$ such that $f(x) \leq \eta x$ for $x \geq K$, where $\eta>0$ satisfies

$$
\lambda \eta \frac{1}{l^{\omega}-1} \sum_{j=0}^{\omega-1} b(j)<1
$$

Let $r_{3}=\max \left\{2 r_{1}, \frac{K}{\delta}\right\}$, then $x(n) \geq \delta\|x\| \geq K$ for $x \in \partial \Omega_{r_{3}}$ and $n \in[0, \omega]$. Thus $f(x) \leq \eta x$ for $x \in \partial \Omega_{r_{3}}$. In view of Lemma 2.4, we have

$$
\left\|T_{\lambda} x\right\| \leq \frac{1}{l^{\omega}-1} \lambda \eta \sum_{j=0}^{\omega-1} b(j)\|x\| \leq\|x\|, \text { for } x \in \partial \Omega_{r_{3}}
$$

Then T_{λ} has a fixed point in $P \cap\left(\bar{\Omega}_{r_{3}} \backslash \Omega_{r_{1}}\right)$, and (1) has at least one positive ω-periodic solution for $\lambda>\lambda_{*}$.

If $f_{0}=f_{\infty}=0$, it is easy to see from the above proof that T_{λ} has a fixed point x_{1} in $\bar{\Omega}_{r_{1}} \backslash \Omega_{r_{2}}$ and a fixed point x_{2} in $\bar{\Omega}_{r_{3}} \backslash \Omega_{r_{1}}$ such that

$$
r_{2}<\left\|x_{1}\right\|<r_{1}<\left\|x_{2}\right\|<r_{3}
$$

Consequently, (1) has at least two positive ω-periodic solutions for $\lambda>\lambda_{*}$. The proof is complete.

Similar to that of the Theorem 3.1, we have
THEOREM 3.2. Assume $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If $I_{\infty}=1$ or 2 , then (1) has at least one I_{∞} positive ω-periodic solution for $0<\lambda<\frac{l^{\omega}-1}{\sum_{j=0}^{\omega-1} b(j)} \sup _{r>0} \frac{r}{M(r)}$.

Next, we consider the nonexistence of positive ω-periodic solutions for (1).
THEOREM 3.3. Assume $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If $I_{0}=0$ (or $\left.I_{\infty}=0\right)$, then (1) has no positive ω-periodic solutions for sufficiently large $\lambda>0$ (or sufficiently small $\lambda>0$).

PROOF. Since $I_{0}=0$, we have $f_{0}>0$ and $f_{\infty}>0$, there exist $\varepsilon_{1}>0, \varepsilon_{2}>0$ and $\gamma_{2}>\gamma_{1}>0$ such that

$$
f(x) \geq \varepsilon_{1} x \text { for } x \in\left[0, \gamma_{1}\right], \quad f(x) \geq \varepsilon_{2} x \text { for } x \in\left[\gamma_{2}, \infty\right)
$$

Let

$$
c_{1}=\min \left\{\varepsilon_{1}, \varepsilon_{2}, \min _{\gamma_{1} \leq x \leq \gamma_{2}}\left\{\frac{f(x)}{x}\right\}\right\}
$$

Then $f(x) \geq c_{1} x$ for $x \in[0, \infty)$. Assume y is a positive ω-periodic solution of (1). We show that this leads to a contradiction for $\lambda>\bar{\lambda}$, where

$$
\bar{\lambda}=\frac{\left(L^{\omega}-1\right)^{2}}{\left(l^{\omega}-1\right) c_{1} \sum_{j=0}^{\omega-1} b(j)}
$$

Since $T_{\lambda} y=y$, it follows from Lemma 2.3 that for $\lambda>\bar{\lambda}$,

$$
\|y\|=\left\|T_{\lambda} y\right\| \geq \lambda \frac{l^{\omega}-1}{\left(L^{\omega}-1\right)^{2}} c_{1} \sum_{j=0}^{\omega-1} b(j)\|y\|>\|y\|
$$

which is a contradiction.
If $I_{\infty}=0$, then $f_{0}<\infty$ and $f_{\infty}<\infty$. There exists $\eta_{1}>0, \eta_{2}>0, \gamma_{2}>\gamma_{1}>0$ such that

$$
f(x) \leq \eta_{1} x \text { for } x \in\left[0, \gamma_{1}\right], \quad f(x) \leq \eta_{2} x \text { for } x \in\left[\gamma_{2}, \infty\right)
$$

Let $c_{2}=\max \left\{\eta_{1}, \eta_{2}, \max \left\{\frac{f(x)}{x}\right\}\right\}$, we have

$$
f(x) \leq c_{2} x \text { for } x \in[0, \infty)
$$

Assume y is a positive ω-periodic solution of (1). We show that this leads to a contradiction for $0<\lambda<\bar{\lambda}$, where

$$
\bar{\lambda}=\frac{l^{\omega}-1}{c_{2} \sum_{j=0}^{\omega-1} b(j)}
$$

Since $T_{\lambda} y=y$, it follows from Lemma 2.4 that for $0<\lambda<\bar{\lambda}$,

$$
\|y\|=\left\|T_{\lambda} y\right\| \leq \lambda \frac{1}{l^{\omega}-1} c_{2} \sum_{j=0}^{\omega-1} b(j)\|y\|<\|y\|
$$

which is a contradiction. The proof is complete.
COROLLARY 3.1. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If there is a $M_{1}>0$ such that $f(x) \geq M_{1} x$ for $x \in[0, \infty)$, then there exists a $\bar{\lambda}=\frac{\left(L^{\omega}-1\right)^{2}}{\left(l^{\omega}-1\right) \sum_{j=0}^{\omega-1} b(j) M_{1}}$ such that for all $\lambda>\bar{\lambda}$, (1) has no positive ω-periodic solution.

COROLLARY 3.2. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If there is a $M_{2}>0$ such that $f(x) \leq M_{2} x$ for $x \in[0, \infty)$, then there exists a $\bar{\lambda}=\frac{l^{\omega}-1}{\sum_{j=0}^{\omega-1} b(j) M_{2}}$ such that for all $0<\lambda<\bar{\lambda}$, (1) has no positive ω-periodic solutions.

4 Examples

In this section, we illustrate our main results obtained in the previous sections with several examples.

EXAMPLE 4.1. Consider the difference equation

$$
\begin{equation*}
x(n+3)=(3+\sin x(n)) x(n)-\lambda b(n) x^{3}(n-9) \tag{6}
\end{equation*}
$$

here $b(n)>0$ is a 4 -periodic sequences,
In fact $2 \leq 3+\sin (x(n)) \leq 4$ for $n \in[0,4] . f(u)=u^{3}$ and

$$
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=0, \quad f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u}=\infty
$$

By Theorems 3.1 and 3.2 , (6) has at least one positive ω-periodic solution for sufficiently large $\lambda>0$ or sufficiently small $\lambda>0$.

EXAMPLE 4.2. Consider the difference equation

$$
\begin{equation*}
x(n+1)=3 x(n)-\sin x(n)-\lambda b(n) x(n-\tau(n)) \tag{7}
\end{equation*}
$$

here $b(n)>0$ and $\tau: Z \rightarrow Z$ are ω-periodic sequences.
Clearly, the positive periodic solutions of (7) are the positive periodic solutions of the following difference equation

$$
\begin{equation*}
x(n+1)=g(x(n)) x(n)-\lambda b(n) x(n-\tau(n)) \tag{8}
\end{equation*}
$$

where

$$
g(u)= \begin{cases}3-\frac{\sin u}{u}, & \text { if } u>0 \\ 2, & \text { if } u=0\end{cases}
$$

Note that

$$
f_{0}=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=1, f_{\infty}=\lim _{u \rightarrow \infty} \frac{f(u)}{u}=1
$$

By Theorem 3.3, (8) has no positive ω-periodic solutions for sufficiently large or small $\lambda>0$. Hence, (7) has no positive ω-periodic solutions for sufficiently large or small $\lambda>0$.

Acknowledgement. Supported by the Scientific Research Fund of Hunan Provincial Education Department (09B033) and by Hunan Provincial Natural Science Foundation of China (09JJ3010).

References

[1] L. Rachunek and I. Rachunkova, Strictly increasing solutions of nonautonomous difference equations arising in hydrodynamics, Advances in Difference Equations, Vol. 2010(2010), Article ID 714891, 11 pages.
[2] X. Liu and Y. Liu, On positive periodic solutions of functional difference equations with forcing term and applications, Computers and Mathematics with Applications, 56(9)(2008), 2247-2255.
[3] Y. N. Raffoul, Positive periodic solutions of nonlinear functional difference equations, Electron. J. Differential Equations, 55(2002), 1-8.
[4] D. Jiang, D. O'Regan and R. P. Agarwal, Optimal existence theory for single and multiple positive periodic solutions to functional difference equations, Appl. Math. Comput., 161(2)(2005), 441-462.
[5] Y. Li and L. Zhu, Existence of positive periodic solutions for difference equations with feedback control, Appl. Math. Lett., 18(1)(2005), 61-67.
[6] L. Berezansky and E. Braverman, On existence of positive solutions for linear difference equations with several delays, Advances in Dynamical Systems and Applications, 1(2006), 29-47.
[7] Z. Zeng, Existence of positive periodic solutions for a class of nonautonomous difference equations, Electron J. Differential Equations, Vol. 2006(2006), 1-18.
[8] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[9] P. W. Eloe, Y. Raffoul, D. Reid and K. Yin, Positive solutions of nonlinear functional difference equations, Computers and Mathematics With applications, 42(2001), 639-646.
[10] J. Henderson and S. Lauer, Existence of a positive solution for an n-th order boundary value problem for nonlinear difference equations, Applied and Abstract Analysis, 1(1997), 271-279.
[11] M. Ma and J. Yu, Existence of multiple positive periodic solutions for nonlinear functional difference equations, Journal of Mathematical Analysis and Applications. $305(2)(2005)$, 483-490.

[^0]: *Mathematics Subject Classifications: 38A12
 ${ }^{\dagger}$ Department of Mathematics, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China

